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Surface Uniformization

Figure: Closed surface uniformization.
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Surface Uniformization

Figure: Open surface uniformization.
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Geometric Complex Analysis

© Define a family of complex functions, with some constraints;

@ Show the family is a normal family;
© Estimate some geometric or analytic bounds, such as distortions;
@ Maximize some coefficient of an item in the Laurent series;

© Show the limit exists by normal family property;

O Show the limit is the desired mapping.

Examples include Riemann mapping, slit mapping and so on.

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 4/72



Basic Concepts in Geometric Complex Analysis )
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Normal Family Definition

Definition (Uniform Convergence)

Assume {f, : Q — C} is a sequence of holomorphic functions defined on
an open set 2. We say the functions uniformly converge to a function
f: E — C, if for any € > 0, there is a ng, such that for any n > ng and

any z € E, we have
Ifa(z) — F(2)] < e.

Definition (Normal Family)

Let Q C C be an open set on C, F is a normal family, if any subsequence
{fa} in F uniformly converge on any compact subset in .
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Normal Family Properties

Theorem (Weierstrass)

Let {f, : Q — C} be a sequence of holomorphic functions defined on an
open set Q C C, assume {f,} uniformly converges to f : Q2 — C on
compact subsets in S, then f is holomorphic and {f) : Q — C} uniformly
converges to f' : Q — C.
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Normal Family Properties

Definition (Univalent Map)

Let U C C be open subset on C, if holomorphic map f: U — C is
injective, namely z; # z, implies f(z1) # f(z), then f is called a univalent
map or univalent function.

Theorem (Hurwitz)

Let {f, : Q — C} be a family of holomorphic functions defined on an open
set Q C C, such that for any n and z € Q, f,(z) # 0. If {f,} uniformly
converges to f : QQ — C on compact sets of €2, then either f = 0 or for any
zeQ, f(z) #0.

v

Corollary

Let Q be an open set in C, let {f, : Q@ — C} be a holomorphic function
series, and uniformly converges to f : Q — C on compact sets. If each f,
on 2 is univalent, then either f is constant, or f is univalent on Q.

v
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Normal Family

Definition (Uniformly Bounded on Compact Sets)

Let F be a family of holomorphic functions, if for any compact set E C Q,
there exists a constant M, such that for any z € E and any function

f € F, we have |f(z)| < M, then we say F is uniformly bounded on
compact sets.

Definition (equicontinuous)

Let F be a family of holomorphic functions defined on open set Q C F.
We say F is equicontinuous, if for any € > 0, there exists a § > 0 such
that for any distinct points z and 2/, |z — 2’| < ¢ implies |f(z) — f(Z)| < e
for any f € F.
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Normal Family

Theorem (Montel)

Let F be a family of holomorphic functions defined on an open set Q2 C C,
if F is uniformly bounded on compact sets in Q, then

© F is equicontinuous on each compact set in Q;
@ F is a normal family.

@ Fix a point p € Q, a family of univalent holomorphic functions F is a
normal family, if for any £ € F, |f(p)] < M and |f'(p)| < N.

@ A family of holomorphic functions F, if there are three points
{z1, 22, z3}, such that for any f € F, the image of f doesn't include
them, then F is a normal family.

@ If F is a normal family, then
Fl={fYfeF}

is also a normal family.
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Geometric Distortion Estimate

Definition (S Family)

All univalent holomorphic functions defined on the unit disk, with
normalization condition form a normal family:

S={f:D— C: f univalent, f(0) =0, f'(0) =1}
any f € F has Taylor expansion in a neighborhood of 0,
f(z) =z4az® + a3z’ + -,

Taylor series converge in the unit disk |z| < 1.
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Geometric Distortion Estimate

Definition (Koebe Function)
The holomorphic function k(z) € S,

k(Z)=ﬁ=z+2zz+3z3+4z4+~-

is called the Koebe fuction, which maps D to C \ (—oo, —1/4].

fes
T k
/\
—
1
F0)=0f(0)=1 lasf <2 as = 2
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Geometric Distortion Estimate

Theorem (Bieberbach a; of S)

If f €S, then |az| < 2, equality holds if and only if f is a rotation of the
Koebe function.

las| =2
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Geometric Distortion Estimate

Theorem (Koebe 1/4)

For any f € S, f(D) includes an open disk |w| < 1/4. If there exists a
|w| =1/4 and w ¢ f(ID), then f is a rotation of Koebe function.
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Geometric Distortion Estimate

Let f(z) = z+ axz2 + a3z3--- be a function of S, w & f(D). Construct a
holomorphic function

h(Z)=WW_f—(fz()z)=z+<a2+%)z2+---

then h(z) is in S, by Bieberbach theorem,
‘a + l) <2 (1)
2+ | <

and |az| < 2, therefore [1/w| < 4, |w| > 1/4. Equality holds if and only f
is a rotation of Koebe function. ]

v
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Geometric Distortion Estimate

Definition (X Family)
All holomorphic functions defined on A = {|w| > 1} with normalization
condition form a normal family,

Y ={g: A — C: g univalent, g(c0) = o0, g'(oo) =1},

for any g € L, it ias Laurent power series in a neighborhood of oo,
b1 b
gz)=z+bg+— 4=+
z z

the series converges in A.
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Geometric Distortion Estimate

Definition (Full Mapping Family)

The family of holmorphic functions

Y:={f:A—>C:feX,C\f(A) has zero Lebesgure Measure}

v

Theorem (Gronwall Area)

Suppose g € ¥, and

b1 by b3
_ b e At A
g(z)=z+ o+Z+Z2+Z3+
then
(e o]
> nlba? <1,
n=1

equality holds if and only if g is a full mapping, g € Y.

v
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Geometric Distortion Estimate

Corollary (b; of ¥)
If g € ¥, then |b1| < 1, equality holds if and only if

b
g(z):z+bo+?1,|b1|:1 (2)

g maps A to the complement of a length segment with length 4.

SIS

b1 =1
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Geometric Distortion Estimate

Corollary
Forany f € X, f:{|z| > 1} = C, f(c0) = o0, f'(o0) =1,

b
f2)=z+bo+ 2+ 2.,
V4 V4

we have

0f(|z| > 1) = f(|z] = 1) C {|w — bo| < 2}. (3)

e N
® L
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Geometric Distortion Estimate

Proof.
If f(z) € T, then f(z~1)"1 € S,
b b
fz)=z+by+—+ 3+
z z
therefore
1
f(z71) = ;+bo+blz+b222+~~-
f(zH) =214 boz + b1z +---)7!
=z(1—(boz+ b1z +---)+--)
—z— b2 -3+
let g(z) = f(z71)7 !, then g(0) =0, g'(0) = 1, hence g € S. O

v
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Geometric Distortion Estimate

Continued.

Given any point ¢ € 9D, || = 1, then w = g(¢) & g(D), by Bieberbach
inequality (1),

1
‘—bo+—‘§2,
w

by w = g(¢) = 1/f(¢ 1), we obtain 1/w = f(1/zeta). Set
¢’ =1/¢ € ID, we obtain

| —bo+F(¢) < 2.
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Riemann Mapping )
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Riemann Mapping

Theorem (Riemann)

Givne a non-empty, simply connected, open subset QQ C C, Q is not the
entire complex plane C, for any point zy € S, there exits a unique
biholomorphic mapping from 2 to the unit disk D, f : Q — D, such that
f(ZO) =0 and f’(Zo) > 0.
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Riemann Mapping

Uniqueness

If we don't require f(zp) = 0 and f’(z) > 0, then conformal mapping is
not unique. All such kind of mappings differ by a Mobius transformation,
p:D—D,

o(z) = e 12 — 20 , 20€D,0€]0,27)

Extendibility

If Q is a Jordan domain, the boundary 02 is a piecewise anylatical curves,
then the conformal mapping ¢ can be extended to the boundary
v 0Q — JD.

|
&
N
\
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Riemann Mapping

< Py
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Figure: Riemann Mapping
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Riemann Mapping

Figure: Riemann Mapping
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Riemann Mapping

Figure: Riemann Mapping
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Riemann Mapping
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Riemann Mapping

Figure: Texture mapping.
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Schwartz Lemma

Lemma (Schwartz)

Assume f(z) is analytic on D = {|z| < 1}, satisfying |f(z)| <1, and
f(0) =0, then |f'(0)] <1 and forVz € D,

f(2)] < |-

If|f'(0)| =1, or 30 # zy € D, such that |f(zy)| = |zo0|, then f is a rotation,

f(z) = ez
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Schwartz Lemma

Figure: Schwartz lemma.
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Schwartz Lemma

Proof.

Since f is holomorphic, it can be represented as power series in a
neighborhood of 0,

f(z) = a0+ a1z + apz° + -+
Because f(0) =0, ag = 0, hence
fz) =a1z+ a2’ +-- =z(a1 + az + 332° + - ),

the power series in the parenthesis converge. Construct auxiliary
holomorphic function,

[ f(z)/)z z#0
g(z){f’(o) z=0

O

v
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Schwartz Lemma

Proof.

here the auxiliary function has power series g(z) = a1 + apz + azz> + - --
converges in D, where g(0) = a; = f’(0). On every circle |z| = r < 1,
|f(z)| < 1, the norm of the function

|f(2)]

2]

lg(2)| = <1/r.

By maximal value principle, on the entire disk |z| < r, |g(2)| < 1/r, let
r — 1, we obtain on the unit disk D,

lg(z)] <1,

namely |f(z)| < |z|. If at some interior point zy, |g(z0)| = 1, by maximal
value principle, g(z) must be a constant a. By |a| = 1, we get a = e/

f(z) = e"z.
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Uniqueness of Riemann Mapping

Assume f : D — DD is a conformal automorphism of the unit disk, then
f(z) must be a Mébius transformation.

Proof.

We construct a Mobius transformation

_ z—f(0)
SO(Z) - 1 —W27

then g = ¢ o f is a conformal automorophism of D, and g(0) = 0. By
Schwarz lemma, for all z € D, |g(z)| < |z|. Similarly, w = g(z), then
lg=Y(w)| < |w|, therefore, for all z € D, |g(z)| = |z|. By Schwartz lemma,
we get g(z) = e/%z. Hence f(z) = ¢~ 1(z) o g(z) is a Mobius
transformation. Ol

v
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Existence Proof

Consider the functions family F, consisting all functions g(z) : @ — D
satisfying the following 3 conditions:

@ z(z) is analytic and univalent on Q;
Q vVzeQ, |g(z)| <1,
@ g(2)=0and g'(z) > 0.
The whole proof has three steps:
© the function family F is non-empty, F # ();
@ there exists a function f € F, such that f/(zy) is maximized;

© this function f is the desired conformal mapping.

David Gu (Stony Brook University) Computational Conformal Geometry

August 2, 2020



Existence Proof

Step1 F #0)

There is a point a # co, a € €. Since 2 is simply connected, we can
define a single-valued branch of \/z — a, denoted as h(z). h(z) won't take
the same value twice, or take the opposite value: if w € h(2), then

—w & h(2). Choose a small disk |w — h(z)| < p inside h(2), then

|w + h(zo)| < p has no intersection point with h(2). Therefore for any
z€Q, |h(z) + h(z0)| > p,

p

h =—

" =R )

is univalent on Q, and Vz € Q, |ho(z)| < 1. Choose 6y € [0,27), such that
hi(z0) > 0, where

i6,_o(2) — ho(20)

) aho(e)

hy € F.

v

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 36/72



|w h Z(] | <p
h(]

|w+h Z())| <p

Figure: F is non-empty.
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Existence Proof

Step 2

Define supreme

B = sup g'(z0),
geF

there is a sequence {g,} C F, such that

Jim, (20 = 5.
Based on Montel theorem, F is a normal function family, hence there is a
subsequence {gn, } C {gn}, which converges to an analytic function f on
Q, and uniformly converges on any compact subset on 2. By Weierstrass
theorem, 8 = f’(zy). Because §3 is finite, and 3 > 0, we obtain f is not
constant.
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Existence Proof

Step 3

Because {g,} on Q is univalent, by Hurwitz the limit function f is also
univalent. f is analytic, therefore conformal. We need to show f is
surjective. Because f is bijective, Q is simply connected, hence f(Q) is
simply connected. Assume there is an interior point wp € D, such that
wp & f(£2). Define a function £, : Q — D,

_ | f(2)
N i)

has an analytic branch, restricted on the image set f, : Q@ — £(Q) is
bijective, f(2) C D. Let

F(Z) _ f2(z) - fZ(ZO)
1 - fo(20)h(z)’

then F : Q — D is injective.
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Existence Proof

By f(z0) = 0, we obtain |f(z0)| = /|wol,

'"(2)| = 1- f2(20)f2(20) /(7
|F'(z)| 1 Hlo)h() 15(2)] 4
_ | 1= A(2)h(2) L 1—wowo If' ()] “
AR 2, Ty 1 o
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Existence Proof

plug in z =z
1 - |fH(20)[? ‘ 1 — |wo|?
F'(z)| =
IF (=)l '[1 — 2(20)1?1? ] 5 flzo)—wo | [1 —wof(20)]? 14
1-wof(20)
1 1
= 11— |wol?| - 18] (5)
1-— ‘WOI 24/ |W0|
1+ [wol
= 18] > |8
24/ wo
Construct the function
|F'(20)]
— F
8(2) = " F(2)
then g € F and g’(z) > 3. Contradiction. Hence f : Q — D is surjective.
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Topological Annulus )
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Conformal Mapping for Annulus

(a)Topological annulus (b) Conformal module

Figure: Canonical conformal mapping for topological annulus.
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Conformal Module for Topological Annulus

Suppose €2 is a doubly connected domain on C, then Q is conformally
equivalent to a canonical annulus.
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Conformal Module for Topological Annulus

Assume 92 = 1 — 2, both 71 and 2 include more than 1 point, and 1
is finite. Suppose the complementary of 1 has two connected
components, the one containing €2 is dentoed as €2;. By Riemann
mapping theorem, we can conformally map 1 onto the unit planar disk
|| <1, Q is mapped to ', 72 to 7% inside the unit disk.

The complementary of 7% has two connected components, the one
containing Q' is denoted as Q5. We conformally map ) onto the exterior
to the unit disk |z”| > 1, mapping z/ = oo to 2" = 0o. 7] — 17,

Q/ — Q/I,OO g Q//’ 69// — ,,Yil _ ,yé/
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Conformal Module for Topological Annulus

Use the map t = log z”, map Q" to By, B is included in the right half
plane {t|Rt > 0}. The mapping is not one-to-one, Bj is a infinite stripe,
B; is periodic, for any t € By, t + 2kwi, k € Z is also in Bj.

Step 4.
By Riemann mapping theorem, there is a map w = f(t), which maps B;
to the vertical stripe region

By :={w|0 < Rw < h},
the mapping f : By — B, maps
f: {—v—=1oo,0+ v/—1loo} = {—v/~100,0 + v/—10o0}.
Because both B; and By are simply connected, the boundaries are with

more than one point, since they are conformal equivalent.
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Conformal Module for Topological Annulus

Stpe 4. Continued

Assume f(27i) = wp, by scaling map, we can assume f(27i) = 2mwi. We
prove the mapping has the property:

f(t+2mi) = f(t)+2mi.
Since both two conformal mappings f(t + 2mwi) — 2mi and f(t) map B; to

B>, and maps —0i, 0, 00/ to —o0i, 0, 400/, therefore by the uniqueness
of Riemann mapping f(t + 27i) — 27i = f(t).

The map ¢ = exp(w) maps Bs to the canonical annulus 1 < |¢]| < e”, the
composition & = exp(f(log z”)) maps Q" to the annulus 1 < |£] < e”,
which is conformal injective. So the composition of all the mappings
together is the conformal mapping between Q to 1 < |¢| < e”.
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Conformal Module for Topological Annulus
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Slit Map Topological Poly-annulus )
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Slit Map

Figure: Slit map.
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Definition (slit domain)

A connected open set (domain) Q C C is called a slit domain, if every
connected component of its boundary 0f2 is either a point or a horizontal
closed interval.

Theorem (Hilbert)

Given any domain Q C C, its boundary has finite number of connected
components, then Q is conformal equivalent to a slit domain.
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Hilbert Theorem

Figure: Hilbert theorem.
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Hilbert Theorem

Lemma

In a neighborhood of oo, given analytic functions
k /
a(z):z+—1—|—---, 5(2):24__1_;_...’
z z
then _—
Boa(z)=z+—=——+-- (6)

By direct computation.
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Slit Map

Proof.

Given a planar domain  c C, by a Mdbius transformation, we can assume
oo € Q and Q C {|z| > 1}, let univalent holomorphic mapping family be

a b
Zz{f:Q—)C‘f(z):z—i-bo—i-Zl+:§+-~-,|z\>1},

if f € X, then f(0c0) = co and f/(0c0) = 1. Let f(z) = z, then f € L,
Y #£0.
Consider the function family ¥~1 = {f~1|f € &}, by Corollary (3), we
have

{lzl <1} C [FH(Iw — bol > 2)I°,

hence f~1(|w — bg| > 2) excludes three points {—1+¢,0,1— ¢}, therefore
¥ 1 is a normal function family, hence ¥ is a normal functional family. [J
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Normal family

Figure: Estimate of image.
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Slit Map

By the compactness of normal function family, there exists a limit f € ¥,
such that

Re(b1) = gg%g(bl),

we will show f() is a slit domain. Otherwise, there is a connected
component [ of 9f(Q2), I is neither a point or a horizontal line segment.

Construct a map
g:C\I' = C\[-2R,2R]

as follows: first construct the inverse map of a Riemann mapping
a:{|z| >R} = C\T,

and slit map G : {|z| >R}%@\[—2R,2R],5(Z)ZZ+R;, ]
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v

—2R 0 2R

|z2| > R
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Slit Map

continued.
The the composition map g : C\ T — €\ [-2R, 2R],

g(W):,BOOA_l(W):W+%+...,

by the corollary of Gronwall theorem (2), comapre « and f3, they maps the
complement of the disk to planar domains, the real part of b; of the slit
map reaches the maximum, hence

R2 = %ﬁ(bl) > %a(bl) = €.
By Eqn. (6), 5(z) = g o «(z), we obtain
R? = Rp(b1) = Rgoa(b1) = Rg(b1) + Ra (b)) = A +¢e > e

Therefore Rg(b1) = A > 0.

v
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Slit Map

By Eqn. (6), on {|z| > 1}, composition map

Re(b A
Re(b) +A

z

gof(z)=z+

by A > 0, we obtain Rgor(b1) > R¢(b1), this contradicts to the choice of
f. Hence the assumption is incorrect, the claim holds.

David Gu (Stony Brook University) Computational Conformal Geometry August 2, 2020 59/72



Slit Map Algorithm

Figure: Exact harmonic forms.
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Slit Map Algorithm

Figure: Closed, non-exact harmonic forms.
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Slit Map Algorithm

Figure: Holomorphic forms.
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Slit Map Algorithm

Figure: Slit maps.
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Slit Map Algorithm

Figure: Slit maps.

David Gu (Stony Brook University) Computational Conformal Geometry



Slit Map Algorithm

Figure: Slit maps.
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Slit Map Algorithm

Input: A genus zero mesh with n+ 1 boundary components M,

OM =9 =71~ =
Output: A slit map : M — D, D is a circular slit domain.
@ Compute exact harmonic 1-forms wi,wy, ..., wn;
@ Compute closed, non-exact harmonic 1-forms hy, ho, ..., hp;
*

© Compute conjugate harmonic 1-forms *wq, *wo, ..., *wy;
@ Find special holomorphic 1-form ¢

%/@:27’(,%/@:—27’(,%/@:O’k:2737”"n.
Yo 1 Yk

@ Slit map f : M — D, choose a fixed based point p € M,
q

f(q) :=exp /p @

the integration path can be chosen arbitrarily.
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Slit Map Algorithm

Exact Harmonic Forms

Construct n harmonic functions fi, fp, - - - , f, with Dirichlet boundary
condition, for each 1 < k < n,
Af(vi) = 0 vi¢goM
fil(vi)) = -1 vi€w
fk(V/) = 0 vyeoM \ Yk

Exact harmonic 1-form group basis are given by

wk:dfk, ].Skgn.
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Slit Map Algorithm

Random Harmonic Forms
Generate a random 1-form w, according to Hodge decomposition theorem,

w = df +dn + h,
where f is a 0-form, i a 2-form,

dw = ddf, dw = din,

the harmonic form is given by

h=w — df —in.
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Slit Map Algorithm

Q for k=1,2,...,n,
@ Generate a random harmonic form hy,
@ Decompose h, with respect to the orthonormal frame
{h1,ha, ..., hk_1},

k—1

hy < hy — Z(h,’, hk)h,', (h,‘, hj) = / h; A *hj,

i=1 M

@ if ||hk||> = (hk, hk) < &, then regenerate hy and re-decompose hy, until
1| > &

@ normalize hy
hi

V(i i)

hk<—
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Slit Map Algorithm

Hodge Star Operator

Given an exact harmonic 1-form wy, then

*wk = Akrht + Akah2 + -+ + Aknhn,

h1 A *wg hiANhi hiANhy --- hiAh, Akl
ho A *wy hoANhi hoAhy -+ hyAh, Ak2
hn A *wy haoANhi haANhy - hy A h, Akn

Taking integration on M for every element, and solve the linear system.
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Slit Map Algorithm

Special Holomorphic 1-form

Suppose

OM=ry—71—7"2"—"n,

choose a holomorphic 1-form

n
o= ui <wi+\/— *wi),
i=1

2m f’vo ‘w1 f’Yo wa Y0 “wn M1
—2m fw w1 f’Yl wy e f% “wn H2
0 =S fw *w1 fﬂl2 *wyp e fw *wn 143
0 [, e [ fwe e [t fin
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Slit Map Algorithm

Integration

Choose a vertex p € M, use width first search to access all the vertices on
M, and for each vertex g € M, we obtain a path -4 from p to g, the
circular slit mapping is given by

f(q) :==exp (Lq¢>,

exp(a + v —1b) = e(cos b + v —1sin b).

where
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