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Why dose DL work?

Problem

@ What does a DL system really learn ?

@ How does a DL system learn ? Does it really learn or just memorize ?

© How well does a DL system learn ? Does it really learn everything or
have to forget something ?

Till today, the understanding of deep learning remains primitive.
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Why does DL work?

1. What does a DL system really learn?

Probability distributions on manifolds.

2. How does a DL system learn ? Does it really learn or just memorize ?

Optimization in the space of all probability distributions on a manifold. A
DL system both learns and memorizes.

3. How well does a DL system learn ? Does it really learn everything or
have to forget something 7

Current DL systems have fundamental flaws, mode collapsing.
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Manifold Distribution Principle

We believe the great success of deep learning can be partially explained by
the well accepted manifold distribution and the clustering distribution
principles:

Manifold Distribution

A natural data class can be treated as a probability distribution defined on
a low dimensional manifold embedded in a high dimensional ambient
space.

Clustering Distribution

The distances among the probability distributions of subclasses on the
manifold are far enough to discriminate them.
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MNIST tSNE Embedding

a. LeCunn’s MNIST b. Hinton's t-SNE embemdding
@ Each image 28 x 28 is treated as a point in the image space R?8%28,
@ The hand-written digits image manifold is only two dimensional;
@ Each digit corresponds to a distribution on the manifold.
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Manifold Learning

MNIST data into two di

by TSNE MNIST data

into two dimensions by UMAP

i

Figure: t-SNE embedding and UMap embedding.
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How does a DL system learn ?

Optimization

@ Given a manifold X, all the probability distributions on X form an
infinite dimensional manifold, Wasserstein Space P(X);

@ Deep Learning tasks are reduced to optimization in P(X), such as the
principle of maximum entropy principle, maximum likely hood
estimation, maximum a posterior estimation and so on;

@ DL tasks requires variational calculus, Riemannian metric structure
defined on P(X).
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Optimal Transportation

@ Optimal transport theory discovers a natural Riemannian metric of
P(X), called Wasserstein metric;

@ the covariant calculus on P(X) can be defined accordingly;

@ the optimization in P(X) can be carried out.
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Equivalence to Conventional DL

Entropy function is convex along the geodesics on P(X);

The Hessian of entropy defines another Riemannian metric of P(X);

@ The Wasserstein metric and the Hessian metric are equivalent in

general;
@ Entropy optimization is the foundation of Deep Learning;
@ Therefore Wasserstein-metric driven optimization is equivalent to

entropy optimization.
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Optimal Transportation

@ The geodesic distance between du = f(x)dx and dv(y) = g(y)dy is
given by the optimal transport map 7 : X — X, T = Vu,

det Pu\  f(x)
Oxi0xj)  goVu(x)

@ The geodesic between them is McCann's displacement,

A1) = (1 - )] + tVu)

@ The tangent vectors of a probability measure is a gradient field on X,
the Riemannian metric is given by

(dipr, dia) = /X (dior, dia) g F(x)dx.
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GAN model
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GAN model - Mode Collapse Reason

Training Data Latent Distribution Generated Samples
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Mode Collapse Reason
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Mode Collapse Reason

Figure: Singularities of an OT map.
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How to eliminate mode collapse?

Training Data Latent Distribution Generated Samples
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Figure: Geometric Generative Model.
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Generative and Adverse rial Networks
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Generative and Adverse rial Networks

A GAN model based on OT theory.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 19 /56



Overview

There are three views of optimal transportation theory:
© Duality view
@ Fluid dynamics view

© Differential geometric view

Different views give different insights and induce different computational
methods; but all three theories are coherent and consistent.
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Optimal Transportation Map

Figure: Buddha surface.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Duality Theories )
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Monge Problem

Assume Q and ¥ are two domains in the Euclidean space, R?, 1 and v are
two probability measures on Q and X respectively, u € P(Q), v € P(X),
such that they have equal total measure:

p(2) = v(%). (1)

Definition (Measure-preserving Map)

A mapping T : Q — X is called measure preserving, if or any Borel set

BcCzx,
[ du=[ an 2)
T_I(B) B

and is denoted as Tuu = v T pushes 1 forward to v.
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Monge Problem

Suppose the density functions of p and v are given by f : Q — R and
g: X — R, namely

du = f(x1,x2, -, xa)dx1 Adxa A+ A dxg,
dv :g(}/1,}/2»"' 7Yd)d}/1 /\d_)/2/\ /\de7

and T:Q — ¥ is C! and measure-preserving,
f(Xl, - ,Xd)dxl A Ndxy = g(T(x))dy1 A dyy.

then T satisfies the Jacobi equation:

Definition (Jacobi Equation)

f(x)

detDT(x) = o703
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(Y,v)

Figure: Measure-preserving map.
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Monge Problem

Definition (Transportation Cost)

Given a cost function ¢ : 2 x X — R, the total transportation cost for a
map T : Q — X is defined as

C(T):= /Qc(x, T(x))dp(x).

Problem (Monge)

Amonge all the measure-preserving mappings, T : Q0 — ¥ and Typ = v,
find the one with the minimal total transportation cost,

MP : min {/Q c(x, T(x))dp(x) : Tyup= 1/} : (4)
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Monge Problem

Definition (Optimal Transportation Map)

The solution to the Monge problem is called an optimal transportation
map between (2, ) and (X, v).

Suppose 2 coincides with ¥

Definition (Wasserstein Distance)

The total cost of the optimal transportation map 7 :Q — %, Tuu=v, is
called the Wasserstein distance between y and v.

Suppose the cost is the square of the Euclidean distance
c(x,y) = |x — y|?, then the Wasserstein distance is defined as

W) = inf { [ e TORdu0): Ton=v}.
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Kantorovich Problem

Transportation Plan

Kantorovich relax the transportation map to transportation scheme, or
transportation plan, which is represented by a joint probability distribution
p:wxX—R, p(x,y) represents how much mass is transported from the
source point x to the target point y.

v

Marginal Distribution

The marginal districution of p equals to y and v, namely we have the
condition

(m)#p =1, (my)pp = v, (5)

where the projection maps

TrX(X7y):X7 7Ty(X7}/):)/-
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Kantorovich Problem

Transportation map vs. Transportation plan

Transportation map is a special case of transportation plan, namely a
transportation map T : Q2 — X induces a transportation plan

(ld, T)yp = p. (6)
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Kantorovich Problem

Problem (Kantorovich )

Find a transportation plan with the minimal toal transportation cost,

kP min{ [ clxundpn): (mdpo = (myp=v). (1)

{p: (me)pp = . (my)gp = v}

foxs c(z,y)dp(x, y)
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Kantorovich Problem

Problem (Linear Programming)

min Y " c(pi, j)f;,
p

such that

Vi, > fj=pi
J
Vi, Y fi=uj.

(bns P) O
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Kantorovich Problem

Linear Programming

Kantorovich problem is to find a minimal value of a linear function defined
on a convex polytope, so the solution exists. KP can be solved using linear
programming method, such as simplx, interior point or ellipsoid algorithms.

Kantorovich Problem

In general situation, the support of a transportation plan p covers all the
Q x X. If the transportation map T exists, the support of (/d, T)4u has 0
measure in € x X.. KP doesn't discover the intrinsic structure, it is highly
inefficient to compute optimal transportation map.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 36 /56



Kantorovich Problem

Spt(v) Spt(v)

v = (id, T)pp v € U(p,v)

Figure: Caption
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Kantorovich Dual Problem

Denote M(u,v) = {p: (mx)xp = i, (7y)xp = v}. We consider the
constraint p € M(u,v). we have

L N _ 0 pE n(,U’a V)7
iﬁ/ﬂwdw/ztbd /M(sO( )+ ¥(y))dp { +oo p & N(p,v),

(8)
where the superimum is taken among all bounded continuous functions,
p e Cb(Q) and ¢ € Cb(Z)

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 38 /56



Kantorovich Dual Problem

We use this as a generalized Lagrange multiplier in (KP), and rewrite
(KP) as

min /Q _cdpsup /Q o+ /z Y /Q =0 (@)

p 0

Under suitable conditions, such as Rockafella’s conditions, we can
exchange sup and inf

sup /Q odp+ /z Pev + inf /Q _{elx) = (el vly)dp (10

0, p

We can rewrite the infimum in p as a constraint on ¢ and :

. 0 pdYv<conXxY
f — =
o glemvenan={ 0 0TI

where ¢ @ 1 denotes the function ¢ & ¥(x,y) := o(x) + ¥(y).
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Kantovorich Dual Problem

This leads to the dual optimization problem.

Problem (Dual)

Given p € P(2) and v € P(X) and the cost function
c:Qx X —[0,+00), we consider the problem

(DP) max{/ﬂgpdu—i—/z@bdu tp € Cp(Q), Y e Cp(X): By < C}.
()|

From the condition ¢ @ ¥ < ¢, we obtain sup DP < min KP,

/s@du+/wdv=/ soeawdpg/ cdp
Q Y Qxx QAxX

This is valid for all admissible pairs (i, 1)) and every admissible p.
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Kantovorich Dual Problem

From the condition ¢ @ 1 < ¢, we obtain sup DP < min KP,

/sodw/wdu:/ so@wdps/ cdp
Q Y QxX QxX

This is valid for all admissible pairs (i, 1) and every admissible p. This
shows

| max(DP) < min(KP)|
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c-transform

Definition (c-transform)

Given ¢ € L1(Q), and the cost function ¢ : Q x ¥ — R, the c-transform of
@ is defined as ¢ : X — R,

©°(y) == jnf c(x,y) — w(x), (12)

The optimization of Kantorovich functional is equivalent to replace the
Kantorovich potentials (¢n, %) by the c-transforms of the other, namely

cc CCC) o

(1) = (0, 9°) = (95, 9%) = (< p
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c-transform

Geometrically, if we fix a point x € Q, then we get a supporting surface
MNy: X —R,

Fx(y) = clxy) = e(x),
the graph of the c-transform ¢°(y) is the envelope of all these supporting
surfaces.

Figure: Geometric interpretation of c-transform.
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Twisting Condition

By ¢°(y) = infx c(x,y) — ¢(x), we obtain

| Vac(x,y(x)) = Vep(x) |

Definition (Twisting condition)

Given a cost function ¢ : 2 x ¥ — R, if for any x € €, the mapping

Ly(y) :== Vxe(x,y)

is injective, then we say c satisfies twisting condition.

If ¢ satisfies the twisting condition, then an optimal plan is an optimal
map.
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Uniqueness of Optimal Transportation Map

Theorem (Uniqueness)

Suppose c satisfies the twisting condition, then the optimal transportation
map is unique.
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Uniqueness of Optimal Transportation Map

Proof.

Assume there are two optimal transportion maps T1, T2 : (Q, 1) — (X, v),
the corresponding optimal transportation plans are

pk = (Id, Ti)pp, k=12

Then %(pl + p2) is also an optimal transportation. Since c satisfies the
twisting condition, %(pl + p2) corresponds to an optimal transport map.
But the blue line intersects the support of %(Pl + p2) at two points, it is
not a map. Contradiction. O

v
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Dual Problem

By utilizing c-transform, we obtain

Problem (Dual Problem)

Given p1 € P(Q2), v € P(X), the dual problem is

or: mae { [ taauto+ [etiann}. a3
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Cyclic Monotonocity

1 o—oU1 T Y1
2 o—wo Y2 T2 Yo
3 o——oYs3 X3 Y3
L4
Yn—1

Figure: Cyclic monotonocity.

p is optimal, then for any (x, y) € Supp(p), ©(x) + ¥(y) = c(x,y).
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Cyclic Monotonocity

Definition (Cyclic Monotonocity)

Suppose ' € RY is a domain, for any set of pair of points:

(X17Y1);(X27}/2)7 o ,(Xk7}/k) C SUpp(P)a

we have the following inequality

k k
ZC(XI'LVI Zcxlayo‘()
i=1 i=1
where ¢ is a permuation of 1,2, ... k, then we say [ is cyclic monotonous.

v

The cyclic monotonocity can be applied to prove the equivalence between
Kantorovich problem and Kantorovic dual problem.
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Cyclic Monotonocity

Definition (c-concave)

A function ¢ : Q — R is called c-concave, if there is a function
¥ Q — R, such that ¢ = ¢°.

Theorem
IfT #£ 0, T is cyclic monotonuous in Q x ¥, then there exists a c-concave
function ¢, such that

FC{(xy) € QxX:p(x)+¢(y) =clx, y)}

Theorem
If p is an optimal transport plan for the continuous cost c, then its support
supp(p) is cyclic monotonous.

| A

v
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Cyclic Monotonocity

Theorem (max (DP)=min (KP))

Suppose that Q and ¥ are Polish spaces and that c : Q2 x ¥~ — R is

uniformly continuous and bounded. Then the problem (DP) admits a
solution (p, p°) and we have

| max(DP) = min(KP)|

Suppose p is a solution to (KP), then Supp(p) satisfies cyclic

monotonicity; hence there exists ¢ and <, Supp(p) C {¢ + ¢ = c},
therefore

min(KP):/Q chpﬁ/ﬂgodu—l—/zgocdygmax(DP).
X

[ ]
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Monge-Ampere Equation

Lemma

Suppose ¢ : Q — R is a C? strictly convex function, Q is convex, then
Ve : Q — RY is injective.

Proof.

Suppose there are two distinct points xp, x; € €2, such that

Ve(xo) = Ve(xi). Draw a line segment v : [0,1] — Q, v(0) = xp and
v(1) = x3. Then f(t) = c o~(t) is strictly convex

| \

f'(t) = (Ve((1 — t)xo + tx1), x1 — X0)
f(t) = (x1 — x0) T D?c((1 — t)x0 + tx1)(x1 — X0).
Therefore, /(1) = f'(0) and f”(t) > 0. Contradiction. O
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Monge-Ampere Equation

Suppose ¢ : Q — R is a strictly convex function, 2 is convex, then
Ve : Q — RY is injective.

VC((L‘l)

V()

Figure: Injectivity of the gradient map of a strictly convex function.
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Monge-Ampere Equation

Suppose the cost function is a strictly convex function, satisfying the
condition ¢(x,y) = c(x — y), then

Dye(x,y) = De(x) = 0,
we obtain Dyc(x — y) = Dp(x),

T(x) =y = x — (Dc) " (Dy(x)),
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Brenier Problem

Theorem (Brenier)

Given p € P(Q2) and v € P(X), and the cost function c(x,y) = %|x —yl?

the optimal transportation map is the gradient of a function u: Q — R,
T(x) := Vu(x).

i

Proof.
We obtain

x|

T(x) = x — Dg(x) = D (T - cp(x)) = Du(x).
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Brenier Problem

Problem (Brenier)

Find a convex function u : Q — R, satisfying the Monge-Amperé equation,

det <82”(X)> __ ) (14)

0x;0x;

We plug T(x) = Du(x) into the Jacobi equation, we obtain the
Monge-Ampere equation,

T govu(x)’

_ f(x)
hence )
det 0%u(x) _ f(x) ‘
0x;0x; g o Vu(x)

L]
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