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Matching 3D shapes is a fundamental problem in Medical Imaging with many
applications including, but not limited to, shape deformation analysis, tracking
etc. Matching 3D shapes poses a computationally challenging task. The problem
is especially hard when the transformation sought is diffeomorphic and non-rigid
between the shapes being matched. In this paper, we propose a novel and com-
putationally efficient matching technique which guarantees that the estimated
non-rigid transformation between the two shapes being matched is a diffeomor-
phism.

Specifically, we propose to conformally map each of the two 3D shapes onto
the canonical domain and then match these 2D representations over the class
of diffeomorphisms. The representation consists of a two tuple (λ, H), where,
λ is the conformal factor required to map the given 3D surface to the canonical
domain (a sphere for genus zero surfaces) and H is the mean curvature of the
3D surface. Given this two tuple, it is possible to uniquely determine the corre-
sponding 3D surface. This representation is one of the most salient features of
the work presented here. The second salient feature is the fact that 3D non-rigid
registration is achieved by matching the aforementioned 2D representations.

We present convincing results on real data with synthesized deformations and
real data with real deformations.

1 Introduction

Matching 3D shapes is a fundamental problem in computer vision with several
applications in medical imaging, archeology, augmented reality and many others.
Several 2D and 3D shape matching techniques have been developed in the past
couple of decades in the field of computer vision and some have been successfully
applied to medical imaging, shape retrieval etc. Since our focus in this paper is
3D shape matching, in the following, we will restrict our literature review to
matching 3D shapes and refer the reader to some recent works [1–3] and the
references therein for 2D shape matching.

3D shape matching has a rich history in the field of Computer Vision specifi-
cally in object recognition applications. A key ingredient in shape matching has
been the choice of the shape representation scheme. One of the first 3D shape
matching techniques involved the use of the curvature-based representations [4,
5], the modal based representations [6], harmonic images [7], spherical harmonic
representation [8] and shape distributions [8], spline representations [9]. Very few
of these representation along with the associated matching algorithms tackled
non-rigid motions and when they did do so, the resulting motion was not a diffeo-
morphism. In some medical imaging applications, it is important to require that
the estimated transformation be a diffeomorphism. Similar requirements are not
uncommon in non-medical domains. More recently, there have been several tech-
niques in literature [10] that yield a diffeomorphic mapping. These techniques



however are relatively computationally expensive. In this paper, we propose a
technique that is guaranteed to yield a diffeomorphic mapping in 3D and can
be computed very efficiently via conformal matching of the corresponding 2D
representation, described subsequently.

In [11], a technique for brain image warping was described and then ap-
plied to detect disease-specific patterns in [12]. In [13], yet another diffeomorphic
warping scheme developed by Christensen [14] was used to study hippocampal
morphometry. In [15] Twining et al. developed a method to construct diffeo-
morphic representations of non-rigid registrations of medical images. Automatic
neuroanatomical segmentation based on warping of 3D models is addressed in
[16]. More recently, conformal brain mappings have been studied in [17] and
[18]. While some of these techniques yield diffeomorphic warps, they are how-
ever computationally expensive. In this paper, we present a technique that yields
diffeomorphic warps which are easy to compute and relatively inexpensive.

The rest of the paper is organized as follows: Section 2 contains some math-
ematical preliminaries. This is followed by the description of the conformal rep-
resentation in section 3. Section 4 contains the mathematical formulation of the
matching problem and the optimization method to find the best Möbius transfor-
mation. Experimental results on both synthetic and real data cases is presented
in section 5.

2 Mathematical Framework for the Proposed Model

We now present some definitions from differential geometry that are necessary
to understand our shape representation.

Let φ : S1 → S2 be a smooth map between two manifolds, define the local
coordinates for S1 and S2 by (x1, x2) and φ(x1, x2) = (φ1(x1, x2), φ2(x1, x2)).
The first fundamental forms of S1 and S2 are: ds2

1 =
∑

ij gijdxidxj and ds2
2 =∑

ij g̃ijdxidxj . The pull back metric on S1 induced by φ is then given by,

φ∗ds2
2 =

∑
mn

∑
ij

g̃ij
∂φi

∂xm

∂φj

∂xn
dxmdxn. (1)

If there exists a positive function λ(x1, x2), such that ds2
1 = λ(x1, x2)φ∗ds2

2, then
we say φ is a conformal map between S1 and S2. Especially, if the map from S1

to the local coordinate plane (x1, x2) is conformal, we say that (x1, x2) are the
conformal coordinates of S1. A 2-manifold S is a Riemann surface, if there exists
an atlas, such that, (1) each local chart forms a conformal coordinate system on
S and we treat each coordinate chart as an open set of the complex plane C.
(2) The transition functions between charts are treated as complex functions,
all of them being holomorphic. By the Riemann uniformization Theorem, all
surfaces can be conformally embedded in a sphere, a plane or a hyperbolic space,
wherein all the embeddings form special groups. The conformal parametrization
continuously depends on the Riemannian metric tensor on the surface.

Surfaces can be represented as functions defined on their conformal coordi-
nate systems. Thus, by using a conformal representation, the surface matching
problems in 3D can be converted to matching of equivalent representations in
2D.

Suppose S1 and S2 are two surfaces we want to match and their conformal
coordinate domains of S1 and S2 are D1 and D2 respectively. Let the conformal
mapping from S1 to D1 be π1, the one from S2 to D2 be π2. Instead of finding



the mapping φ from S1 to S2 directly, we want to find a map φ̃ : D1 → D2, such
that the diagram 2 is commutable i.e., π−1

2 ◦ φ̃ ◦ π1 = φ.

S1 S2

D1 D2

�φ

�
π1

�
π2

�
φ̃

(2)

Thus, finding a diffeomorphic φ between S1 and S2 can be achieved by finding
a diffeomorphism φ̃ from D1 to D2 and then using the commutative diagram.

3 The 2D Conformal Representation for surfaces in 3D &
its Properties

In this section we will introduce the methods to represent surfaces using their
conformal coordinates. This representation preserves all the geometric informa-
tion of the surface and maps all surfaces to the canonical 2D domains. If two
surfaces are close to each other under the Housdorff metric, the L2 norm between
their conformal representations are also close. Conversely, if two surfaces have
similar conformal representations, then they also have similar shapes in R3. The
key advantage of our conformal representation is that it is complete in the sense
that it allows us to reconstruct the original surface fully from the representation.
Thus, there is no loss of information in this representation unlike most others
e.g., shape distributions [8] and others.

Suppose surface S is mapped conformally to a canonical domain, such as
the sphere. We can stereographically project the sphere to the complex plane,
then use these conformal coordinates (u, v) to parameterize S. Then, We can
compute the following two maps directly from the position vector S(u, v). First,
the conformal factor map or stretch map is the conformal factor function λ(u, v)
defined on (u, v), and conceptually represents the scaling factor at each point.
Secondly, the mean curvature function.

∂S

∂u
× ∂S

∂v
= λ(u, v)n(u, v) (3)

ΔS(u, v) = H(u, v)n(u, v), (4)

where Δ is the Laplace-Beltrami operator defined on S, n(u, v) is the normal
function, H(u, v) is the mean curvature, λ(u, v) conformal factor function. The
tuple (λ,H) is the conformal representation of S(u, v).

Theorem 1 Conformal Representation: If a surface S(u, v) is parameter-
ized by some conformal parameter (u, v) on a domain D, then the conformal
factor function λ(u, v) and mean curvature function H(u, v) defined on D sat-
isfy the Gauss and Codazzi equation. If λ(u, v) and H(u, v) are given, along with
the boundary condition S(u, v)|∂D, then S(u, v) can be uniquely reconstructed.

The conformal maps between two genus zero closed surfaces form the so
called Möbius transformation group. If we map the sphere to the complex plane
using stereo-graphic projection, then all Möbius transformations μ : S2 → S2

have the form

μ(z) =
az + b

cz + d
, ad − bc = 1, a, b, c, d ∈ C. (5)



Another important property of our representation is that it is very stable. If
we slightly perturb a shape S, then its conformal representation λ(u, v) will
be perturbed only slightly. Hence, conformal representation is continuous and
stable.

In summary, the conformal representation is intrinsic, continuous and stable,
preserving all geometric information. It allows us to convert the problem of
matching surfaces in 3D to the problem of matching the corresponding canonical
2D conformal representations.

4 3D Shape Matching Formulation

In this section, we present the mathematical formulation of the matching prob-
lem. Suppose we have two genus zero surfaces S1 and S2 embedded in R3. Our
goal is to find a diffeomorphism φ : S1 → S2, such that φ minimizes the following
functional,

E(φ) =
∫

D1

||S1(u, v) − S2(φ(u, v))||2dudv. (6)

If we want to find a conformal map φ between S1 and S2, we can restrict φ̃ to
be a Möbius transformation when D1 and D2 are spheres.

The position map/representation S(u, v) is variant under rigid motion, and
the conformal factor λ(u, v) and mean curvature H(u, v) are invariant under rigid
motion. Therefore, it is most efficient to use λ(u, v) and H(u, v) for matching
surfaces. The matching energy can therefore be defined as,

E(φ̃) =
∫

D1

||λ1(u, v)−λ2(φ̃(u, v))||2dudv +
∫

D1

||H1(u, v)−H2(φ̃(u, v))||2dudv.

(7)
This energy is minimized numerically to obtain the optimal φ̃ and then the cor-
responding φ is obtained from the commutative diagram shown earlier. There
are many numerical optimization algorithms in literature that can be used to
minimize the energy defined above for diffeomorphic matching of functions de-
fined on the plane e.g., the gradient descent method with adaptive step size, the
Gauss-Newton method or the quasi-Newton method. In this paper, we use the
quasi-Newton method to compute the optimal diffeomorphism φ̃.

During the matching, the boundary condition and geometric constraints
should be considered. A general diffeomorphism may not guarantee that cor-
responding points between two instances of the same shape will map to each
other however it is a necessary condition. Thus, in order to make sure that this
constraint is satisfied, we may choose certain landmark points on S1 which we
want to map to predefined points on S2. This leads to a constrained diffeomor-
phic matching.

For genus zero closed surface, in order to find a Möbius transformation,
three landmarks are enough. Suppose three landmarks are given as {z0, z1, z2},
corresponding to {z̃0, z̃1, z̃2}, then a Möbius transformation φ̃ which maps all
the landmarks can be represented in a closed form, we use zij to denote zj − zi

, and z̃ij for z̃j − z̃i,

φ̃(z) =
z̃1(z − z0)z12z̃02 − (z − z1)z02z̃12z̃0

(z − z0)z12z̃02 − (z − z1)z02z̃12
(8)

We match the landmarks first, then use that φ̃ as the initial Möbius transforma-
tion , and optimize it to find the minimal matching energy.



5 Experimental Results

In order to test the performance of the matching algorithm, several experiments
are carried out and described in this section. We use surfaces extracted from
medical images for our testing. Their topologies are verified to be of genus zero.
The shapes are represented by triangulated meshes in 3D which are subdivided
using standard sub-division schemes in Computer Graphics to yield a smooth
representation of the surfaces. These surfaces are conformally mapped to the
canonical domain namely, the sphere, using the method introduced in [18] and
these canonical mappings then form the input to our matching algorithm. We
tested our algorithm with both synthetically generated deformations as well as
real deformations. In the synthetic deformation cases, we applied known non-
rigid deformations to a source shape to generate the target shape. The estimated
deformation is then compared with the known ground truth deformation for
several similarly generated data sets. The average and standard deviation of the
error in estimated deformation was then computed over the entire source-target
pairs of data. In the examples presented below, this error is quite small indicating
the accuracy of our technique presented here.

5.1 Synthetic Deformations Applied to Real Surfaces
The deformation coefficients of φ are generated randomly using a Gaussian dis-
tribution. We used 20 sample deformations from the Guassian distribution of
deformations to test our algorithm. As evident from the table 5.1, the mean and
variance of the difference between φ and the reconstructed deformation φ̂ are
very small indicating the accuracy of our algorithm.

In the next experiment, we present a cortical surface extracted from a human
brain MRI image and represented using a triangular mesh as shown in 1. This
cortical surface is then conformally mapped to a sphere as shown in (b) and (d).
The conformal factor λ is color-encoded as depicted in (a) and (b), the mean
curvature map is also color-encoded as shown in (c) and (d). The lowest values
of λ and H are represented by the blue color and the highest by the red color.
Values in between span the color spectrum.

We now define a non-rigid motion denoted by φ : R3 → R3 using affine maps
and then apply it to the real anatomical surface extracted from the brain MRI
scan. φ = (φ1, φ2, φ3) is represented as φk =

∑
i lki xi + tk, i, j, k = 1, 2, 3. All

coefficients of φ are randomly drawn from a Gaussian distribution.
The anatomical surface S is deformed by a randomly generated φ, then we

match S with φ(S) using the conformal representation. Using the algorithm de-
scribed in the last section, we estimate φ and denoted it by φ̂. We computed the
estimation error by comparing the original coefficients of φ and the estimated co-
efficients of φ̂. The results are depicted in the table 5.1. As evident, the estimates

# of Tests μlki
σlki

μtk σtk μl̂ki −lki
σl̂ki −lki

μt̂k−tk σt̂i−ti

20 0.3 0.47 33.33 47.14 4.02e-4 0.538e-4 7.27e-4 4.69e-4

20 1.9 2.21 10.00 4.08 2.7333e-2 1.0607e-2 3.2645e-2 1.6135e-2

20 3.9 4.36 20.00 8.16 1.55339e-1 9.3372e-2 1.09864e-1 7.1456e-2

20 1.8 2.21 10.00 4.08 2.7333e-2 1.0607e-2 3.2645e-2 1.6135e-2

20 0.34 0.47 3.33e-3 4.714e-3 1.079e-3 9.83e-4 1.595e-4 3.05e-4

Table 1. Mean and variance of the computed deformations between the source and
target shapes.



are very accurate. Figure 2 depicts one matching example. The deformation φ
in 2 is

φ(x, y, z) =

⎛
⎝5.0 0.10 0.2

0.4 5.10 0.2
0.4 0.6 4.9

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ +

⎛
⎝ 5.0

10.0
15.0

⎞
⎠

While the estimated deformation is,

φ̂(x, y, z) =

⎛
⎝4.9562 0.1211 0.2492

0.3604 5.0734 0.2189
0.3729 0.5817 4.8887

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ +

⎛
⎝ 4.9897

10.0396
15.0480

⎞
⎠

The accuracy of the estimated deformation field is assessed by computing the
standard deviation of the estimated deformation field for S. For each point,
the displacement field on S is defined as Tφ(u, v) = φ(S(u, v)) − S(u, v). The
displacement field Tφ and the estimated displacement field Tφ̂ are color-encoded
and illustrated in 2. We first normalize each channel, (x, y, z), of Tφ and Tφ̂ to
be between 0 and 1. Then (x, y, z) are represented by (R,G,B) colors. Higher
values of error in any of the 3 channels/directions will have a higher brightness
in the corresponding color.

As evident, the estimated deformation is very accurate. The distortion of the
conformal structure caused by φ in the above experiment is very large, for exam-
ple, it changes an angle from 90o to 63o in the above experiment. Even with such
big distortions of the conformal structure, our method is able to quite accurately
recover this deformation. This illustrates the robustness of our algorithm.
5.2 Real Deformations between Anatomical Surfaces
We also tested our algorithm on subcortical surfaces, specifically, the human
hippocampus surface extracted from MR brain scans. We applied our algorithm
to several distinct hippocampal surfaces to estimate the deformation between
pairs of them. This deformation can be used in assessing the shape differences
between them and assess the asymmetry between the left and right hippocampi
for a subject with epilepsy or schizophrenia or other pathologies.

Figure 3 illustrates the conformal representation of a hippocampal surface.
The matching results are illustrated in figure 4. We match the first hippocampal
surface to other three. In order to illustrate the correspondence, we color encode
the z value of the first surface and map the color to other surfaces by the matching
deformation. Each surface has about 5000 faces, and it takes about 90 seconds
to compute their conformal representation and 200 seconds (on a pentium 4) for
estimating the 3D deformation.

6 Conclusions
In this paper, we introduced a novel method for 3D surface matching using
conformal representations, which is based on Riemann surface theories. All ori-
entable surfaces can be mapped conformally to canonical spaces and represented
by conformal factor and mean curvature. The representation intrinsically and
continuously depends on the geometry of the surface. Then, the 3D surface
matching problem is converted to matching of 2D conformal representations.

In comparison to other matching methods, our new method is intrinsic and
efficient. We presented several synthetic and real data examples depicting the
accuracy of the estimated deformation between the source and target shapes.
The achieved accuracy was quite high and comparable to those achieved by
other methods reported in literature but at a much smaller computational ex-
pense. Our future work will focus on generalizing the conformal representations
to surfaces with arbitrary genus.



Acknowledgements

This research was in part supported by the NIH grant RO1 NS42075 to BCV.
Authors thank Professor C. M. Leonard of the UF-MBI for the hippocampal
data.

References

1. H. D. Tagare. Shape-based nonrigid correspondence with application to heart
motion analysis. In IEEE Trans. Medical Imaging, volume 18, pages 570–578,
1999.

2. B. B. Kimia C. M. Cyr, T. Sabestian. 2d to 3d registration based on shape match-
ing. In IEEE MMPIA, 2000.

3. M. Frenkel and R. Basri. Curve matching using the fast marching method. In
EMMCVPR, pages 35–51, 2003.

4. B. C. Vemuri, A. Mitiche, and J. K. Aggarwal. curvature-based representation
of objects from range data. In Image and Vision Computing, volume 4, pages
107–114, may 1986.

5. Paul J. Besl and Ramesh C. Jain. Three-dimensional object recognition. In ACM
Computing Surveys, volume 17, pages 75–145, 1985.

6. A. Pentland and S. Scalroff. Closed-form solutions for physically based shape
modeling and recognition. In IEEE Trans. on PAMI, volume 13, pages 715–729,
1991.

7. Dongmei Zhang and Martial Hebert. Harmonic shape images: A representation for
3d free-form surfaces based on energy minimization. In EMMCVPR, pages 30–43,
1999.

8. Michael Kazhdan and Thomas Funkhouser. Harmonic 3d shape matching.
9. V. Camion and L. Younes. Geodesic interpolating splines. In Proceedings of EMM-

CVPR 2001, pages 513–527, 2001.
10. A. Trouve. Diffeomorphisms groups and pattern matching in image analysis. In

International Journal of Computer Vision, volume 28, pages 213–221, 1998.
11. P. Thompson and A. Toga. A surface-based technique for warping 3-dimensional

images of the brain. In IEEE Trans. Medical Images, volume 15, pages 402–417,
1996.

12. P. M. Thompson, M. S. Mega, C. Vidal, J. L. Rapoport, and A. W. Toga. Detecting
disease-specific patterns of brain structure using cortical pattern matching and a
population-based probabilistic brain atlas. In 17th International Conference on
Information Processing in Medical Imaging (IPMI2001), volume 18, pages 488–
501, 2001.

13. Csernansky, J., Joshi, S., Wang, L., Haller, J., Gado, M., Miller, J., Grenander, U.,
Miller, and M. Hippocampal morphometry in schizophrenia via high dimensional
brain mapping. In Proceedings National Academy of Sciences, pages 11406–11411,
1998.

14. G. E. Christensen, S. C. Joshi, and M. Miller. Volumetric transformation of brain
anatomy. In IEEE TMI, volume 16, pages 864–877, 1997.

15. Carole Twining and Stephen Marsland. Constructing diffeomorphic representa-
tions of non-rigid registrations of medical images. In 18th International Confer-
ence on Information Processing in Medical Imaging (IPMI2003), volume 20, pages
413–425, 2003.

16. D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans. Automatic 3d model
based neuroanatomical segmentation. In Human Brain Mapping, volume 3, pages
190–208, 1995.

17. S. Pentland, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle.
Conformal surface parameterization for texture mapping. In IEEE Transaction on
Visualization and Computer Graphics, volume 6, pages 181–189, 2000.

18. X. Gu, Y. Wang, T.F. Chan, P.M. Thompson, and S.T. Yau. Genus zero surface
conformal mapping and its application to brain surface mapping. In IPMI2003,
pages 172–184.



(a) conformal factor on (b)conformal factor (c) Mean curvature on (d)Mean curvature
the brain surface. on the sphere. the brain surface. on the sphere.

Fig. 1. Color encoding of the conformal factor on (a) the cortex, (b) on the canonical
domain – the sphere; Color encoding of the Mean curvature on (c) the cortex and (d)
the cortex conformally mapped to the sphere.

(a) Original brain (b) Deformed brain (c) Displacement field(d) Displacement field

surface surface caused by φ, Tφ. caused by φ̂, Tφ̂.

Fig. 2. Estimated deformation using the conformal representation. (a) Original cortical
surface, (b) Synthetically deformed cortex. (c) and (d) depict color encoded deformation
fields φ ((x, y, z) corresponding to (R, G, B)) and φ̂ applied to (a) respectively.

(a) Hippocampus (b) Conformal Mapping(c) Conformal Factor (d) Mean curvature
surface

Fig. 3. Conformal factor and Mean curvature maps of the hippocampal surface. (a)
Hippocampal surface, (b) Conformal mapping of (a) to a sphere, (c) & (d) color coded,
conformal factor map and Mean curvature map respectively.

Fig. 4. Different hippocampal surfaces extracted from MRI images. The matching re-
sults are color encoded (see text for details). The regions of the same color exhibit the
correspondence obtained from the matching algorithm.


