Manifold Splines
Xianfeng Gu, Ying He and Hong Qin
Graphical Models 2006
Constructing splines whose parametric domain is an arbitrary manifold and effectively
computing such splines in real-world applications are of fundamental importance in solid
and shape modeling, geometric design, graphics, etc. This paper presents a general theoretical
and computational framework, in which spline surfaces defined over planar domains
can be systematically extended to manifold domains with arbitrary topology with or without
boundaries. We study the affine structure of domain manifolds in depth and prove that
the existence of manifold splines is equivalent to the existence of a manifoldĄ¯s affine atlas.
Based on our theoretical breakthrough, we also develop a set of practical algorithms to generalize
triangular B-spline surfaces from planar domains to manifold domains. We choose
triangular B-splines mainly because of its generality and many of its attractive properties.
As a result, our new spline surface defined over any manifold is a piecewise polynomial
surface with high parametric continuity without the need for any patching and/or trimming
operations. Through our experiments, we hope to demonstrate that our novel manifold
splines are both powerful and efficient in modeling arbitrarily complicated geometry
and representing continuously-varying physical quantities defined over shapes of arbitrary
topology.