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Surface Uniformization

Figure: Closed surface uniformization.
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Surface Uniformization

Figure: Open surface uniformization.
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Geometric Complex Analysis

Strategy

1 Define a family of complex functions, with some constraints;

2 Show the family is a normal family;

3 Estimate some geometric or analytic bounds, such as distortions;

4 Maximize some coefficient of an item in the Laurent series;

5 Show the limit exists by normal family property;

6 Show the limit is the desired mapping.

Examples include Riemann mapping, slit mapping and so on.
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Basic Concepts in Geometric Complex Analysis
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Normal Family Definition

Definition (Uniform Convergence)

Assume {fn : Ω→ C} is a sequence of holomorphic functions defined on
an open set Ω. We say the functions uniformly converge to a function
f : E → C, if for any ε > 0, there is a n0, such that for any n > n0 and
any z ∈ E , we have

|fn(z)− f (z)| < ε.

Definition (Normal Family)

Let Ω ⊂ C be an open set on C, F is a normal family, if any subsequence
{fn} in F uniformly converge on any compact subset in Ω.

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 6 / 72



Normal Family Properties

Theorem (Weierstrass)

Let {fn : Ω→ C} be a sequence of holomorphic functions defined on an
open set Ω ⊂ C, assume {fn} uniformly converges to f : Ω→ C on
compact subsets in Ω, then f is holomorphic and {f ′n : Ω→ C} uniformly
converges to f ′ : Ω→ C.
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Normal Family Properties

Definition (Univalent Map)

Let U ⊂ C be open subset on C, if holomorphic map f : U → C is
injective, namely z1 6= z2 implies f (z1) 6= f (z2), then f is called a univalent
map or univalent function.

Theorem (Hurwitz)

Let {fn : Ω→ C} be a family of holomorphic functions defined on an open
set Ω ⊂ C, such that for any n and z ∈ Ω, fn(z) 6= 0. If {fn} uniformly
converges to f : Ω→ C on compact sets of Ω, then either f ≡ 0 or for any
z ∈ Ω, f (z) 6= 0.

Corollary

Let Ω be an open set in C, let {fn : Ω→ C} be a holomorphic function
series, and uniformly converges to f : Ω→ C on compact sets. If each fn
on Ω is univalent, then either f is constant, or f is univalent on Ω.
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Normal Family

Definition (Uniformly Bounded on Compact Sets)

Let F be a family of holomorphic functions, if for any compact set E ⊂ Ω,
there exists a constant M, such that for any z ∈ E and any function
f ∈ F , we have |f (z)| ≤ M, then we say F is uniformly bounded on
compact sets.

Definition (equicontinuous)

Let F be a family of holomorphic functions defined on open set Ω ⊂ F .
We say F is equicontinuous, if for any ε > 0, there exists a δ > 0 such
that for any distinct points z and z ′, |z − z ′| ≤ δ implies |f (z)− f (z ′)| < ε
for any f ∈ F .
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Normal Family

Theorem (Montel)

Let F be a family of holomorphic functions defined on an open set Ω ⊂ C,
if F is uniformly bounded on compact sets in Ω, then

1 F is equicontinuous on each compact set in Ω;

2 F is a normal family.

1 Fix a point p ∈ Ω, a family of univalent holomorphic functions F is a
normal family, if for any f ∈ F , |f (p)| < M and |f ′(p)| < N.

2 A family of holomorphic functions F , if there are three points
{z1, z2, z3}, such that for any f ∈ F , the image of f doesn’t include
them, then F is a normal family.

3 If F is a normal family, then

F−1 = {f −1|f ∈ F}

is also a normal family.
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Geometric Distortion Estimate

Definition (S Family)

All univalent holomorphic functions defined on the unit disk, with
normalization condition form a normal family:

S = {f : D→ C : f univalent, f (0) = 0, f ′(0) = 1}

any f ∈ F has Taylor expansion in a neighborhood of 0,

f (z) = z + a2z
2 + a3z

3 + · · · ,

Taylor series converge in the unit disk |z | < 1.
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Geometric Distortion Estimate

Definition (Koebe Function)

The holomorphic function k(z) ∈ S,

k(z) =
z

(1− z)2
= z + 2z2 + 3z3 + 4z4 + · · ·

is called the Koebe fuction, which maps D to C \ (−∞,−1/4].

0 0

f ∈ S

f(0) = 0 f ′(0) = 1 |a2| ≤ 2

k

|a2| = 2

−1
4
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Geometric Distortion Estimate

Theorem (Bieberbach a2 of S)

If f ∈ S, then |a2| ≤ 2, equality holds if and only if f is a rotation of the
Koebe function.

k

|a2| = 2

−1
4
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Geometric Distortion Estimate

Theorem (Koebe 1/4)

For any f ∈ S, f (D) includes an open disk |w | < 1/4. If there exists a
|w | = 1/4 and w /∈ f (D), then f is a rotation of Koebe function.

k

|a2| = 2

−1
4
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Geometric Distortion Estimate

Proof.

Let f (z) = z + a2z
2 + a3z

3 · · · be a function of S, w 6∈ f (D). Construct a
holomorphic function

h(z) =
wf (z)

w − f (z)
= z +

(
a2 +

1

w

)
z2 + · · ·

then h(z) is in S, by Bieberbach theorem,∣∣∣a2 +
1

w

∣∣∣ ≤ 2 (1)

and |a2| ≤ 2, therefore |1/w | ≤ 4, |w | ≥ 1/4. Equality holds if and only f
is a rotation of Koebe function.
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Geometric Distortion Estimate

Definition (Σ Family)

All holomorphic functions defined on ∆ = {|w | > 1} with normalization
condition form a normal family,

Σ = {g : ∆→ C : g univalent, g(∞) =∞, g ′(∞) = 1},

for any g ∈ Σ, it ias Laurent power series in a neighborhood of ∞,

g(z) = z + b0 +
b1

z
+

b2

z2
+ · · ·

the series converges in ∆.

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 16 / 72



Geometric Distortion Estimate

Definition (Full Mapping Family)

The family of holmorphic functions

Σ̃ := {f : ∆→ C : f ∈ Σ,C \ f (∆) has zero Lebesgure Measure}

Theorem (Gronwall Area)

Suppose g ∈ Σ, and

g(z) = z + b0 +
b1

z
+

b2

z2
+

b3

z3
+ · · ·

then
∞∑
n=1

n|bn|2 ≤ 1,

equality holds if and only if g is a full mapping, g ∈ Σ̃.
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Geometric Distortion Estimate

Corollary (b1 of Σ)

If g ∈ Σ, then |b1| ≤ 1, equality holds if and only if

g(z) = z + b0 +
b1

z
, |b1| = 1 (2)

g maps ∆ to the complement of a length segment with length 4.

g

|b1| = 1

2
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Geometric Distortion Estimate

Corollary

For any f ∈ Σ, f : {|z | > 1} → C, f (∞) =∞, f ′(∞) = 1,

f (z) = z + b0 +
b1

z
+

b2

z2
+ · · · ,

we have
∂f (|z | > 1) = f (|z | = 1) ⊂ {|w − b0| ≤ 2}. (3)

f

2
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Geometric Distortion Estimate

Proof.

If f (z) ∈ Σ, then f (z−1)−1 ∈ S,

f (z) = z + b0 +
b1

z
+

b2

z2
+ · · ·

therefore

f (z−1) =
1

z
+ b0 + b1z + b2z

2 + · · ·

f (z−1)−1 = z(1 + b0z + b1z
2 + · · · )−1

= z(1− (b0z + b1z
2 + · · · ) + · · · )

= z − b0z
2 − b1z

3 + · · ·

let g(z) = f (z−1)−1, then g(0) = 0, g ′(0) = 1, hence g ∈ S.
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Geometric Distortion Estimate

Continued.

Given any point ζ ∈ ∂D, |ζ| = 1, then w = g(ζ) 6∈ g(D), by Bieberbach
inequality (1), ∣∣∣− b0 +

1

w

∣∣∣ ≤ 2,

by w = g(ζ) = 1/f (ζ−1), we obtain 1/w = f (1/zeta). Set
ζ ′ = 1/ζ ∈ ∂D, we obtain

| − b0 + f (ζ ′)| ≤ 2.
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Riemann Mapping
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Riemann Mapping

Theorem (Riemann)

Givne a non-empty, simply connected, open subset Ω ⊂ C, Ω is not the
entire complex plane C, for any point z0 ∈ Ω, there exits a unique
biholomorphic mapping from Ω to the unit disk D, f : Ω→ D, such that
f (z0) = 0 and f ′(z0) > 0.
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Riemann Mapping

Uniqueness

If we don’t require f (z0) = 0 and f ′(z0) > 0, then conformal mapping is
not unique. All such kind of mappings differ by a Möbius transformation,
ϕ : D→ D,

ϕ(z) = e iθ
z − z0

1− z̄0z
, z0 ∈ D, θ ∈ [0, 2π)

Extendibility

If Ω is a Jordan domain, the boundary ∂Ω is a piecewise anylatical curves,
then the conformal mapping ϕ can be extended to the boundary
ϕ : ∂Ω→ ∂D.
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Riemann Mapping

Figure: Riemann Mapping
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Riemann Mapping

Figure: Riemann Mapping
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Riemann Mapping

Figure: Riemann Mapping
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Riemann Mapping

Figure: Mobius Transformation.
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Riemann Mapping

Figure: Texture mapping.
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Schwartz Lemma

Lemma (Schwartz)

Assume f (z) is analytic on D = {|z | < 1}, satisfying |f (z)| ≤ 1, and
f (0) = 0, then |f ′(0)| ≤ 1 and for ∀z ∈ D,

|f (z)| ≤ |z |.

If |f ′(0)| = 1, or ∃0 6= z0 ∈ D, such that |f (z0)| = |z0|, then f is a rotation,

f (z) = e iθz .
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Schwartz Lemma

f

Figure: Schwartz lemma.

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 31 / 72



Schwartz Lemma

Proof.

Since f is holomorphic, it can be represented as power series in a
neighborhood of 0,

f (z) = a0 + a1z + a2z
2 + · · ·

Because f (0) = 0, a0 = 0, hence

f (z) = a1z + a2z
2 + · · · = z(a1 + a2z + a3z

2 + · · · ),

the power series in the parenthesis converge. Construct auxiliary
holomorphic function,

g(z) =

{
f (z)/z z 6= 0
f ′(0) z = 0

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 32 / 72



Schwartz Lemma

Proof.

here the auxiliary function has power series g(z) = a1 + a2z + a3z
3 + · · ·

converges in D, where g(0) = a1 = f ′(0). On every circle |z | = r < 1,
|f (z)| < 1, the norm of the function

|g(z)| =
|f (z)|
|z | < 1/r .

By maximal value principle, on the entire disk |z | < r , |g(z)| < 1/r , let
r → 1, we obtain on the unit disk D,

|g(z)| ≤ 1,

namely |f (z)| ≤ |z |. If at some interior point z0, |g(z0)| = 1, by maximal
value principle, g(z) must be a constant a. By |a| = 1, we get a = e iθ,

f (z) = e iθz .
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Uniqueness of Riemann Mapping

Lemma

Assume f : D→ D is a conformal automorphism of the unit disk, then
f (z) must be a Möbius transformation.

Proof.

We construct a Möbius transformation

ϕ(z) =
z − f (0)

1− f (0)z
,

then g = ϕ ◦ f is a conformal automorophism of D, and g(0) = 0. By
Schwarz lemma, for all z ∈ D, |g(z)| ≤ |z |. Similarly, w = g(z), then
|g−1(w)| ≤ |w |, therefore, for all z ∈ D, |g(z)| = |z |. By Schwartz lemma,
we get g(z) = e iθz . Hence f (z) = ϕ−1(z) ◦ g(z) is a Möbius
transformation.
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Existence Proof

Consider the functions family F , consisting all functions g(z) : Ω→ D
satisfying the following 3 conditions:

1 g(z) is analytic and univalent on Ω;

2 ∀z ∈ Ω, |g(z)| < 1;

3 g(z0) = 0 and g ′(z0) > 0.

The whole proof has three steps:

1 the function family F is non-empty, F 6= ∅;
2 there exists a function f ∈ F , such that f ′(z0) is maximized;

3 this function f is the desired conformal mapping.
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Existence Proof

Step 1 F 6= ∅
There is a point a 6=∞, a 6∈ Ω. Since Ω is simply connected, we can
define a single-valued branch of

√
z − a, denoted as h(z). h(z) won’t take

the same value twice, or take the opposite value: if w ∈ h(Ω), then
−w 6∈ h(Ω). Choose a small disk |w − h(z0)| < ρ inside h(Ω), then
|w + h(z0)| < ρ has no intersection point with h(Ω). Therefore for any
z ∈ Ω, |h(z) + h(z0)| > ρ,

h0(z) :=
ρ

h(z) + h(z0)

is univalent on Ω, and ∀z ∈ Ω, |h0(z)| < 1. Choose θ0 ∈ [0, 2π), such that
h′1(z0) > 0, where

h1(z) := e iθ0
h0(z)− h0(z0)

1− h0(z0)h0(z)
, h1 ∈ F .
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F 6= ∅

z0

a

h

|w + h(z0)| < ρ

|w − h(z0)| < ρ
w

Ω

h0

h0(z0)

h1

D D

Figure: F is non-empty.
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Existence Proof

Step 2

Define supreme
β = sup

g∈F
g ′(z0),

there is a sequence {gn} ⊂ F , such that

lim
n→∞

g ′n(z0) = β.

Based on Montel theorem, F is a normal function family, hence there is a
subsequence {gnk} ⊂ {gn}, which converges to an analytic function f on
Ω, and uniformly converges on any compact subset on Ω. By Weierstrass
theorem, β = f ′(z0). Because β is finite, and β > 0, we obtain f is not
constant.
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Existence Proof

Step 3

Because {gn} on Ω is univalent, by Hurwitz the limit function f is also
univalent. f is analytic, therefore conformal. We need to show f is
surjective. Because f is bijective, Ω is simply connected, hence f (Ω) is
simply connected. Assume there is an interior point w0 ∈ D, such that
w0 6∈ f (Ω). Define a function f2 : Ω→ D,

f2(z) :=

√
f (z)− w0

1− w0f (z)

has an analytic branch, restricted on the image set f2 : Ω→ f2(Ω) is
bijective, f2(Ω) ⊂ D. Let

F (z) =
f2(z)− f2(z0)

1− f2(z0)f2(z)
,

then F : Ω→ D is injective.
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Existence Proof

Step 3

By f (z0) = 0, we obtain |f2(z0)| =
√
|w0|,

|F ′(z)| =

∣∣∣∣∣ 1− f2(z0)f2(z0)

[1− f2(z0)f2(z)]2

∣∣∣∣∣ |f ′2(z)|

=

∣∣∣∣∣ 1− f2(z0)f2(z0)

[1− f2(z0)f2(z)]2

∣∣∣∣∣ 1

2
√

f (z)−w0

1−w0f (z)

∣∣∣∣ 1− w0w0

[1− w0f (z)]2

∣∣∣∣ |f ′(z)|
(4)
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Existence Proof

Step 3

plug in z = z0

|F ′(z0)| =

∣∣∣∣ 1− |f2(z0)|2
[1− |f2(z0)|2]2

∣∣∣∣ 1

2
√
| f (z0)−w0

1−w0f (z0) |

∣∣∣∣ 1− |w0|2
[1− w0f (z0)]2

∣∣∣∣ |β|
=

1

1− |w0|
1

2
√
|w0|
|1− |w0|2| · |β|

=
1 + |w0|
2
√
|w0|
|β| > |β|

(5)

Construct the function

g(z) =
|F ′(z0)|
F ′(z0)

F (z),

then g ∈ F and g ′(z0) > β. Contradiction. Hence f : Ω→ D is surjective.
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Topological Annulus
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Conformal Mapping for Annulus

(a)Topological annulus (b) Conformal module

Figure: Canonical conformal mapping for topological annulus.
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Conformal Module for Topological Annulus

Theorem

Suppose Ω is a doubly connected domain on C, then Ω is conformally
equivalent to a canonical annulus.
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Conformal Module for Topological Annulus

Step 1.

Assume ∂Ω = γ1 − γ2, both γ1 and γ2 include more than 1 point, and γ1

is finite. Suppose the complementary of γ1 has two connected
components, the one containing Ω is dentoed as Ω1. By Riemann
mapping theorem, we can conformally map Ω1 onto the unit planar disk
|z ′| < 1, Ω is mapped to Ω′, γ2 to γ′2 inside the unit disk.

Step 2.

The complementary of γ′2 has two connected components, the one
containing Ω′ is denoted as Ω′2. We conformally map Ω′2 onto the exterior
to the unit disk |z ′′| > 1, mapping z ′ =∞ to z ′′ =∞. γ′1 7→ γ′′1 ,
Ω′ 7→ Ω′′,∞ 6∈ Ω′′, ∂Ω′′ = γ′′1 − γ′′2 .
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Conformal Module for Topological Annulus

Step 3.

Use the map t = log z ′′, map Ω′′ to B1, B1 is included in the right half
plane {t|<t > 0}. The mapping is not one-to-one, B1 is a infinite stripe,
B1 is periodic, for any t ∈ B1, t + 2kπi , k ∈ Z is also in B1.

Step 4.

By Riemann mapping theorem, there is a map ω = f (t), which maps B1

to the vertical stripe region

B2 := {ω|0 < <ω < h},

the mapping f : B1 → B2 maps

f : {−
√
−1∞, 0 +

√
−1∞} 7→ {−

√
−1∞, 0 +

√
−1∞}.

Because both B1 and B2 are simply connected, the boundaries are with
more than one point, since they are conformal equivalent.
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Conformal Module for Topological Annulus

Stpe 4. Continued

Assume f (2πi) = ω0, by scaling map, we can assume f (2πi) = 2πi . We
prove the mapping has the property:

f (t + 2πi) = f (t) + 2πi .

Since both two conformal mappings f (t + 2πi)− 2πi and f (t) map B1 to
B2, and maps −∞i , 0,+∞i to −∞i , 0,+∞i , therefore by the uniqueness
of Riemann mapping f (t + 2πi)− 2πi = f (t).

Stpe 5.

The map ξ = exp(ω) maps B2 to the canonical annulus 1 < |ξ| < eh, the
composition ξ = exp(f (log z ′′)) maps Ω′′ to the annulus 1 < |ξ| < eh,
which is conformal injective. So the composition of all the mappings
together is the conformal mapping between Ω to 1 < |ξ| < eh.
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Conformal Module for Topological Annulus

γ1

γ2

γ′1

γ′2

log

exp

f

Ω

z′

z′′
t

γ′′1

h

γ′′2

Ω′

Ω′′

B2

B1

z

ξω
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Slit Map Topological Poly-annulus
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Slit Map

Figure: Slit map.
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Slit Map

Definition (slit domain)

A connected open set (domain) Ω ⊂ C is called a slit domain, if every
connected component of its boundary ∂Ω is either a point or a horizontal
closed interval.

Theorem (Hilbert)

Given any domain Ω ⊂ C, its boundary has finite number of connected
components, then Ω is conformal equivalent to a slit domain.
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Hilbert Theorem

f

Figure: Hilbert theorem.
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Hilbert Theorem

Lemma

In a neighborhood of ∞, given analytic functions

α(z) = z +
k1

z
+ · · · , β(z) = z +

l1
z

+ · · · ,

then

β ◦ α(z) = z +
k1 + l1

z
+ · · · (6)

Proof.

By direct computation.
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Slit Map

Proof.

Given a planar domain Ω ⊂ Ĉ, by a Möbius transformation, we can assume
∞ ∈ Ω and Ω ⊂ {|z | > 1}, let univalent holomorphic mapping family be

Σ =

{
f : Ω→ Ĉ

∣∣∣f (z) = z + b0 +
b1

z
+

b2

z2
+ · · · , |z | > 1

}
,

if f ∈ Σ, then f (∞) =∞ and f ′(∞) = 1. Let f (z) = z , then f ∈ Σ,
Σ 6= ∅.
Consider the function family Σ−1 = {f −1|f ∈ Σ}, by Corollary (3), we
have

{|z | < 1} ⊂ [f −1(|w − b0| > 2)]c ,

hence f −1(|w − b0| > 2) excludes three points {−1 + ε, 0, 1− ε}, therefore
Σ−1 is a normal function family, hence Σ is a normal functional family.
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Normal family

f

1 2b0

z
w

Figure: Estimate of image.
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Slit Map

Proof.

By the compactness of normal function family, there exists a limit f ∈ Σ,
such that

<f (b1) = max
g∈Σ
<g (b1),

we will show f (Ω) is a slit domain. Otherwise, there is a connected
component Γ of ∂f (Ω), Γ is neither a point or a horizontal line segment.
Construct a map

g : Ĉ \ Γ→ Ĉ \ [−2R, 2R]

as follows: first construct the inverse map of a Riemann mapping
α : {|z | > R} → Ĉ \ Γ,

α(z) = z +
ε

z
+ · · ·

and slit map β : {|z | > R} → Ĉ \ [−2R, 2R], β(z) = z + R2

z ,
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Slit Map

g

α β = z + R2

z

|z| > R

−2R 2R0
Γ

R

wf(Ω) g ◦ f(Ω)
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Slit Map

continued.

The the composition map g : Ĉ \ Γ→ Ĉ \ [−2R, 2R],

g(w) = β ◦ α−1(w) = w +
λ

w
+ · · · ,

by the corollary of Gronwall theorem (2), comapre α and β, they maps the
complement of the disk to planar domains, the real part of b1 of the slit
map reaches the maximum, hence

R2 = <β(b1) > <α(b1) = ε.

By Eqn. (6), β(z) = g ◦ α(z), we obtain

R2 = <β(b1) = <g◦α(b1) = <g (b1) + <α(b1) = λ+ ε > ε.

Therefore <g (b1) = λ > 0.
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Slit Map

continued.

By Eqn. (6), on {|z | > 1}, composition map

g ◦ f (z) = z +
<f (b1) + λ

z
+ · · · ,

by λ > 0, we obtain <g◦f (b1) > <f (b1), this contradicts to the choice of
f . Hence the assumption is incorrect, the claim holds.
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Slit Map Algorithm

Figure: Exact harmonic forms.
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Slit Map Algorithm

Figure: Closed, non-exact harmonic forms.
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Slit Map Algorithm

Figure: Holomorphic forms.
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Slit Map Algorithm

Figure: Slit maps.
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Slit Map Algorithm

Figure: Slit maps.
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Slit Map Algorithm

Figure: Slit maps.
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Slit Map Algorithm

Input: A genus zero mesh with n + 1 boundary components M,
∂M = γ0 − γ1 − · · · − γn;
Output: A slit map : M → D, D is a circular slit domain.

1 Compute exact harmonic 1-forms ω1, ω2, . . . , ωn;
2 Compute closed, non-exact harmonic 1-forms h1, h2, . . . , hn;
3 Compute conjugate harmonic 1-forms ∗ω1,

∗ω2, . . . ,
∗ωn;

4 Find special holomorphic 1-form ϕ

=
∫
γ0

ϕ = 2π,=
∫
γ1

ϕ = −2π,=
∫
γk

ϕ = 0, k = 2, 3, . . . , n.

5 Slit map f : M → D, choose a fixed based point p ∈ M,

f (q) := exp

∫ q

p
ϕ

the integration path can be chosen arbitrarily.
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Slit Map Algorithm

Exact Harmonic Forms

Construct n harmonic functions f1, f2, · · · , fn with Dirichlet boundary
condition, for each 1 ≤ k ≤ n,

∆fk(vi ) = 0 vi 6∈ ∂M
fk(vj) = −1 vj ∈ γk
fk(vl) = 0 vl ∈ ∂M \ γk

Exact harmonic 1-form group basis are given by

ωk = dfk , 1 ≤ k ≤ n.
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Slit Map Algorithm

Random Harmonic Forms

Generate a random 1-form ω, according to Hodge decomposition theorem,

ω = df + δη + h,

where f is a 0-form, η a 2-form,

δω = δdf , dω = dδη,

the harmonic form is given by

h = ω − df − δη.
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Slit Map Algorithm

Gram–Schmidt Orthonormalization
1 for k = 1, 2, . . . , n,

1 Generate a random harmonic form hk ,
2 Decompose hk with respect to the orthonormal frame
{h1, h2, . . . , hk−1},

hk ← hk −
k−1∑
i=1

(hi , hk)hi , (hi , hj) :=

∫
M

hi ∧ ∗hj ,

3 if ‖hk‖2 = (hk , hk) < ε, then regenerate hk and re-decompose hk , until
‖hk‖2 > ε

4 normalize hk

hk ←
hk√

(hk , hk)
.
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Slit Map Algorithm

Hodge Star Operator

Given an exact harmonic 1-form ωk , then

∗ωk = λk1h1 + λk2h2 + · · ·+ λknhn,


h1 ∧ ∗ωk

h2 ∧ ∗ωk
...

hn ∧ ∗ωk

 =


h1 ∧ h1 h1 ∧ h2 · · · h1 ∧ hn
h2 ∧ h1 h2 ∧ h2 · · · h2 ∧ hn

...
...

...
hn ∧ h1 hn ∧ h2 · · · hn ∧ hn




λk1

λk2
...
λkn


Taking integration on M for every element, and solve the linear system.
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Slit Map Algorithm

Special Holomorphic 1-form

Suppose
∂M = γ0 − γ1 − γ2 · · · − γn,

choose a holomorphic 1-form

ϕ =
n∑

i=1

µi

(
ωi +

√
−1∗ωi

)
,


2π
−2π

0
...
0

 = =



∫
γ0

∗ω1

∫
γ0

∗ω2 · · ·
∫
γ0

∗ωn∫
γ1

∗ω1

∫
γ1

∗ω2 · · ·
∫
γ1

∗ωn∫
γ2

∗ω1

∫
γ2

∗ω2 · · ·
∫
γ2

∗ωn

...
...

...∫
γn
∗ω1

∫
γn
∗ω2 · · ·

∫
γn
∗ωn




µ1

µ2

µ3
...
µn


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Slit Map Algorithm

Integration

Choose a vertex p ∈ M, use width first search to access all the vertices on
M, and for each vertex q ∈ M, we obtain a path γq from p to q, the
circular slit mapping is given by

f (q) := exp

(∫
γq

ϕ

)
,

where
exp(a +

√
−1b) = ea(cos b +

√
−1 sin b).
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