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Abstract

3D shape matching is a fundamental issue in computer vision with many applications such as shape

registration, 3D object recognition and classification. However, shape matching with noise, occlusion

and clutter is a challenging problem. In this paper, we analyze a family of quasi-conformal maps

including harmonic maps, conformal maps and least squares conformal maps with regards to 3D shape

matching. As a result, we propose a novel and computationally efficient shape matching framework by

using least squares conformal maps. According to conformal geometry theory, each 3D surface with

disk topology can be mapped to a 2D domain through a global optimization and the resulting map is a

diffeomorphism, i.e., one-to-one and onto. This allows us to simplify the 3D shape-matching problem

to a 2D image-matching problem, by comparing the resulting 2D parametric maps, which are stable,

insensitive to resolution changes and robust to occlusion and noise. Therefore, highly accurate and

efficient 3D shape matching algorithms can be achieved by using the above three parametric maps.

Finally, the robustness of least square conformal maps is evaluated and analyzed comprehensively in

3D shape matching with occlusion, noise and resolution variation. In order to further demonstrate the

performance of our proposed method, we also conduct a series of experiments on two computer vision

applications, i.e., 3D face recognition and 3D non-rigid surface alignment and stitching.

Index Terms

Shape Representations, Shape Matching, Conformal Geometry, 3D Face Recognition.

I. INTRODUCTION AND PREVIOUS WORK

3D shape matching is a fundamental issue in 3D computer vision with many applications,

such as shape registration, partial scan alignment, 3D object recognition and classification [8],

[50], [37], [23]. As 3D scanning technologies improve, large databases of 3D scans require

automated methods for matching. However, matching 3D shapes in noisy and cluttered scenes

is a challenging task. Moreover, since most 3D shape scanners can only capture 2.5 D data of

the target surfaces, aligning and stitching partial 3D surfaces is a fundamental problem in many

research areas, such as computer vision, mechanical engineering, and molecular biology.

Generally, the crux of 3D shape matching is finding good shape representations, allowing

us to match two given free-form surfaces by comparing their shape representations. Different

approaches include curvature-based representations [45], regional point representations [26], [37],

[43], [10], spherical harmonic representations [27], [17], [18], shape distributions [34], spline
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representations [7] and harmonic shape images [51]. However, many shape representations that

use local shape signatures are not stable and cannot perform well in the presence of noise. In this

paper, we propose to use a family of quasi-conformal maps, including harmonic maps, conformal

maps and least squares conformal maps, that does not suffer from such problems. According to

conformal geometry theory, each 3D shape with disk topology can be mapped to a 2D domain

through a global optimization and the resulting map is a diffeomorphism, i.e., one-to-one and

onto. Consequently the 3D shape-matching problem can be simplified to a 2D image-matching

problem of the quasi-conformal maps. These maps are stable, insensitive to resolution changes

and robust to occlusion and noise. The 2D maps integrate geometric and appearance information

and 2D matching is a better understood problem [31], [4]. Therefore, highly accurate and efficient

3D shape matching algorithms can be achieved using quasi-conformal maps.

The robustness and easy use of the technique we proposed allow us to cope with more

challenging problems such as surface alignment and stitching, when only two parts of surfaces

could be matched. There has been a lot of research on 3D surface alignment and stitching

in recent decades, such as identification and indexing of surface features[15], [42], computing

principal axes of scans[12], exhaustive search for corresponding points[9], or iterative closest

point(ICP) methods[28], [36], [38], [6]. Compared to matching, there are other additional issues

in surface stitching, such as registration and integration[44]. 3D surface alignment and stitching

is still a challenging task especially when the transformation between the surfaces to be aligned

is non-rigid, e.g., when taking successive scans of humans that might not be standing still. Based

on conformal geometry theory, an important property of Least Squares Conformal Maps(LSCMs)

is that they can map a 3D surface to a 2D domain in a continuous manner with minimized local

angle distortion. This implies that LSCMs are not sensitive to surface deformations, which leads

to a natural solution to 3D non-rigid surface alignment and stitching.

Quasi-Conformal maps including harmonic maps, conformal maps and least squares conformal

maps have been used in several applications of computer vision and graphics. In [51], Zhang

et al. proposed harmonic maps for surface matching. In [49], Wang et al. use harmonic maps

to track dynamic 3D surfaces. In [20], [19], [48], [47], conformal maps are used for face and

brain surface matching. Moreover, Sharon et al. [40] use conformal maps to analyze similarities

of 2D shapes. Least squares conformal maps are introduced by Levy et al. [29] for texture

atlas generation and used by Wang et al. [46] to do 3D surface matching. In order to calculate
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Fig. 1. Distortion comparison between a conformal map and a harmonic map. (a) Original surface with texture. (b) Original

surface without texture. (c) The 2D conformal map of the surface with texture. (d) The harmonic map of the surface with

texture. (e) Checkerbox textured surface by conformal mapping. (f) Checkerbox textured surface by harmonic mapping. Because

of angle-preservation, (c) and (e) have less distortions than (d) and (f), which can be clearly seen in the close-up views (g) and

(h) of the chin areas in the gray boxes respectively.

harmonic maps, the surface boundary needs to be identified and a boundary mapping from 3D

surfaces to the 2D domain needs to be created, which can be a difficult problem especially when

part of the surface is occluded. However, the two other quasi-conformal maps we discuss in this

paper, conformal maps and least squares conformal maps, do not need boundary information

and so lend themselves as a natural choice to solve this problem. Moreover, in addition to the

advantages of harmonic maps, such as sound mathematical basis and preservation of continuity of

the underlying surfaces, conformal maps are also angle preserving, which leads to less distortion

and robustness to noise. The differences between conformal maps and harmonics maps are shown

in Fig. 1.

In this paper, we make the following contributions:

1) We analyze a family of quasi-conformal maps, including harmonic maps, conformal maps

and least squares conformal maps, when applied to 3D shape matching and compare their

properties comprehensively.
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2) We propose a novel 3D shape matching framework, using least squares conformal maps.

3) We systematically evaluate the robustness of least squares conformal maps on 3D shape

matching for different challenges such as occlusion, noise and resolution variation. For

completeness purposes, we also provide a full comparison between different quasi-conformal

maps for 3D shape matching.

4) We demonstrate the performance of least squares conformal maps in practice through 3D

face recognition and 3D non-rigid surface alignment and stitching.

The rest of the paper is organized as follows: The mathematical background of the harmonic

and conformal maps is introduced and compared in Section II. A framework for 3D shape

matching using least squares conformal maps is proposed in Section III. Experimental results

and performance analysis are presented in Section IV, and we conclude with discussion and

future work in Section V.

II. THEORETICAL BACKGROUND OF CONFORMAL GEOMETRY

An important merit of quasi-conformal maps, including harmonic maps, conformal maps and

least squares conformal maps, is to reduce the 3D shape-matching problem to a 2D image-

matching problem, which has been extensively studied. Quasi-conformal mappings, which are

almost conformal, do not distort angles arbitrarily and this distortion is uniformly bounded

throughout their domain of definition[3]. We are dealing with 3D surfaces, but since they are

manifolds, they have an inherent 2D structure, which can be exploited to make the problem more

tractable using conformal geometry theory [20], [40]. Most work using conformal geometry

theory is done in surface parameterization, which can be viewed as an embedding from a 3D

surface S with disk topology to a planar domain D. Following the introduction of the notions

of harmonic maps, conformal maps and least squares conformal maps, these three parametric

maps will be compared in a comprehensive manner.

A. Harmonic maps

As described in [51], a harmonic map H : S → D is a critical point for the harmonic energy

functional,

E(H) =
∫

S
|∇H|2dµS, (1)
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and can be calculated by minimizing E(H). The norm of the differential |∇H| is given by the

metric on S and D, and µS is the area element on 3D surface S [39], [33], [13], [14]. Since the

source surface mesh S is in the form of a discrete triangular mesh, we approximate the harmonic

energy as [13], [51], [20],

E(H) =
∑

[v0,v1]

k[v0,v1]|H(v0) − H(v1)|
2, (2)

where [v0, v1] is an edge connecting two neighboring vertices v0 and v1, and k[v0,v1] is defined

as
1

2
(

(v0 − v2) · (v1 − v2)

|(v0 − v2) × (v1 − v2)|
+

(v0 − v3) · (v1 − v3)

|(v0 − v3) × (v1 − v3)|
) (3)

where {v0, v1, v2} and {v0, v1, v3} are two adjacent triangular faces.

By minimizing the harmonic energy, a harmonic map can be computed using the Euler-

Lagrange differential equation for the energy functional, i.e.,

∆E = 0, (4)

where ∆ is the Laplace-Beltrami operator [39], [33], [13], [14]. This will lead to solving a sparse

linear least squares system for the mapping H of each vertex vi [13], [51], [49], [20]. If the

boundary condition

H|∂S : ∂S → ∂D (5)

is given, the solution exists and is unique.

Although harmonic maps are easy to compute, they require satisfaction of the above boundary

condition, which becomes unreliable when there are occlusions in the 3D original data. To

overcome this problem, the missing boundaries can be approximated [51], which might be enough

for rough surface matching. However, since interior feature points are often more robust to

occlusion, it is desirable to replace the boundary condition with feature constraints. This can be

achieved by conformal maps, another mathematical tool in conformal geometry theory, which

only require several feature constraints as an input and obviate the need to specify the boundary

condition.
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B. Conformal maps

It can be proven that there exists a mapping from any surface with a disk topology to a 2D

planar domain [21], which is one-to-one, onto, and angle preserving. This mapping is called

conformal mapping and keeps the line element unchanged, except for a local scaling factor [16].

Conformal maps have many appealing properties, one of which is their connection to complex

function theory [16], [29]. Consider the case of mapping a planar region S to the plane. Such

a mapping can be viewed as a function of a complex variable, d = U(s). Locally, a conformal

map is simply any function U which is analytic in the neighborhood of a point s and such that

U ′(s) 6= 0. A conformal mapping U thus satisfies the Cauchy-Riemann equations, which are

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −

∂v

∂x
. (6)

where d = u + iv and s = x + iy.

Differentiating one of these equations with respect to x and the other with respect to y, we

obtain the two Laplace equations

∆u = 0, ∆v = 0. (7)

where ∆ = ∂2

∂x2 + ∂2

∂y2 . Any mapping which satisfies these two Laplace equations is called

a harmonic mapping. Thus a conformal mapping is also harmonic. However, unlike the har-

monic maps described in the previous section, which need the boundary mapping H|∂S fixed

in advance, conformal maps can be calculated without demanding the mesh boundary to be

mapped onto a fixed shape. For a discrete mesh, the main approaches to achieve conformal

parameterizations are: harmonic energy minimization[11], [20], [19], [48], [47], Cauchy-Riemann

equation approximation[29], Laplacian operator linearization[21], circle packing[24], most iso-

metric parameterizations(MIPS)[22] and angle-based flattening method[41]. In this paper, we

compute conformal maps using the harmonic energy minimization method[20].

Riemann’s theorem states that for any surface S homeomorphic to a disc, it is possible to find

a parameterization of the surface satisfying Eq. 6 [29], which can be uniquely determined by

two points on surface S. However, to better handle the errors caused by noise in the data and

the inaccuracy of finding feature points, we introduce additional feature constraints, indicating

that the corresponding features on two 3D surfaces should be mapped onto the same locations

in the 2D domain. However, with these additional constraints, it is not always possible to satisfy
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the conformality condition. Hence, we seek to minimize the violation of Riemann’s condition

in the least squares sense.

C. Least squares conformal maps

The Least Squares Conformal Map(LSCM) parameterization algorithm generates a discrete

approximation of a conformal map by adding more constraints. Here we give a brief description

(see [29] for details using different constraints).

Given a discrete 3D surface mesh S and a smooth target mapping U : S → (u, v), then, as

described in section II-B, U is conformal on S if and only if the Cauchy-Riemann equation,

∂U

∂x
+ i

∂U

∂y
= 0 (8)

holds true on the whole of S. However, in general this conformal condition cannot be strictly

satisfied on the whole triangulated surface S, so the conformal map is constructed in the least

squares sense:

MinC(S) =
∑

d∈S

∫

d
|
∂U

∂x
+ i

∂U

∂y
|2dA (9)

where d is a triangle on the mesh S. If we suppose the mapping U is linear on d then

C(S) =
∑

d∈S

|
∂U

∂x
+ i

∂U

∂y
|2A(d) (10)

where A(d) is the area of the triangle d. Furthermore let αj = uj + ivj and βj = xj + iyj , so

αj = U(βj) for j = 1, 2, ..., n. Then, we rearrange the vector α such that α = (αf , αp) where αf

consists of n − p free coordinates and αp consists of p constraint point coordinates. Therefore,

Eq. 10 can be rewritten as

C(S) = ‖Mfαf + Mpαp‖
2 (11)

where M = (Mf ,Mp), a sparse m × n complex matrix(m is the number of triangles and n is

the number of vertices). The least squares minimization problem in Eq. 11 can be efficiently

solved using the Conjugate Gradient Method. Thus we can map a 3D surface to a 2D domain

with multiple correspondences as constraints by using the LSCM technique.

Since LSCMs have almost all the properties of conformal maps and also provide more

correspondences as additional constraints, we expect them to be very useful in 3D shape matching

and recognition.
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D. Comparison of quasi-conformal maps

Based on conformal geometry theory, harmonic maps, conformal maps and least squares

conformal maps(LSCMs) between two topological disks preserve continuity of the underlying

surfaces, with minimal stretching energy and angle distortion. All the above quasi-conformal

maps are invariant for the same source surface with different poses, thus making it possible to

account for global rigid transformations. A very important property, which governs our matching

algorithm, is that all the maps can establish a common 2D parametric domain for the two surfaces.

Therefore we can simplify the 3D shape-matching problem to a 2D image-matching problem.

However, they vary in performance for 3D surface matching as can be seen in table I.

TABLE I

PERFORMANCE COMPARISON OF QUASI-CONFORMAL MAPS.

Harmonic Maps Conformal Maps Least Squares Conformal Maps

Resolution changes Not sensitive Not sensitive Not sensitive

Boundary constraint Needed Not needed Not needed

Boundary occlusion Difficult to handle No significant impact No significant impact

Interior feature Use 2 Points Use more

points used in mapping Do not use (from Riemann’s theorem) feature constraints

Error of interior

feature points detection Not sensitive Sensitive Not sensitive

Nonlinear (with linear

Computational Complexity Linear approximation available) Linear

Compared to the exact solutions for harmonic maps and conformal maps, LSCMs are generated

by minimizing the violation of Riemann’s condition in the least squares sense. This optimization-

based parameterization method has the following properties:

1) LSCMs have the same properties as conformal maps, e.g., existence and uniqueness which

have already been proven in [29].

2) LSCMs can map a 3D shape to a 2D domain in a continuous manner with minimized

local angle distortion.

3) LSCMs can handle missing boundaries and occlusion and also allow multiple constraints.

4) LSCMs are independent of mesh resolution.
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5) The least squares minimization problem in calculating LSCMs has the advantage of being

linear.

For actual 3D surfaces, it is very likely to have noise and missing data. From the above

comparison, we can see that LSCMs are the best candidate among all three parametric maps to

perform 3D shape matching efficiently. LSCMs do not require the boundary condition explicitly

which means they can handle missing boundaries and occlusions. Also, they take multiple feature

constraints as input, which allows them to better handle noise introduced by the feature point

detection. We confirm this experimentally in the experiment section by analyzing the robustness

of the three parametric maps for 3D shape matching with occlusion, noise and resolution

variation. In the remainder of this paper, we propose a framework of 3D shape matching using

LSCMs.

III. SHAPE MATCHING FRAMEWORK USING LEAST SQUARES CONFORMAL MAPS

To match 3D shapes accurately and efficiently, a new 2D representation, least squares con-

formal shape images, is developed in our framework using LSCMs. Therefore, we simplify the

original 3D shape-matching problem to a 2D image-matching problem. In particular, our shape

matching framework includes two steps: First, interior feature correspondences are detected by

using spin-images[26]; After that, we generate and match least squares conformal shape images.

A. Correspondence detection using spin-images

In order to use least squares conformal mappings, we need to establish interior feature

constraints between the 3D shapes. For this purpose, we first select candidate points with

curvature larger than a threshold Tc, and then compare their spin-images to detect feature

correspondences. The spin-image is a well-known technique that has been proven useful for 3D

point matching[26]. It encodes the surface shape surrounding an oriented point p by projecting

nearby surface points into a 2D histogram, which has cylindrical coordinates of radius r and

height h centered at p, with its axis aligned with the surface normal of p. The number of bins

and support size in the spin-image histograms are parameters fixed at generation. It has been

shown that the matching results using spin-images are insensitive to the choice of the above

parameters [23]. In our experiments, the highest confidence feature correspondences are used.
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Fig. 2. Least Squares Conformal Shape Image: (a) Original surface with texture. (b) Original surface without texture. (c) Least

squares conformal maps with texture. (d) Least squares conformal shape image. (e)Least squares conformal maps of the same

surface, subsampled by a factor of 4, still very similar to (c).

The typical number of selected feature points is 5-6 for 3D face surfaces and 10-12 for brain

surfaces.

B. Least squares conformal shape images

In this section, we will introduce a method to describe 3D surfaces using least squares

conformal shape images (LSCSIs). In section II-C, we have shown that there exists a least squares

conformal mapping that can map each 3D surface with disk topology to the canonical 2D domain.

The LSCSIs are generated by associating a shape attribute with each vertex. Mean curvature is a

useful geometric attribute that depends only on the surface’s intrinsic geometry. In our method,

the mean curvature is computed in the same way as in [20]. Moreover, least squares conformal

maps can also help generate additional shape representations by associating other attributes, e.g.

texture, which leads to a natural solution of combining multiple important cues for 3D surface

matching and recognition, such as shape and texture. In our current framework, these cues are

weighted equally for surface matching. More elaborate schemes to combine different cues can

be done in the future work.

As an example, Fig. 2(d) shows the LSCSI of the surface Fig. 2(b), with darker color

representing larger mean curvature. Fig. 2(a) is the original surface with texture information and

Fig. 2(c) is its LSCM. Fig. 2(e) is the LSCM of a lower resolution(25%) version of the original

surface. The similarity between Fig. 2(c) and Fig. 2(e) shows that LSCMs are independent to

resolution variation.
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C. Matching surfaces by matching LSCSIs

Given two general surfaces S1 and S2 with disk tropology, we first detect high curvature

correspondences using spin-images. Then, by incorporating interior correspondences as con-

straints, LSCSIs are generated for both surfaces as described in section II-C. After that, the

normalized correlation coefficient MS1,S2
and the similarity criterion S(S1, S2) introduced in

[25] are computed on the two resulting LSCSIs by

MS1,S2
=

N
∑

pS1

i pS2

i −
∑

pS1

i

∑

pS2

i
√

(N
∑

(pS1

i )2 − (
∑

pS1

i )2)(N
∑

(pS2

i )2 − (
∑

pS2

i )2)
(12)

S(S1, S2) = (ln
1 + MS1,S2

1 − MS1,S2

)2 −
1

2N
(13)

where N is the number of overlapping points in the LSCSIs of 3D surface S1 and S2, and

pSk

i is the value (e.g., the mean curvature or the texture) of point i in the LSCSI of surface

Sk(k = 1, 2). In the case of matching surfaces with different resolutions, N is the number of

overlapping points in the LSCSIs of the surface with the lower resolution.

According to section II, an important property of Least Squares Conformal Maps (LSCMs)

is that they can map a 3D shape to a 2D domain in a continuous manner with minimized local

angle distortion. This implies that LSCSIs are not sensitive to surface deformations, e.g., if there

is not too much stretching between two faces with different expressions, they will induce similar

LSCSIs. As an example, Fig. 3 shows a comparison between the LSCSIs of faces with different

expressions and of different faces. More specifically, the first, the second, and the third columns

of Fig. 3 correspond to face scans of one subject with different expressions while the forth

column corresponds to another subject. For each column in Fig. 3, the bottom row represents

the LSCSIs of the surfaces (shown in the middle row), with darker color representing larger

mean curvature. The original surfaces with texture information are also shown in the top row of

Fig. 3. Based on Eq. 12, the normalized correlation coefficient (Mi,j) between Fig. 3(i) and Fig.

3(j) and the normalized correlation coefficient (Mi,k) between Fig. 3(i) and Fig. 3(k) are 0.92

and 0.86, respectively, while the normalized correlation coefficient (Mi,l) between Fig. 3(i) and

Fig. 3(l) is only 0.65. As is evident, the normalized correlation coefficients of LSCSIs between

the face scans of the same person with different expressions are much larger than the coefficients

between face scans of different persons, thus making it possible to match surfaces with small
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Fig. 3. Surface matching with deformation: The original 3D surfaces with texture are in the top row. The detail of the deformed

mouth areas are shown in the second row and the LSCSIs of the original surfaces are in the last row. In each row, the first,

the second, and the third surfaces are from the same person with different expressions and the forth one is another person. The

normalized correlation coefficient (Mi,j) between (i) and (j) and the normalized correlation coefficient (Mi,k) between (i) and

(k) are 0.92 and 0.86, respectively, while the normalized correlation coefficient (Mi,l) between (i) and (l) is only 0.65.

deformations using LSCSIs. This relative expression-invariance is also an important property for

shape representations used in face recognition.

However, for 3D surfaces with holes, which violate the disk topology assumption, we can

not calculate the LSCMs directly. To overcome this problem, we can simply fill in the holes

through interpolation[30] and then use our method to generate the LSCSIs of the new surfaces.

The filled-in regions are masked out when we compute the normalized correlation coefficient

using Eq. 12 . As discussed in section II-D, LSCMs depend on the geometry in a continuous

manner, which leads to robustness to local perturbation. Fig. 4 demonstrates the robustness of

our method to holes on surfaces. The normalized correlation coefficient of the LSCSIs shown

in Fig. 4(b,f) is 0.99, which means a very good match between the two surfaces of Fig. 4(a,e)

after hole filling. If we desire to preserve the non-disk topology of the object during matching,

then the object should be partitioned into simpler parts with disk topology[29] which could then
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Fig. 4. An example of surface matching with holes : (a) A frontal 3D scan. (b) The LSCSI of (a). (c) A side 3D scan of the

same subject as in (a), which has a hole illustrated in (d). (e) The same surface of (c,d) after hole filling. (f) The LSCSI of (e).

be matched. Optimal partitioning will be studied in future work.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

In this section we analyze the robustness of our proposed 3D shape matching method using

least squares conformal maps on real data with occlusion, noise and resolution variation. Fur-

thermore, we demonstrate the performance of our method through two applications: 3D face

recognition and 3D non-rigid surface alignment and stitching.

A. Robustness analysis

In this section we use two surface types: brains (4 instances) and faces (6 instances) to analyze

the performance of our proposed 3D shape matching method. We present three experiments in

which 3D surface matching is performed under occlusion, noise and resolution variation using

least squares conformal maps, followed by a full comparison between several related work of

quasi-conformal maps including harmonic maps, conformal maps and least squares conformal

maps.
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Fig. 5. 3D face surfaces and their LSCSIs under occlusion. The original 3D face surfaces with different occlusions are in the

top row. Their LSCSIs are in the bottom row.

1) Experiment on data occlusion: In this experiment, we test the robustness of Least Squares

Conformal Maps (LSCMs) under occlusion for both face and brain surfaces. Such occlusions

might be caused by rotation of the object in front of the scanner. Figures 5 and 7 show examples

of 3D face and brain surfaces respectively, under different occlusions with their least squares

conformal shape images (LSCSIs). For each original surface, partially occluded surfaces were

generated with occlusion rates between 5% and 45%. Average matching results of these face

and brain surfaces using LSCMs are shown in Fig 6 and 8, respectively. In the video clip

accompanying this paper, we superimpose the matched surfaces with significant occlusions (only

60% of area is common to both). Matching error is very hard to detect visually, which suggests

that our framework could be useful for partial scan alignment.

2) Experiment on noisy data: The second experiment tests the robustness of Least Squares

Conformal Maps (LSCMs) in the presence of noise. We add gaussian noise(N (0, σ)) on each

vertex of the face and brain surfaces. σ increases from 0.0 mm to 2.0 mm while the window

size for computing the curvatures of 3D face and brain surfaces is 10.0 mm. Example surfaces

with noise under different σ are shown in Fig 9. We match the various noisy surfaces to the

original noise-free surface and the average matching results of the face and brain surfaces are
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Fig. 6. Average matching results of the face surfaces under occlusion using LSCMs.

Fig. 7. 3D brain surfaces and their LSCSIs under occlusion. The original 3D brain surfaces with different occlusions are in

the top row. Their LSCSIs are in the bottom row.

shown in Fig. 10 for various σ values. From the results we can see that LSCMs appear robust

to gaussian noise.

3) Experiment on resolution variation: The third experiment tests the robustness of Least

Squares Conformal Maps (LSCMs) to resolution changes. Fig. 11 shows examples of 3D face and

brain surfaces with resolution variation, where all the meshes have the same shape but different

resolution. The surfaces with low resolution are matched to the original surfaces and average
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Fig. 8. Average matching results of the brain surfaces under occlusion using LSCMs.

matching results using the LSCMs are shown in Fig. 12. Results show that LSCMs achieve

fairly stable matching results and impervious to resolution changes. A small deterioration of the

matching results is due to the use of a discrete curvature approximation, since approximation

error increases as the resolution drops.

4) Comparison between quasi-conformal maps: For completeness purposes, we also per-

formed comparison experiments between several related work of quasi-conformal maps, including

least squares conformal maps, conformal maps[20] and harmonic maps[51], [49], to confirm the

conclusion in Section II-D. Average matching results of the face and brain surfaces using the

above three parametric maps under occlusion, noise and resolution variation are shown in Fig 13,

14 and 15, respectively. In Fig 13, since the harmonic maps require satisfaction of the surface

boundary condition as discussed in section II-A, the performance of harmonic maps is more

impacted than the performance of conformal maps and least squares conformal maps. Instead,

changes of boundary have very small effects on both conformal maps and least square conformal

maps. From the results in Fig 14 we can see that all three maps appear robust to gaussian noise.

However, since conformal maps depend on 2 feature points only, which might be detected with

errors caused by the noise, they have lower matching rates than the harmonic maps and the least
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Fig. 9. Examples of face and brain surfaces under gaussian noise with different σ set to 0.0, 0.4, 1.0 and 2.0 mm, respectively.
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Fig. 10. Average matching results of LSCMs under gaussian noise increases. The window size for computing the curvatures

of faces surfaces and brain surfaces is 10.0 mm and the σ increases from 0.0 mm to 2.0 mm.
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Fig. 11. 3D face and brain surfaces with 1, 1/2,1/4 and 1/8 of the original resolution, respectively.
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Fig. 12. Average matching results of LSCMs under resolution variation.
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Fig. 13. Average matching results of the face and brain surfaces under occlusion using all three parametric maps.

square conformal maps. Finally, Fig 15 shows that the above three parametric maps achieve

fairly stable matching results and all of them are impervious to resolution changes.

B. Recognition of 3D faces

In this section, we apply Least Squares Conformal Maps (LSCMs) to 3D face recognition on a

3D face database which contains 100 3D face scans from 10 subjects. The data are captured by a

phase-shifting structured light ranging system in different time[52]. Each face has approximately

80K 3D points with both shape and texture information available (example face data from two

subjects in the database are shown in Fig. 16). In order to further evaluate our recognition method,

we also perform a comparison with other existing methods, including the surface curvature

technique[45] and the spherical harmonic shape contexts [17]. For the computation of curvatures

from 3D surfaces we had to chose the size of the neighborhood for the surface fit. Clearly,

choosing the mask size is a trade-off between reliability and accuracy. When choosing a small

mask curvature computation will be strongly affected by noise, due to the small number of

points considered for regression. The reliability of the curvature estimation can be improved by

increasing the size of the mask. However, a large mask size will produce an incorrect result in

the area curvature changes quickly. In our experiments, we used a mask size of 10 × 10. The
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Fig. 14. Average matching results of all three parametric maps under gaussian noise increases. The window size for computing

the curvatures of faces surfaces and brain surfaces is 10.0 mm and the σ increases from 0.0 mm to 2.0 mm.
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Fig. 15. Average matching results of all three parametric maps under resolution variation.
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spherical harmonic shape contexts descriptor is computed using the method developed in [17],

based on 3D shape contexts. The 3D shape contexts technique is the straightforward extension

of 2D shape contexts[32], to three dimensions. The support region for a 3D shape contexts is a

sphere centered on the basis point p and its north pole oriented with the surface normal estimate

N for p. The support region is divided into bins by equally spaced boundaries in the azimuth and

elevation dimensions and logarithmically spaced boundaries along the radial dimension. Based on

the histogram from 3D shape contexts, we use the bin values as samples to calculate a spherical

harmonic transformation for the shells and discard the original histogram. The descriptor is a

vector of the amplitudes of the transformation, which are rotationally invariant in the azimuth

direction, thus removing the degree of freedom. We compute the spherical harmonic shape

contexts representations in 64 × 64 grids sampled evenly along the directions of longitude and

latitude with bandwidth b = 16.

In each experiment, we randomly select a single face from each subject for the gallery and

use all the remaining faces as the probe set. The average recognition results from 15 experiments

(with different randomly selected galleries) are reported in Table II. From the recognition results,

we can see that the least squares conformal maps perform 10.7% better than the spherical

harmonic shape contexts and 14.3% better than the surface curvature technique even if only the

shape information is used. Moreover, least squares conformal maps allow to combine both shape

and texture information, which improves the accuracy of 3D face recognition.

TABLE II

RECOGNITION RESULTS OF LEAST SQUARES CONFORMAL MAPS, SPHERICAL HARMONIC SHAPE CONTEXTS AND SURFACE

CURVATURE TECHNIQUE.

Recognition Result Least Squares Spherical Harmonic Surface

Conformal Maps Shape Contexts Curvature

Using shape information only 97.3% 86.6% 83.0%

Using texture information only 98.0% N/A N/A

Using both shape and texture 98.4% N/A N/A
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Fig. 16. Two subjects in the 3D face database. Shape information is in the first row and texture information is in the second

row.

C. Non-rigid surface alignment and stitching

In this section, we apply the Least Squares Conformal Maps(LSCMs) to another application:

3D non-rigid surface alignment and stitching. A very important property, which governs our

alignment and stitching algorithm, is that the LSCMs can establish a 2D common parametric

domain for the 3D surfaces. Therefore we can simplify the 3D surface alignment and stitching

problem to a 2D registration and stitching problem. Furthermore, because the LSCMs is a

diffeomorphism, i.e., one-to-one and onto, we can detect and remove the duplicated regions

in the original 3D surfaces by removing the overlapping areas in the resulting 2D common

parametric domain. After that, we can stitch the 3D surface patches by connecting the exclusive

regions in the resulting LSCMs. There is a lot of research on 3D surface remeshing[2], [5], [1],

[35], but in our case the problem is simplified to a 2D triangulation problem by connecting the

neighboring patches in the 2D common parametric domain. As an example, Fig. 17 demonstrates

the alignment and stitching of two 3D surfaces undergoing non-rigid deformations. 3D faces are

captured by a phase-shifting structured light ranging system [52] and each face has approximately

80K 3D points with both shape and texture information available. The subjects were not asked

to keep their head and facial expression still during the 3D face scanning.
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Furthermore, Fig. 18 shows another example of the accurate face alignment and stitching

result of our method on two 3D scans of one face undergoing different transformations and

deformations. The leftmost column shows the two input 3D face scans with texture. The same

3D face scans without texture information are shown in the second column. The Least Squares

Conformal Shape Images (LSCSIs) of both 3D scans are in the third column. Their aligned

LSCSIs and the resulting stitched 3D faces are in the fourth column. Because of the one-to-one

mapping between the LSCSI and original face, we can align and stitch 3D faces by registering

and stitching 2D LSCSIs.

In order to demonstrate the performance of our method, we also compare our results to the

results from the Iterative Closest Point (ICP) method [38] in Fig. 19. Fig. 19(a) shows a 3D

scan of a neutral face, while Fig. 19(b) shows a 3D scan of the same face undergoing a large

deformation in the mouth area. From Fig. 19(c) and (d) which are the front view of (a) and (b),

we can see the occlusion area clearly. The face alignment and stitching result of our method is in

Fig. 19(f) with the close up view of mouth area in Fig. 19(h). The result of the ICP method is in

Fig. 19(e) with the close up view in Fig. 19(g). As we can see, in the close up view Fig. 19(g),

there is a redundant region in the result because the ICP method failed to detect the overlapping

areas between deformed surfaces and can only register two surface with rigid transformations.

However, as can be seen in Fig. 19(g) and (h), our method correctly aligns even at areas of

significant local deformations.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a family of quasi-conformal maps, including harmonic maps,

conformal maps and least squares conformal maps, and proposed a fully automatic and novel

3D shape matching framework using least squares conformal shape images – a new shape

representation which simplified the 3D surface matching problem to a 2D image matching

problem. The performance of least squares conformal maps was evaluated vis-a-vis other existing

techniques in 3D face recognition and 3D non-rigid surface alignment and stitching. Furthermore,

our comparison results have shown that all above three parametric maps are robust to occlusion,

noise and different resolutions and that the least squares conformal mapping is the best choice

for 3D surface matching.

In future work, we will continue to exploit the properties of conformal maps and further

September 13, 2006 DRAFT



25

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 17. An example of surface alignment and stitching: (a,b) Two original 3D faces with texture in different

poses and deformations. (c,d) Original 3D faces without texture. (e,f) The Least Squares conformal Shape Images

(LSCSIs) of the faces. (g) The aligned LSCSI of the two faces. (h) The resulting 3D face by stitching a part of

(c) into (d). Because of the one-to-one mapping between the LSCSI and original face, we can align and stitch 3D

faces by registering and stitching 2D LSCSIs.

analyze the properties of conformal shape representations for surfaces with non-disk topology.

We plan to use our framework for applications such as 3D object classification and registration

under non-rigid deformations.
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