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Motivation
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Why dose DL work?

Problem
1 What does a DL system really learn ?

2 How does a DL system learn ? Does it really learn or just memorize ?

3 How well does a DL system learn ? Does it really learn everything or
have to forget something ?

Till today, the understanding of deep learning remains primitive.
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Why does DL work?

1. What does a DL system really learn?

Probability distributions on manifolds.

2. How does a DL system learn ? Does it really learn or just memorize ?

Optimization in the space of all probability distributions on a manifold. A
DL system both learns and memorizes.

3. How well does a DL system learn ? Does it really learn everything or
have to forget something ?

Current DL systems have fundamental flaws, mode collapsing.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 4 / 56



Manifold Distribution Principle

We believe the great success of deep learning can be partially explained by
the well accepted manifold distribution and the clustering distribution
principles:

Manifold Distribution

A natural data class can be treated as a probability distribution defined on
a low dimensional manifold embedded in a high dimensional ambient
space.

Clustering Distribution

The distances among the probability distributions of subclasses on the
manifold are far enough to discriminate them.
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MNIST tSNE Embedding

a. LeCunn’s MNIST b. Hinton’s t-SNE embemdding

Each image 28× 28 is treated as a point in the image space R28×28;

The hand-written digits image manifold is only two dimensional;

Each digit corresponds to a distribution on the manifold.
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Manifold Learning

Figure: t-SNE embedding and UMap embedding.
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How does a DL system learn ?

Optimization

Given a manifold X , all the probability distributions on X form an
infinite dimensional manifold, Wasserstein Space P(X );

Deep Learning tasks are reduced to optimization in P(X ), such as the
principle of maximum entropy principle, maximum likely hood
estimation, maximum a posterior estimation and so on;

DL tasks requires variational calculus, Riemannian metric structure
defined on P(X ).
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Optimal Transportation

Solution

Optimal transport theory discovers a natural Riemannian metric of
P(X ), called Wasserstein metric;

the covariant calculus on P(X ) can be defined accordingly;

the optimization in P(X ) can be carried out.
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Equivalence to Conventional DL Methods

Entropy function is convex along the geodesics on P(X );

The Hessian of entropy defines another Riemannian metric of P(X );

The Wasserstein metric and the Hessian metric are equivalent in
general;

Entropy optimization is the foundation of Deep Learning;

Therefore Wasserstein-metric driven optimization is equivalent to
entropy optimization.
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Optimal Transportation

The geodesic distance between dµ = f (x)dx and dν(y) = g(y)dy is
given by the optimal transport map T : X → X , T = ∇u,

det

(
∂2u

∂xi∂xj

)
=

f (x)

g ◦ ∇u(x)
.

The geodesic between them is McCann’s displacement,

γ(t) := ((1− t)I + t∇u)#µ

The tangent vectors of a probability measure is a gradient field on X ,
the Riemannian metric is given by

〈dϕ1, dϕ2〉 =

∫

X
〈dϕ1, dϕ2〉gf (x)dx .
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How well does a DL system learn ?

Fundamental flaws: mode collapsing and mode mixture.

(a). VAE (b). WGAN
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GAN model

encoder
decoder

Generator

Training Data Generated SamplesLatent Distribution

white noise

Discriminator

transporter
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GAN model - Mode Collapse Reason

encoder
decoder

Generator

Training Data Generated SamplesLatent Distribution

white noise

Discriminator

transporter

Discontinuous
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Mode Collapse Reason

Figure: Singularities of an OT map.
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Mode Collapse Reason

Figure: Singularities of an OT map.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 16 / 56



How to eliminate mode collapse?

encoder
decoder

OT Mapper

Training Data Generated SamplesLatent Distribution

white noise
Brenier Potential

Figure: Geometric Generative Model.
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Generative and Adverse rial Networks

A generative model converts a white noise into a facial image.
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Generative and Adverse rial Networks

A GAN model based on OT theory.
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Overview

There are three views of optimal transportation theory:

1 Duality view

2 Fluid dynamics view

3 Differential geometric view

Different views give different insights and induce different computational
methods; but all three theories are coherent and consistent.
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Optimal Transportation Map

Figure: Buddha surface.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Duality Theories
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Monge Problem

Assume Ω and Σ are two domains in the Euclidean space, Rd , µ and ν are
two probability measures on Ω and Σ respectively, µ ∈ P(Ω), ν ∈ P(Σ),
such that they have equal total measure:

µ(Ω) = ν(Σ). (1)

Definition (Measure-preserving Map)

A mapping T : Ω→ Σ is called measure preserving, if or any Borel set
B ⊂ Σ, ∫

T−1(B)
dµ =

∫

B
dν, (2)

and is denoted as T#µ = ν T pushes µ forward to ν.
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Monge Problem

Suppose the density functions of µ and ν are given by f : Ω→ R and
g : Σ→ R, namely

dµ = f (x1, x2, · · · , xd)dx1 ∧ dx2 ∧ · · · ∧ dxd ,

dν = g(y1, y2, · · · , yd)dy1 ∧ dy2 ∧ · · · ∧ dyd ,

and T : Ω→ Σ is C 1 and measure-preserving,

f (x1, . . . , xd)dx1 ∧ · · · ∧ dxd = g(T (x))dy1 ∧ · · · dyd .

then T satisfies the Jacobi equation:

Definition (Jacobi Equation)

detDT (x) =
f (x)

g ◦ T (x)
(3)
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Monge Problem

T

A

T−1(A)

(X,µ) (Y, ν)

Figure: Measure-preserving map.
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Monge Problem

Definition (Transportation Cost)

Given a cost function c : Ω× Σ→ R, the total transportation cost for a
map T : Ω→ Σ is defined as

C(T ) :=

∫

Ω
c(x ,T (x))dµ(x).

Problem (Monge)

Amonge all the measure-preserving mappings, T : Ω→ Σ and T#µ = ν,
find the one with the minimal total transportation cost,

MP : min

{∫

Ω
c(x ,T (x))dµ(x) : T#µ = ν

}
. (4)
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Monge Problem

Definition (Optimal Transportation Map)

The solution to the Monge problem is called an optimal transportation
map between (Ω, µ) and (Σ, ν).

Suppose Ω coincides with Σ

Definition (Wasserstein Distance)

The total cost of the optimal transportation map T : Ω→ Σ, T#µ = ν, is
called the Wasserstein distance between µ and ν.

Suppose the cost is the square of the Euclidean distance
c(x , y) = |x − y |2, then the Wasserstein distance is defined as

W2
2 (µ, ν) := inf

{∫

Ω
|x − T (x)|2dµ(x) : T#µ = ν

}
.
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Kantorovich Problem

Transportation Plan

Kantorovich relax the transportation map to transportation scheme, or
transportation plan, which is represented by a joint probability distribution
ρ : ω × Σ→ R, ρ(x , y) represents how much mass is transported from the
source point x to the target point y .

Marginal Distribution

The marginal districution of ρ equals to µ and ν, namely we have the
condition

(πx)#ρ = µ, (πy )#ρ = ν, (5)

where the projection maps

πx(x , y) = x , πy (x , y) = y .
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Kantorovich Problem

Transportation map vs. Transportation plan

Transportation map is a special case of transportation plan, namely a
transportation map T : Ω→ Σ induces a transportation plan

(Id ,T )#µ = ρ. (6)
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Kantorovich Problem

Problem (Kantorovich )

Find a transportation plan with the minimal toal transportation cost,

KP : min

{∫

Ω×Σ
c(x , y)dρ(x , y) : (πx)#ρ = µ, (πy )#ρ = ν

}
. (7)

∫
Ω×Σ c(x, y)dρ(x, y)

{ρ : (πx)#ρ = µ, (πy)#ρ = ν}
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Kantorovich Problem

(µ1, p1)

(µ2, p2)

(µm, pm)

(ν1, q1)

(ν2, q2)

(νn, qn)

fij

Problem (Linear Programming)

min
∑

ij

c(pi , qj)fij ,

such that

∀i ,
∑

j

fij = µi

∀j ,
∑

i

fij = νj .
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Kantorovich Problem

Linear Programming

Kantorovich problem is to find a minimal value of a linear function defined
on a convex polytope, so the solution exists. KP can be solved using linear
programming method, such as simplx, interior point or ellipsoid algorithms.

Kantorovich Problem

In general situation, the support of a transportation plan ρ covers all the
Ω×Σ. If the transportation map T exists, the support of (Id ,T )#µ has 0
measure in Ω× Σ. KP doesn’t discover the intrinsic structure, it is highly
inefficient to compute optimal transportation map.
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Kantorovich Problem

Y

X X

Y

γ = (id, T )#µ γ ∈ Π(µ, ν)

Spt(γ) Spt(γ)

Figure: Caption
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Kantorovich Dual Problem

Denote Π(µ, ν) = {ρ : (πx)#ρ = µ, (πy )#ρ = ν}. We consider the
constraint ρ ∈ Π(µ, ν). we have

sup
ϕ,ψ

∫

Ω
ϕdµ+

∫

Σ
ψdν −

∫

Ω×Σ
(ϕ(x) + ψ(y))dρ =

{
0 ρ ∈ Π(µ, ν),
+∞ ρ 6∈ Π(µ, ν),

(8)
where the superimum is taken among all bounded continuous functions,
ϕ ∈ Cb(Ω) and ψ ∈ Cb(Σ).
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Kantorovich Dual Problem

We use this as a generalized Lagrange multiplier in (KP), and rewrite
(KP) as

min
ρ

∫

Ω×Σ
cdρ+ sup

ϕ,ψ

∫

Ω
ϕdµ+

∫

Σ
ψdν −

∫

Ω×Σ
(ϕ(x) + ψ(y))dρ (9)

Under suitable conditions, such as Rockafella’s conditions, we can
exchange sup and inf

sup
ϕ,ψ

∫

Ω
ϕdµ+

∫

Σ
ψdν + inf

ρ

∫

Ω×Σ
(c(x , y)− (ϕ(x) + ψ(y)))dρ. (10)

We can rewrite the infimum in ρ as a constraint on ϕ and ψ:

inf
ρ≥0

∫

Ω×Σ
(c − ϕ⊕ ψ)dρ =

{
0 ϕ⊕ ψ ≤ c on X × Y
−∞ ϕ⊕ ψ > c

where ϕ⊕ ψ denotes the function ϕ⊕ ψ(x , y) := ϕ(x) + ψ(y).
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Kantovorich Dual Problem

This leads to the dual optimization problem.

Problem (Dual)

Given µ ∈ P(Ω) and ν ∈ P(Σ) and the cost function
c : Ω× Σ→ [0,+∞), we consider the problem

(DP) max

{∫

Ω
ϕdµ+

∫

Σ
ψdν : ϕ ∈ Cb(Ω), ψ ∈ Cb(Σ) : ϕ⊕ ψ ≤ c

}
.

(11)

From the condition ϕ⊕ ψ ≤ c , we obtain supDP ≤ minKP,

∫

Ω
ϕdµ+

∫

Σ
ψdν =

∫

Ω×Σ
ϕ⊕ ψdρ ≤

∫

Ω×Σ
cdρ

This is valid for all admissible pairs (ϕ,ψ) and every admissible ρ.
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Kantovorich Dual Problem

From the condition ϕ⊕ ψ ≤ c , we obtain supDP ≤ minKP,

∫

Ω
ϕdµ+

∫

Σ
ψdν =

∫

Ω×Σ
ϕ⊕ ψdρ ≤

∫

Ω×Σ
cdρ

This is valid for all admissible pairs (ϕ,ψ) and every admissible ρ. This
shows

max(DP) ≤ min(KP)
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c-transform

Definition (c-transform)

Given ϕ ∈ L1(Ω), and the cost function c : Ω×Σ→ R, the c-transform of
ϕ is defined as ϕc : Σ→ R,

ϕc(y) := inf
x∈Ω

c(x , y)− ϕ(x), (12)

The optimization of Kantorovich functional is equivalent to replace the
Kantorovich potentials (ϕn, ψn) by the c-transforms of the other, namely

(ϕ,ψ)→ (ϕ,ϕc)→ (ϕcc , ϕc)→ (ϕcc , ϕccc) · · ·
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c-transform

Geometrically, if we fix a point x ∈ Ω, then we get a supporting surface
Γx : Σ→ R,

Γx(y) := c(x , y)− ϕ(x),

the graph of the c-transform ϕc(y) is the envelope of all these supporting
surfaces.

ϕc(y)

Γx(y)

Figure: Geometric interpretation of c-transform.
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Twisting Condition

By ϕc(y) = infx c(x , y)− ϕ(x), we obtain

∇xc(x , y(x)) = ∇ϕ(x)

Definition (Twisting condition)

Given a cost function c : Ω× Σ→ R, if for any x ∈ Ω, the mapping

Lx(y) := ∇xc(x , y)

is injective, then we say c satisfies twisting condition.

If c satisfies the twisting condition, then an optimal plan is an optimal
map.
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Uniqueness of Optimal Transportation Map

Theorem (Uniqueness)

Suppose c satisfies the twisting condition, then the optimal transportation
map is unique.

Ω

Σ

ρ1

ρ2

Figure: Caption
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Uniqueness of Optimal Transportation Map

Proof.

Assume there are two optimal transportion maps T1,T2 : (Ω, µ)→ (Σ, ν),
the corresponding optimal transportation plans are

ρk = (Id ,Tk)#µ, k = 1, 2.

Then 1
2 (ρ1 + ρ2) is also an optimal transportation. Since c satisfies the

twisting condition, 1
2 (ρ1 + ρ2) corresponds to an optimal transport map.

But the blue line intersects the support of 1
2 (ρ1 + ρ2) at two points, it is

not a map. Contradiction.
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Dual Problem

By utilizing c-transform, we obtain

Problem (Dual Problem)

Given µ ∈ P(Ω), ν ∈ P(Σ), the dual problem is

DP : max
ϕ∈Cb(Ω)

{∫

Ω
ϕ(x)dµ(x) +

∫

Σ
ϕc(y)dν(y)

}
. (13)
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Cyclic Monotonocity

x1

x2

x3

xn yn

y1

y2

y3

x1

x2

x3

xn yn

y1

y2

y3

yn−1

x4

Figure: Cyclic monotonocity.

ρ is optimal, then for any (x , y) ∈ Supp(ρ), ϕ(x) + ψ(y) = c(x , y).
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Cyclic Monotonocity

Definition (Cyclic Monotonocity)

Suppose Γ ⊂ Rd is a domain, for any set of pair of points:

(x1, y1), (x2, y2), · · · , (xk , yk) ⊂ Supp(ρ),

we have the following inequality

k∑

i=1

c(xi , yi ) ≤
k∑

i=1

c(xi , yσ(i)),

where σ is a permuation of 1, 2, . . . , k , then we say Γ is cyclic monotonous.

The cyclic monotonocity can be applied to prove the equivalence between
Kantorovich problem and Kantorovic dual problem.
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Cyclic Monotonocity

Definition (c-concave)

A function ϕ : Ω→ R is called c-concave, if there is a function
ψ : Ω→ R, such that ϕ = ψc .

Theorem

If Γ 6= ∅, Γ is cyclic monotonuous in Ω× Σ, then there exists a c-concave
function ϕ, such that

Γ ⊂ {(x , y) ∈ Ω× Σ : ϕ(x) + ϕc(y) = c(x , y)}.

Theorem

If ρ is an optimal transport plan for the continuous cost c, then its support
supp(ρ) is cyclic monotonous.
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Cyclic Monotonocity

Theorem (max (DP)=min (KP))

Suppose that Ω and Σ are Polish spaces and that c : Ω× Σ→ R is
uniformly continuous and bounded. Then the problem (DP) admits a
solution (ϕ,ϕc) and we have

max(DP) = min(KP)

Proof.

Suppose ρ is a solution to (KP), then Supp(ρ) satisfies cyclic
monotonicity; hence there exists ϕ and ϕc , Supp(ρ) ⊂ {ϕ+ ϕc = c},
therefore

min(KP) =

∫

Ω×Σ
cdρ ≤

∫

Ω
ϕdµ+

∫

Σ
ϕcdν ≤ max(DP).
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Monge-Ampere Equation

Lemma

Suppose c : Ω→ R is a C 2 strictly convex function, Ω is convex, then
∇c : Ω→ Rd is injective.

Proof.

Suppose there are two distinct points x0, x1 ∈ Ω, such that
∇c(x0) = ∇c(x1). Draw a line segment γ : [0, 1]→ Ω, γ(0) = x0 and
γ(1) = x1. Then f (t) = c ◦ γ(t) is strictly convex

f ′(t) = 〈∇c((1− t)x0 + tx1), x1 − x0〉
f ′′(t) = (x1 − x0)TD2c((1− t)x0 + tx1)(x1 − x0).

Therefore, f ′(1) = f ′(0) and f ′′(t) > 0. Contradiction.
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Monge-Ampere Equation

Lemma

Suppose c : Ω→ R is a strictly convex function, Ω is convex, then
∇c : Ω→ Rd is injective.

Ω

c(x)

∇c(x1)
x1
x2 ∇c(x2)

Figure: Injectivity of the gradient map of a strictly convex function.
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Monge-Ampere Equation

Suppose the cost function is a strictly convex function, satisfying the
condition c(x , y) = c(x − y), then

Dxc(x , y)− Dϕ(x) = 0,

we obtain Dxc(x − y) = Dϕ(x),

T (x) = y = x − (Dc)−1(Dϕ(x)),
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Brenier Problem

Theorem (Brenier)

Given µ ∈ P(Ω) and ν ∈ P(Σ), and the cost function c(x , y) = 1
2 |x − y |2,

the optimal transportation map is the gradient of a function u : Ω→ R,
T (x) := ∇u(x).

Proof.

We obtain

T (x) = x − Dϕ(x) = D

( |x |2
2
− ϕ(x)

)
= Du(x).
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Brenier Problem

Problem (Brenier)

Find a convex function u : Ω→ R, satisfying the Monge-Amperé equation,

det

(
∂2u(x)

∂xi∂xj

)
=

f (x)

g ◦ ∇u(x)
. (14)

Proof.

We plug T (x) = Du(x) into the Jacobi equation, we obtain the
Monge-Ampere equation,

detDT =
f (x)

g ◦ T (x)

hence

det

(
∂2u(x)

∂xi∂xj

)
=

f (x)

g ◦ ∇u(x)
.
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