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COMPUTING CONFORMAL STRUCTURES OF SURFACES∗

XIANFENG GU† AND SHING-TUNG YAU‡

Abstract. This paper solves the problem of computing conformal structures of general 2-

manifolds represented as triangular meshes. We approximate the De Rham cohomology by sim-

plicial cohomology and represent the Laplace-Beltrami operator, the Hodge star operator by linear

systems. A basis of holomorphic one-forms is constructed explicitly. We then obtain a period matrix

by integrating holomorphic differentials along a homology basis. We also study the global conformal

mappings between genus zero surfaces and spheres, and between general surfaces and planes. Our

method of computing conformal structures can be applied to tackle fundamental problems in com-

puter aid geometry design and computer graphics, such as geometry classification and identification,

and surface global parametrization.

Keywords. Mesh, conformal structure, texture mapping, Holomorphic forms, harmonic forms,

period matrix

1. Introduction. This paper introduces a systematic way to compute conformal
structures of general 2d surfaces, including computing holomorphic differentials, pe-
riod matrices and conformal maps among surfaces. To the best of our knowledge, this
is the first paper to give a set of practical algorithms to compute conformal structures
for general closed meshes. This method has the potential to be generalized to work
on meshes with boundaries and other representations of surfaces, such as implicit
surfaces and level sets.

Computational conformal geometry is an active field in mathematical research.
The following objects are equivalent to one another:

1. Compact Riemann surfaces;
2. Projective algebraic curves;
3. Jacobian varieties of compact Riemann surfaces

Basically the goal for computational conformal geometry is to compute conversion
among these different representations, and to compute conformal invariants and con-
formal mappings among surfaces.

In [1], [2] and [3], Riemann surfaces are represented as algebraic curves or D/G,
where D is the hyperbolic space and G is a Fuchsian group acting in D. The homology
bases are constructed as Mobius transformations, then the holomorphic differentials
are found by using algebraic geometry techniques on algebraic curves. Finally the
period matrices are computed explicitly by integrating holomorphic differentials on a
homology basis.
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In real applications, geometric surfaces are represented as meshes. It is rare to
represent general surfaces as algebraic curves or quotient spaces. The above methods
for abstract representation of Riemann surfaces can not be applied directly. In this
paper, we assume the input data are general meshes and propose a systematic way to
compute their conformal structures.

In [4] an algorithm is introduced to use circle packing to approximate conformal
mappings between planar regions. For general surfaces, circle packing only considers
topological structures but not geometric structures. It can not find the conformal
mapping from a surface to the plane. However, if the triangulation is equilateral for
each face, then the circle packing result is conformal. But, in general, such triangula-
tion is difficult to construct. Therefore, circle packing method is not appropriate for
our purpose.

In computer graphics, surface parametrization has been studied by many re-
searchers. Hoppe et al [5] use local harmonic maps for surface simplification and
editing. Haker et al [6] develop an algorithm to conformally map a genus zero surface
to a sphere by solving a linear system. In [6], the sphere is stereo-graphically pro-
jected to the complex plane implicitly. The stereo-graphic projection is nonlinear in
nature, large errors are introduced in the neighborhood of the north pole by using a
piecewise linear mapping to approximate it in practice.

In [7], Desbrun et al use conformal mappings to define geometry maps, where
they compute the conformal maps from a topological disk to the complex plane. An
equivalent algorithm is developed by Maillot et al [8], who use conformal mappings
for the purpose of non-distorted texture-mapping. Their method is based on the
Riemann-Cauchy equation. So far, although conformal mappings of genus zero sur-
faces have been studied, no one has tried to compute global conformal mappings for
non-zero genus surfaces.

In this paper, we solve the problem of computing conformal structures of surfaces
thoroughly. For genus zero surfaces, we introduce a new method to construct confor-
mal mappings from them to spheres directly. This method avoids the stereo-graphic
projection and is more stable and accurate. More importantly, this method can be
generalized to compute conformal mappings between arbitrary two genus zero sur-
faces. For surfaces with non-zero genus, the computation is much more complicated.
We give a set of general algorithms to compute their conformal structures, including
holomorphic differentials, period matrices and conformal mappings.

A mapping between two surfaces is a conformal map if it just scales the first fun-
damental form (so it preserves angles) everywhere. If there exists a bijective conformal
map between two surfaces and the inverse is also conformal, then we call these two
surfaces conformally equivalent. The conformal automorphisms form a group. The
invariants under the conformal transformation group are called conformal structure.
Our goal is to compute these conformal structures. In terms of surface classifica-
tion, conformally equivalent classes are finer than topologically equivalent classes and
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coarser than isometric classes.
Geometric object classification and identification have been studied for years,

but still remain an open problem. It is challenging to classify general surfaces accu-
rately and efficiently. A good algorithm should satisfy the following requirements: the
method is intrinsically dependent of geometry and independent of triangulation; the
method is stable in the sense that perturbation of geometry changes the result con-
tinuously; the method should also be robust enough to tolerate different resolutions
and boundaries; for database indexing, each class index should be small for storage
and easy to compute.

Conformal mapping has many nice properties to make it suitable for classification
problems. Conformal mapping only depends on the Riemann metric and is indepen-
dent of triangulation. Conformal mapping is continuously dependent of Riemann
metric, so it works well for different resolutions. Conformal invariants can be repre-
sented as a complex matrix, which can be easily stored and compared. We propose to
use conformal structures to classify general surfaces. For each conformally equivalent
class, we can define canonical parametrization for the purpose of comparison.

Geometry matching can be formulated to find an isometry between two surfaces.
By computing conformal parametrization, the isometry can be obtained easily. For
surfaces with close metrics, conformal parametrization can also give the best geometric
matching results.

Fig. 1. Surface & mesh with 20000 faces

1.1. Preliminaries. In this section, we give a brief summary of concepts and
notations.

Let K be a simplicial complex whose topological realization |K| is homeomorphic
to a compact 2-dimensional manifold. Suppose there is a piecewise linear embedding

(1) F : |K| → R3.

The pair (K, F ) is called a triangular mesh and we denote it as M . The q-cells of K
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are denoted as [v0, v1, · · · , vq]. Figure 1 shows the surface of a King David sculpture
and its mesh representation.

Because M has a simplicial complex structure, we can compute the simplicial
homology H∗(K,R) and cohomology H∗(K, R). We denote the chain complex as
C∗K = {CqK, ∂q}q≥0, and cochain complex as C∗K = {CqK, δq}q≥0, where CqK =
Hom(CqK; R). The boundary operator ∂q and coboundary operator δq+1 satisfy the
following equation:

(2) δqωσ = ω∂q+1σ,

where ω ∈ CqK and σ ∈ Cq+1K. The kernel of ∂q is ZqK, the image of ∂q+1 is Bq,
and the q-th homology group is

(3) HqK = ZqK/BqK.

Similarly, the kernel of δq is ZqK, the image of δq−1 is BqK, and the q-th cohomology
group is

(4) Hq = ZqK/BqK.

The embedding F endows M with a differential structure. We then define the local
charts of M as (Ti, φi),

(5) φi : Ti → R2,

where Ti is a face of M , and φi ◦ F−1 : R3 → R2 is an isometry. Then M is
a smooth manifold, we can compute the De Rham cohomology H∗(Ω(M ;TM), d),
where Ω(M ; TM) is the set of differential forms, and d is the exterior derivative. In
our setting, all computations are carried out on meshes, which are piecewise linear.
Therefore, it is enough to just use piecewise linear differential forms on M . We define
the set of piecewise linear forms as

(6) ΩPL(M ;TM) = ΩPL
0 ∪ ΩPL

1 ∪ ΩPL
2 .

Here ΩPL
0 is the set of piecewise linear functions on M defined on its vertices.

ΩPL
1 is the set of piecewise constant one-forms which are consistent along the edges,

(7)
∫

[u,v]

ω|[u,v,w] =
∫

[u,v]

ω|[t,v,u],

where [u, v, w] and [t, v, u] are the two faces adjacent to edge [u, v]. ΩPL
2 is the set of

piecewise constant two-forms.
All the computations are defined for De Rham cohomology in concept and for sim-

plicial cohomology in implementation. We connect differential forms with simplicial
cocycles by the map Γ : ZqK → ΩPL

q (M ; TM): given ω ∈ ZqK, ∀σ ∈ CqK,

ωσ =
∫

σ

Γω.(8)
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It is easy to verify that Γ is well defined, bijective and commutative to differential
operators,

(9) d ◦ Γ = Γ ◦ δ.

So in the following discussion, we do not differentiate simplicial cocycles and piecewise
linear differential forms explicitly.

1.2. Harmonic One-form and Holomorphic One-form. According to har-
monic anylasis theories in [9], each cohomology class in H(Ω(M ; TM), d) has a har-
monic representative, which minimizes the harmonic energy as defined below. Suppose
f ∈ Ω0(M ; TM), the harmonic energy of f is

(10) E(f) =
1
2

∫

M

||df ||2dσ.

The norm is Euclidean norm, dσ is the area element. The harmonic energy for one-
forms is defined similarly. Suppose ω ∈ Ω1(M ;TM), the harmonic energy of ω is

(11) E(ω) =
1
2

∫

M

||ω||2dσ.

In the case where M is a mesh, the harmonic energy can be simplified in the
format of string energy and defined on C∗K. Suppose f ∈ C0K, the harmonic energy
10 can be rewritten as

(12) E(f) =
∑

[u,v]∈K

ku,v||f(u)− f(v)||2.

For one-form ω ∈ C1K, the harmonic energy 11 is reformulated as

(13) E(ω) =
∑

[u,v]∈K

ku,v||ω[u, v]||2.

Suppose edge [u, v] has two adjacent faces Tα, Tβ , Tα = [v0, v1, v2], define parameters

aα
v1,v2

=
1
2

(v1 − v3) · (v2 − v3)
(v1 − v3)× (v2 − v3)

(14)

aα
v2,v3

=
1
2

(v2 − v1) · (v3 − v1)
(v2 − v1)× (v3 − v1)

(15)

aα
v3,v1

=
1
2

(v3 − v2) · (v1 − v2)
(v3 − v2)× (v1 − v2)

.(16)

(17)

aβ
u,v can be defined similarly, then

(18) ku,v = aα
u,v + aβ

u,v.

A function f ∈ C0K with local minimum harmonic energy is called a harmonic
function. A cocycle ω ∈ C1K with local minimum harmonic energy is called a har-
monic one-form.



126 XIANFENG GU AND SHING-TUNG YAU

The Laplacian operator ∆PL : ΩPL
0 → ΩPL

0 is defined as the derivative of E(f)
with respect to f ,

∆PLf |u =
∑

[u,v]∈K

ku,v(f(u)− f(v)).(19)

1.3. Complex Structure. A 2-dimensional manifold M has a natural complex
structure. A complex structure is constructed explicitly in [10] for meshes.

Any genus zero surface M is conformally equivalent to S2. A degree one map
u : M → S2 is conformal if and only if u is harmonic. The conformal automorphism
group of S2 is 6 dimensional, which is the Mobius transformation group. Map u can
be uniquely determined by fixing three image points on S2.

For a non-zero genus surface, we study the structure of its holomorphic differential
group. The following form:

ω +
√−1τ, ω, τ ∈ Ω1(M ; TM)(20)

is called a holomorphic one-form if both ω and τ are harmonic and τ is conjugate to
ω, i.e. ∗ω = τ , where ∗ is the Hodge star operator. Suppose {v1, v2} are orthonormal
bases of a tangent space on M , then

(21) ω(v1) = τ(v2), ω(v2) = −τ(v1).

The set of holomorphic one-forms is denoted as H1,0(M,C). Let M be a com-
pact Riemann surface of genus g and B = {e1, e2, · · · , e2g} be an arbitrary basis of
H1(M, Z). The intersection matrix C of the above basis has entries

(22) cij = −ei · ej ,

where the dot denotes the algebraic intersection number. A basis B∗ = {ω1, ω2, · · · ,

ω2g} of the real vector space H1,0(M,C) is the dual of B if

(23) Re

∫

ei

ωj = cij .

From Riemann bilinear relations [11] it follows that the matrix S with entries

(24) Im

∫

ei

ωj = sij

is symmetric and positive definite. The complex structure in H1,0(M,C) is given by
a matrix R with respect to the basis B∗ and satisfies R2 = −I. The following relation
holds:

(25) CR = S.

After Weyl [12] and Siegel [13], the matrix R is called the period matrix of M with
respect to the basis B. Let a be a holomorphic automorphism of M , and let [a] denote
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the matrix of its action on the homology and cohomology with respect to the above
basis, then

(26) [a]−1R[a] = R, [a]T C[a] = C.

The pair (R, C) determines the conformal structure of a given Riemann surface in the
following sense: two such pairs, (R1, C1) and (R2, C2) determine the same structure
if and only if there exists an integral matrix N whose determinant is ±1 such that

(27) N−1R1N = R2, N
T C1N = C2.

If both B1 and B2 are canonic, then N is symplectic.

2. Conformal Mapping for Genus Zero Surfaces. Given two genus zero
meshes M1,M2, there are many conformal mappings between them. All such confor-
mal mappings form the Mobius transformation group. The algorithm for computing
conformal mappings is based on the fact that degree one harmonic maps are conformal
for genus zero surfaces. Our method is as follows: first find a homeomorphism h be-
tween M1 and M2, then diffuse h to be harmonic. In order to ensure the convergence
of the algorithm, special constraints are added so that the solution is unique.

2.1. Constrained Variational Problem. Suppose M1 and M2 are genus zero
meshes, h : M1 → M2 is a degree one mapping. We would like to minimize the
harmonic energy E(h),

(29) E(h) =
∑

[u,v]∈K

ku,v||h(u)− h(v)||2,h = (h0, h1, h2).

The Laplacian for h is simply

(30) ∆PLh = (∆PLh0,∆PLh1,∆PLh2).

If h is harmonic, then the tangential component of ∆PLh is zero. Define the projection
operator

(31) Pv = I − v ⊗ vT

vT v
,v ∈ R3,

where ⊗ is the tensor product and I is an identity matrix. Then h is harmonic if and
only if

(32) Pn◦h∆PLh = 0,

where n is the normal on M2.
In order to ensure that the process converges to a unique solution, we have to

add extra constraints. We force the center of mass of the surface to be at the origin:

(33)
∫

M2

hdσM1 = 0,
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where dσM1 is the area element on M1. This constraint will guarantee the solution is
unique up to a rotation. Then we can construct the partial differential equation

(34)
∂h
∂t

+ Pn◦h∆PLh = 0

with constraints 33. The steady state solution of h is the conformal mapping from
M1 to M2. Equation 34 can be solved by iterative methods efficiently.

2.2. Steepest Descendent Algorithm. In our implementation, we fix M2 as
S2. In order to compute the initial homeomorphism from M1 to S2, we first compute
the spherical barycentric embedding, which minimizes the barycentric string energy.
In the string energy formulae 12, we let

(35) ku,v ≡ 1.

The corresponding Laplacian is defined as 19 with constant unit ku,v. The following
algorithm computes spherical barycentric embeddings.

Input A mesh M, step length δt, threshold ε.

Output A spherical barycentric mapping h.

1. Compute the Gauss map n from M to S2, h ← n.
2. Compute the barycentric energy E(h), if δE < ε then return h.
3. Compute the tangential Laplacian of h, δh ← Pn◦h∆PLh.
4. Update h by h ← h− δt× δh.
5. Repeat 2 through 4.

Algorithm 1. Spherical Barycentric Embedding

In practice, the barycentric embedding algorithm converges faster than the spher-
ical harmonic embedding, and there are no extra constraints. Hence we use it as the
initial embedding to compute spherical conformal mapping. The spherical conformal
embedding algorithm is more complicated. In each iteration an extra normalization
step is executed to force the mass center of the surface to stay in the origin during
the entire process.

Gu-Yau Algorithm for genus zero meshes:

Input A mesh M, step length δt, threshold ε.

Output A spherical conformal mapping h.

1. Compute the spherical barycentric map b from M to S2, h ← b.
2. Compute the harmonic energy E(h), if δE < ε then return h.
3. Compute the tangential Laplacian of h, δh ← Pn◦h∆PLh.
4. Update h by h ← h− δt× δh.
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5. Compute a Mobius transformation m, such that m ◦ h satisfies

the center of mass constraint equation 33.

6. Repeat 2 through 5.

Algorithm 2. Spherical Conformal Embedding

In step 5 above, the Mobius transformation m on S2 is in the form φ−1 ◦ f ◦ φ,
where φ is the stereo-graphic projection from S2 to the complex plane,

(36) φ(x0, x1, x2) = (
x0

1 + x2
,

x1

1 + x2
), (x0, x1, x2) ∈ R3,

f is a Mobius transformation on C,

(37) f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0.

In practice, it is expensive to normalize h by Mobius transformations, we simply shift
the center of mass of h(M1) to the origin and normalize h(v), v ∈ K to the unit
vector. The step length δt is chosen to be close to the square of the minimum edge
length of M .

2.3. Results. The spherical barycentric embedding result is shown in figure 9.
A mesh model of gargoyle with 20000 faces (a) is mapped to a sphere using algorithm
1 shown in (b). The normal information is preserved so the shading indicates the
correspondence. During the optimization, the head and wing parts converge more
slowly than the other regions. Special local optimization is performed for these parts.

Figure 9 (c) and (d) show the spherical conformal mapping and conformal texture-
mapping. First, the gargoyle mesh is conformally mapped to a sphere. The upper
and lower hemispheres are stereo-graphically projected to the tangent planes through
its north pole and south pole individually. Then the gargoyle mesh is mapped to the
2 planes conformally. The texture-coordinates are defined as the plane coordinates
and the texture is a regular checker board image. From snapshot (d), we can tell that
the right angles at each corner are preserved.

Figure 10 shows the same process on a bunny mesh. Figure 10 (c) is the result
of a Mobius transformation of (b) on a sphere.

We define the streching factor function as the scaling factor of the first funda-
mental forms. Suppose the first fundamental form of the mesh is ds2, and (u, v) are
the conformal coordinates (or texture coordinates in our case), then

(38) ds2 = λ(u, v)2(du2 + dv2),

where λ(u, v) : C→ R+ is the streching factor function.
The stretching factor is distributed non-uniformly. On the head, wings of the

gargoyle and the ears of the bunny, stretching factors are relatively greater. This
is indicated by the texture on those parts, where each pixel on texture covers more
surface area. In general, any extruding parts have greater stretching factors.
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Figure 11 shows the spherical conformal mapping of a brain mesh and its confor-
mal texture-mapping.

Because conformal mapping is a local scaling of the first fundamental form, it
preserves shapes locally. There is no distortion between the mesh and spherical im-
age. By comparing figure 11 (a) and (b), one can find the correspondence of major
geometric features easily.

3. Computing Conformal Structure for Non-zero Genus Meshes.

3.1. Overview. For non-zero genus meshes, the computation of conformal struc-
ture is much more complicated. The goal is to find a complete basis of the holomorphic
one-form group. The algorithm can be summarized in the following steps:

Gu-Yau Algorithm for non-zero genus meshes:

Input A mesh M.

Output A basis of holomorphic differentials {ζ1+
√−1 ∗ζ1, · · · , ζ2g+

√−1 ∗ζ2g}.

1. Compute a homology group basis B = {e1, e2, · · · , e2g}.
2. Compute the dual cohomology group basis Ω = {ω1, ω2, · · · , ω2g}.
3. Diffuse each ωi to a harmonic one-form ζi.

4. Compute the conjugate of each ζi, denoted as ∗ζi. Construct

holomorphic one-forms ζi +
√−1(∗ζi).

Algorithm 3. Compute Holomorphic Differentials
The following subsections explain each step in details.

3.2. Computing Homology. There are many methods for computing homol-
ogy groups H∗K of a simplical complex K. In our implementation, we use the classic
algorithm, which is based on reducing boundary operator matrices ∂q’s to their Smith
normal forms [14]. In order to avoid the substantial computational cost of the reduc-
tion to the Simth normal forms, the mesh is simplified by using the progressive mesh
algorithm introduced in [15]. Once the homology bases B are found on the coarse
mesh, they are mapped back to the fine mesh through a sequence of vertex splits.
At each vertex split step, we check the neighborhood of the current split vertex and
preserve the connectivity of each homology base cycle in B. Finally, on the fine mesh,
we use Dijkstra’s algorithm to shorten each base cycle and perturb them to intersect
transversely.

Figure 2 shows the homology bases of a torus mesh. The original mesh illustrated
in (b) has 4000 faces and is simplified to 500 faces shown in (a). The base cycles are
computed on the coarse mesh then lifted back to the original mesh. Figure 12 (a)
shows a homology basis of a genus 2 mesh.

The fundamental domain is also computed by the retraction algorithm described
in [16]. The following is the basic procedure: at the beginning, we remove one arbi-
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(a). 500 faces mesh (b). 4000 faces mesh

Fig. 2. Homology bases for torus

trary face and record the boundary. At each step we remove one face attached to the
current boundary, all the removed faces always form a topological disk. The bound-
ary of this disk is kept and updated until all faces are removed. Then we cut the
mesh along the final boundary to get the fundamental domain. Figure 13 (d) shows
a fundamental domain of the 2 hole torus mesh, (c) is the final boundary found by
the retraction algorithm.

3.3. Computing Cohomology. Once we obtain a homology basis B, we can
compute a cohomology basis Ω dual of B, such that

(39)
∫

ei

ωj = δj
i ,

where δj
i is the Kronecker symbol. We choose a handle and the pair of conjugate

homology base cycles on it, denoted as {ei, ei+g}. Then we split the mesh along
these 2 cycles, the boundary becomes eiei+ge

−1
i e−1

i+g. Next we map the entire mesh
to a unit square, boundary to boundary, corner to corner. The interior mapping can
be constructed by the Floater embedding algorithm as described in [17]. Then the
one-forms {dx, dy} are the duals of {ei, ei+g}.

Input A mesh M, a pair of conjugate base cycles {e1, e2}.
Output {ω1, ω2} ∈ C1K, which are dual to {e1, e2}.

1. Slice the mesh M open along {e1, e2}, ∂M = e1e2e
−1
1 e−1

2 .

2. Map e1e2e
−1
1 e−1

2 to the boundary of D = [0, 1]× [0, 1] on R2.

3. Map the interior of M to D by Floater embedding method.

4. Return ω1 ← dx, ω2 ← dy.

Algorithm 4. Compute Cohomology
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Figure 12 shows the computing process of a genus two mesh. Subfigure (a) illus-
trates the conjugate homology cycles. Then the mesh is sliced open along one pair of
them, as shown in (b). The entire mesh is mapped to the unit square. The mapping
is of degree one but not an immersion, as the second handle of the mesh is collapsed
to the central region as shown in (c) and (d).

3.4. Computing Harmonic One-forms. Suppose a cohomology basis of mesh
M is Ω = {ω1, ω2, · · · , ω2g}, we deform each ωi to a harmonic one-form by adding
an exact one-form δfi, where fi ∈ C0K, such that ωi + dfi minimizes the harmonic
energy in equation 13.

Input A one-form τ ∈ C1K.

Output A harmonic one-form ω which is homologous to τ.

1. Define F ∈ C0K, F ← 0.
2. Compute the Laplacian

(40) ∆PLF |u =
∑

[u,v]∈K

ku,v(F (u)− F (v) + τ [u, v]).

3. F ← F −∆PLF × δt.

4. Compute the harmonic energy E(τ + δF ). If δE < ε then

ω ← τ + δF, ω.

5. Repeat 2 through 4.

Algorithm 5. Compute Harmonic One-forms
This is the most time-consuming step during the whole procedure. In practice, we
perform local optimizations on those regions that converge more slowly.

3.5. Computing Holomorphic One-forms. Given a harmonic one-form basis
Ω = {ω1, · · · , ω2g}, we can construct the bases of holomorphic one-forms directly by
pairing ωi with its conjugate ∗ωi. Given ω ∈ C1K, then Γω ∈ ΩPL

1 (M ; TM). Suppose

(41) Γω = fdx + gdy,

where (x, y) are local coordinates as defined in equation 5, f, g are constants on each
face of M . Then according to equation 21, ∗Γω is formulated by:

(42) ∗Γω = fdy − gdx.

The Hodge star operator transforms harmonic one-forms to harmonic one-forms.
If ω is harmonic, so is ∗ω. Hence ∗ω can be represented as a linear combination of
ωi’s. Suppose

(43) ∗ω =
2g∑

i=1

αiωi,
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then we can compute the integration of wedge product

(44)
∫

M

ωi ∧ ∗ω =
2g∑

j=1

αj

∫

M

ωi ∧ ωj =
∫

M

Γωj ∧ ∗(Γω),

where i, j = 1, 2, · · · , 2g. Equation 44 can be formulated as the following linear system

(45) Wα = b,

where α = (α1, α2, . . . , α2g)T , matrix W is with entries

(46) wij =
∫

M

ωi ∧ ωj =
∫

M

Γωi ∧ Γωj .

Vector b has entries

(47) bi =
∫

M

Γωi ∧ ∗(Γω).

Assume Γωi = fidx + gidy , Γω = pdx + qdy, from 42

(48) wij =
∑

[u,v,w]∈K

(figj − fjgi)σ[u,v,w], bi =
∑

[u,v,w]∈K

(fip + giq)σ[u,v,w].

where σ[u,v,w] is the area of face [u, v, w]. By our construction, ωi’s are dual cocyles
of ei’s, so wij = ei · ej , matrix W equals the intersection matrix C of the current
homology basis. Hence W is non-degenerated, ∗ω exists and is unique. The following
is the algorithm to compute holomorphic one-forms:

Input A harmonic 1-form basis {ω1, ω2, · · · , ω2g}, a harmonic 1-form ω.

Output A holomorphic 1-form ω +
√−1 ∗ω.

1. Compute Γω and Γωi’s.

2. Compute ∗Γω.

3. Compute the wedge products of
∫

M
ωi ∧ ωj and

∫
M

ωi ∧ ∗ω.
4. Solve linear system 45, and get the conjugate of ω, ∗ω.
5. Let ζ ← ω +

√−1 ∗ω, return ζ.

Algorithm 6. Compute Holomorphic Forms
By applying the above algorithm, we can compute the bases of holomorphic dif-

ferentials of M . Suppose we treat the holomorphic differentials as a complex vector
space, we denote a basis as {ζ1, ζ2, · · · , ζg}, where g is the genus of M . Figure 13
shows the results of computing a holomorphic one-form basis of a genus two mesh.
Figure 13 (a) is ζ1, (b) is ζ2, visualized by texture-mapping.

By linearly combining ζi’s, we can construct all holomorphic one-forms on M . By
integrating holomorphic one-forms on the fundamental domain, the mesh is globally
conformally mapped to the plane with finite singularities. The number of singularities
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(a). Homology bases (b). Holomorphic one-form

(c). Homology bases (d). Holomorphic one-form

Fig. 3. Boundary independent conformal mapping

on M is 2g−2. Figure 14 (a) shows ζ1+ζ2, figure 14(c) shows ζ1−ζ2. The singularities
of ζ1 + ζ2 are at the front and back sides of the torus. Those of ζ1− ζ2 are on the left
and right sides.

Figure 14 (b) and (d) also show the level sets of stretching factors as defined in
equation 38 on the mesh. These level sets have rich geometric information of mesh
M .

4. Performance Analysis. The algorithm is independent of the choice of geo-
metric realization of homology base cycles, but dependent of their homology classes.
In a future paper, we will give a method to compute global conformal parametriza-
tion which is independent of the choice of homology classes. Figure 3 shows the result
of holomorphic one-forms using different cuts. In figure 3 (a), there are two conju-
gate homology cycles represented as dark curves. In (c), one of them is deformed
to a homologous one. (b) and (d) are the resulting holomorphic forms illustrated
by texture-mapping. From these figures, we can see that the texture mapping pat-
terns and the stretching factors are very similar. We can also see that conformality
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is preserved everywhere, even across the cut boundaries.

Cow mesh Embedding of the head region

Fig. 4. Extruding regions

Figure 4 shows the embedding of a cow head on the plane. It is obvious that the
extruding parts, like the nose, ears and horns are mapped to relatively small regions,
where the stretching factors are much higher. During the optimization process, these
regions converge more slowly and need special local optimizations.

Venus Mesh Obtuse Angles

Fig. 5. Negative String Constants

The energy form
∑

ku,v||f(u)− f(v)||2 is determined by ku,v. During our exper-
iments, we find that if ku,v’s are all positive, then the algorithm converges faster and
is more stable. Suppose there are two faces sharing an edge [u, v] and α, β are the
two angles in these faces opposite to the edge, then ku,v can be reformulated as

(50) ku,v = cot∠α + cot∠β.

For the Venus model shown in figure 5, the barycentric embedding converges very fast.
The harmonic optimization converges much more slowly. There are too many obtuse
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angles on the triangle mesh, so many ku,v’s are negative. In our implementation, we
carry out some preprocessing on the meshes, to swap or split edges with negative
ku,v’s to convert their ku,v’s to be positive. This process improves the convergence
speed.

5. Applications. Global conformal structure has many applications in compu-
tational aided geometry design and graphics fields.

5.1. Computational Topology. While Homology has a group structure, co-
homology has a ring structure, so it can reveal more information of the manifolds.
The cohomology bases can be used to detect the homology class of a closed curve.
Suppose a cohomology basis {ω1, ω2, · · · , ω2g} has been computed, given an arbitrary
closed curve r, if r is homologous to zero, then the following must hold

(51)
∫

r

ωi = 0, ∀i.

If r is homologous to zero, we can find the domain whose boundry is r by the following
simple flooding algorithm. First we label all the ajacent faces on the left of r. Then
we label all of their neighboring faces on the left of them. We repeat this process until
no further faces can be labeled. Then all the labeled faces form the desired domain.

5.2. Geometry Matching. Conformal structure is determined by Riemann
metric, so it is independent of triangulation. Conformal structure is stable in the
sense that if we perturbate the metric, the conformal structure changes continuously.
Therefore, it is tolerant of noises and insensitive to different resolutions. We perform
some numerical experiments to verify this property of conformal mappings. In figure
15 and 16, we have two different meshes representing the same geometry - a male face.
One mesh has 5000 faces, the other one has 1000 faces. Both of them are conformally
mapped to a unit disk with the same boundary condition and texture mapped with
the same texture. By comparing figure 15 (c) with figure 16 (c), we can see the major
geometric features are mapped to similar positions. On the contrary, the barycentric
embedding heavily depends on triangulation and resolution, which is demonstrated
by comparing figure 15 (b) and figure 16 (b).

Suppose we have two geometrically similar surfaces M1,M2, in order to find the
best geometric match, we can conformally map them to a canonical domain D.

(52)

M1 M2

D

-f−1
2 ◦f1

@
@Rf1

¡
¡ª f2

Then f−1
2 ◦ f1 gives the desired geometric matching. In this process, the appro-

priate boundary conditions should be set up correctly. Figure 17 shows the geometric
matching between two real human faces by conformal mapping. Figure 17(c) is the
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original female face surface, (h) is the original male face surface. We first conformally
map each of them to a unit square as shown in (a) and (b), then obtain the matching
between them. In order to visualize the matching, we show the geometric morphing
of the following homotopy:

(53) t id + (1− t) f−1
2 ◦ f1, t ∈ [0, 1].

Although the geometries are quite different and the boundaries are not very similar,
the result of the automatic matching process is quite satisfying as shown in figures 17
(c) to (h).

Fig. 6. Knot mesh

Fig. 7. Machine Part

5.3. Geometry Classification. The non-zero genus surfaces can be classified
by their conformal structures naturally. After a basis of the holomorphic one-form
group is computed, it is straightforward to compute the period matrices. Dur-
ing the construction of homology basis, we can obtain a canonical homology basis
{e1, e2, . . . , e2g}, that is

(54) ei · ej = δi+g
j , i < j.
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Then the period matrix is

(55) P =




∫
e1

ζ1

∫
e1

ζ2 · · · ∫
e1

ζ2g−1

∫
e1

ζ2g∫
e2

ζ1

∫
e2

ζ2 · · · ∫
e2

ζ2g−1

∫
e2

ζ2g

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫
e2g

ζ1

∫
e1

ζ2 · · · ∫
e2g

ζ2g−1

∫
e2g

ζ2g




= C +
√−1S.

If two surfaces M1,M2 are conformally equivalent, then there exists an integral sym-
plectic matrix N , such that N−1C−1

1 S1N = C−1
2 S2 and NT C1N = C2. N is the

homology bases transformation matrix.
For the genus one case, the period matrix can be equivalently represented as shape

factors. Each genus one surface can be conformaly mapped to a parallelogram. The
shape factor is defined as length ratio of two adjacent edges and the acute angle of
the parallelogram. The following are the shape factors of our computing results.

Mesh Angle (degree) Length Ratio Figure vertices faces
Torus 89.9874 2.2916 Fig. 2 1089 2048
Teapot 89.95 3.0264 Fig. 3 17024 34048
Knot 85.1 31.150 Fig. 6 5808 11616

Machine Part 85.4321 4.9928 Fig. 7 3750 7500

Shape factors of genus one meshes
General genus one meshes can be classified by shape factors and differentiated

without resorting to further geometric features. The above results show that the knot
mesh has the greatest length ratio, which meets our expectation. Teapot and Torus
are symmetric, so the angles are right angles.

5.4. Global Conformal Parametrization. A mesh can be parameterized con-
formally by integrating holomorphic one-forms on it. The parametrization is globally
conformal except for finite singularities. By changing holomorphic one-forms, the
neighborhoods of singularities can be conformally parametrized too.

By using conformal parameters, many important geometric quantities which are
valuable for geometric analysis can be computed explicitly. Figure 8 shows a level set
of a special Morse function defined on the female face shown in figure 17 (c). The
level set is displayed in (b) on the conformal parametrization domain and in (a) on
the face surface. The singularities and Morse indices can be visualized directly. The
configuration of these curves reveals rich information of the original geometry and
offers a canonical way to decompose surfaces to patches.

6. Conclusion. This paper introduces a systematic way to compute conformal
structures for general surfaces represented as triangle meshes. The homology is com-
puted by simplicial complex structures. The dual cohomology basis is constructed
geometrically. Each cohomology cocyle is diffused to a harmonic one-form by adding
an exact one-form. The Hodge star operation on the harmonic forms is formulated
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(a). level set on surface (b). Level set on parameter domain

Fig. 8. Morse function Level set

as a full rank sparse linear system. Then the basis of holomorphic differentials is
constructed explicitly. To the best of our knowledge, this paper is the first one to
solve this problem completely. The methods introduced here are very general. The
harmonic one-forms, holomorphic one-forms have much broader applications. The
conformal structure can be applied in many theoretic fields as well as engineering
fields.

7. Future Research. Conformal structures of closed surfaces are studied thor-
oughly in this paper. We would like to generalize the results to open surfaces. The
current computations are based on mesh structures. We will generalize the algorithms
to other surface representations, such as implicit surfaces and level sets. The opti-
mization of harmonic energy is computationally expensive. In the future, we will use
multi-resolution methods to improve the speed. We will explore more on the relations
between the eigenvalues, eigenfunctions of Laplace operator and geometry. The cur-
rent conformal parametrization is unique up to the automorphism group of H1(M,Z).
In a future paper, we will introduce a new method which is complete unique.
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(a). Gargoyle mesh (20000 faces) (b). Barycentric mapping

(c). Conformal map of gargoyle (d). Conformal texture-mapping

Fig. 9. Spherical Barycentric Mapping for gargoyle model

(a). Bunny mesh (20000 faces) (b). Conformal map of Bunny

(c). Mobius transform of (b) (c). Conformal texture-mapping

Fig. 10. Spherical conformal maps of the bunny meshes
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(a). Brain mesh (20000 faces) (b). Spherical barycentric mapping

(c). Conformal map of brain (d). Conformal texture-mapping

Fig. 11. Spherical conformal mapping of the brain mesh

(a). Homology bases (b). Open one handle

(c). Map to square (d). Zoom in to central region

Fig. 12. Computing Homology and Cohomology
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(a). Holomorphic one-form ζ1 (b). Holomorphic one-form ζ2

(c). Boundary on mesh (d). Fundamental domain

Fig. 13. Bases of Holomorphic differentials

(a). ζ1 + ζ2 (b). Streching factor level sets

(c). ζ1 − ζ2 (d). Streching factor level sets

Fig. 14. Holomorphic one-form and level sets of streching factor
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(a). Surface (b). Barycentric embedding

(c). Conformal embedding (d). Conformal texture-mapping

Fig. 15. Male face surface with 5000 faces

(a). Surface (b). Barycentric embedding

(c). Conformal embedding (d). Conformal texture-mapping

Fig. 16. Male face surface with 1000 faces
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(a). Female parametrization (b). Male Parametrization

(c). t = 0.0 (d). t=0.2

(e). t = 0.4 (f). t = 0.6

(g). t= 0.8 (h). t= 1.0

Fig. 17. Geometric matching by conformal parametrization


