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Harmonic Maps
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Harmonic Map

Figure: Harmonic map between topological disks.
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Harmonic Map

Figure: Harmonic map between topological spheres.
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Surface Double Covering Algorithm

Figure: Spherical harmonic map.
David Gu (Stony Brook University) Computational Conformal Geometry July 31, 2020 5 / 66



Surface Double Covering Algorithm

Figure: Spherical harmonic map.
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Harmonic Map

Figure: Harmonic map induced foliations.
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Harmonic Function

Given a planar domain Ω ⊂ R2, consider the electric potential u : Ω→ R.
The gradient of the potential induces electric currents, and produces heat.
The heat power is represented as harmonic energy

E (u) :=

∫
Ω
〈∇u,∇u〉dxdy .

In nature, the distribution of u minimizes the heat power, and is called a
harmonic function. Assume h ∈ C∞0 (Ω), then E (u + εh) ≥ E (u),

d

dε

∫
Ω
〈∇u + ε∇h,∇u + ε∇h〉dxdy

∣∣∣
ε=0

= 2

∫
Ω
〈∇u,∇h〉dxdy = 0.
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Harmonic Function

By relation
∇ · (h∇u) = 〈∇h,∇u〉+ h∇ · ∇u,

we obtain∫
Ω
∇u,∇h〉 =

∫
Ω
h∆udxdy −

∫
Ω
∇ · (h∇u)dxdy =

∫
ω
h∆udxdy ,

We obtain Laplace equation {
∆u ≡ 0
u|∂Ω = g

Steady temperature field, static electric field, elastic deformation, diffusion
field, all are governed by the Laplace equation.

David Gu (Stony Brook University) Computational Conformal Geometry July 31, 2020 9 / 66



Harmonic Function

Theorem (Mean Value)

Assume Ω ⊂ R2 is a planar open set, u : Ω→ R is a harmonic function,
then for any p ∈ Ω

u(p) =
1

2πε

∮
γ
u(q)ds, (1)

where γ is a circle centered at p, with radius ε.

Proof.

u is harmonic, du is a harmonic 1-form, its Hodge star ∗du is also
harmonic. Define the conjugate function v , dv = ∗du, then
ϕ(z) := u +

√
−1v is holomorphic. By Cauchy integration formula,

ϕ(z) =
1

2πi

∮
γ

ϕ(ζ)

ζ − z
dz (2)

Hence, we obtain the mean value property of harmonic function.
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Harmonic Function

Corollary (Maximal value principle)

Assume Ω ⊂ R2 is a planar domain, and u : Ω→ R is a non-constant
harmonic function, then u can’t reach extremal values in the interior of Ω.

Proof.

Assume p is an interior point in Ω, p is a maximal point of u, u(p) = C .
By mean value property, we obtain for any point q on the circle B(p, ε),
u(q) = C , where ε is arbitrary, therefore u is constant in a neighborhood
of p. Therefore u−1(C ) is open. On the other hand, u is continuous,
u−1(C ) is closed, hence u−1(C ) = Ω. Contradiction.
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Uniqueness of Harmonic Functions

Corollary

Suppose Ω ⊂ R2 is a planar domain, u1, u2 : Ω→ R are harmonic
functions with the same boundary value, u1|∂Ω = u2|∂Ω, then u1 = u2 on
Ω.

Proof.

u1 − u2 is also harmonic, with 0 boundary value, therefore the maximal
and minimal values of u1 − u2 must be on the boundary, namely they are
0, hence u1, u2 are equal in Ω.
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Disk Harmonic Maps

Figure: Harmonic map between topological disks.
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Diffeomorphic Property of Disk Harmonic Maps

Theorem (Rado)

Suppose a harmonic map ϕ : (S , g)→ (Ω, dx2 + dy2) satisfies:

1 planar domain Ω is convex

2 the restriction of ϕ : ∂S → ∂Ω on the boundary is homoemorphic,

then u is diffeomorphic in the interior of S.

Proof.

By regularity theory of harmonic maps, we get the smoothness of the
harmonic map. Assume ϕ : (x , y)→ (u, v) is not homeomorphic, then
there is an interior point p ∈ Ω, the Jacobian matrix of ϕ is degenerated
as p, there are two constants a, b ∈ R, not being zeros simultaneously,
such that

a∇u(p) + b∇v(p) = 0.

By ∆u = 0,∆v = 0, the auxiliary function f (q) = au(q) + bv(q) is also
harmonic.
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Diffeomorphic Property of Disk Harmonic Maps

continued

By ∇f (p) = 0, p is an saddle point of f . Consider the level set of f near p

Γ = {q ∈ Ω|f (q) = f (p)− ε}

Γ has two connected components, intersecting ∂S at 4 points.
But Ω is a planar convex domain, ∂Ω and the line au + bv = const have
two intersection points. By assumption, the mapping ϕ restricted on the
boundary ϕ : ∂S → ∂Ω is homeomorphic. Contradiction.
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Computational Algorithm for Disk Harmonic Maps

Input:A topological disk M;
Output:A harmonic map ϕ : M → D2

1 Construct boundary map to the unit circle, g : ∂M → S1, g should be
a homeomorphism;

2 Compute the cotangent edge weight;

3 for each interior vertex vi ∈ M, compute Laplacian

∆ϕ(vi ) =
∑
vj∼vi

wij(ϕ(vi )− ϕ(vj)) = 0;

4 Solve the linear system, to obtain ϕ.
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General Harmonic Map

Definition (Harmonic Energy)

Let (Σ1, z) and (Σ2, u) be two Riemann surfaces, with Riemannian metrics
σ(z)dzdz̄ and ρ(u)dudū. Given a C 1 map u : Σ1 → Σ2, then the
harmonic energy of u is defined as

E (z , ρ, u) :=

∫
Σ1

ρ2(u)(uz ūz̄ + ūzuz̄)
i

2
dzdz̄

where uz := 1
2 (ux − iuy ), uz̄ := 1

2 (ux + iuy ) and dz ∧ dz̄ = −2idx ∧ dy .

Definition (Harmonic Map)

If the C 1 map u : Σ1 → Σ2 minimizes the harmonic energy, then u is
called a harmonic map.
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General Harmonic Map

Theorem (Euerl-Larange Equation for Harmonic Maps)

Suppose u : Σ1 → Σ2 is a C 2 harmonic map between Riemannian
surfaces, then

uzz̄ +
2ρu
ρ

uzuz̄ = 0

Geodesics are special harmonic maps, harmonic maps are generalized
geodesics:

γ̈ +
2ργ
ρ
γ̇2 ≡ 0 uzz̄ +

2ρu
ρ

uzuz̄ ≡ 0
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General Harmonic Map

Proof.

Suppose u is harmonic, ut is a variation in a local coordinates system,

u + tϕ, ϕ ∈ C 0 ∩W 1,2
0 (Σ1,Σ2)

we obtain
d

dt
E (u + tϕ)

∣∣∣
t=0

= 0,
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General Harmonic Map

continued

0 =
d

dt

{∫
ρ2(u + tϕ)((u + tϕ)z(ū + tϕ̄)z̄

+ (ū + tϕ̄)z(u + tϕ)z̄)idzdz̄
}∣∣∣

t=0

=

∫ {
ρ2(u)(uz ϕ̄z̄ + ūz̄ϕz + ūzϕz̄ + uz̄ ϕ̄z)

+ 2ρ(ρuϕ+ ρūϕ̄)(uz ūz̄ + ūzuz̄)
}
idzdz̄ .
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General Harmonic Map

continued

We set ϕ = ψ
ρ2(u)

,

ρ2ϕz = ψz −
2ψ

ρ
(ρuuz + ρūūz)

ρ2ϕz̄ = ψz̄ −
2ψ

ρ
(ρuuz̄ + ρūūz̄)

ρ2ϕ̄z = ψ̄z −
2ψ̄

ρ
(ρuuz + ρūūz)

ρ2ϕ̄z̄ = ψ̄z̄ −
2ψ̄

ρ
(ρuuz̄ + ρūūz̄)
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General Harmonic Map

continued

ūz̄ρ
2ϕz = ψz ūz̄ −

2ψ

ρ
(ρuuz ūz̄ + ρūūz ūz̄)

ūzρ
2ϕz̄ = ψz̄ ūz −

2ψ

ρ
(ρuuz̄ ūz + ρūūz̄ ūz)

uz̄ρ
2ϕ̄z = ψ̄zuz̄ −

2ψ̄

ρ
(ρūūzuz̄ + ρuuzuz̄)

uzρ
2ϕ̄z̄ = ψ̄z̄uz −

2ψ̄

ρ
(ρūūz̄uz + ρuuz̄uz)
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General Harmonic Map

continued

2

ρ
(ρuψ + ρūψ̄)(uz ūz̄ + ūzuz̄)

=
2ψ

ρ
ρu(uz ūz̄ + ūzuz̄) +

2ψ̄

ρ
ρū(ūzuz̄ + uz ūz̄)

Take summation,

ūz̄ρ
2ϕz + uzρ

2ϕ̄z̄ =

(
ψz ūz̄ −

2ψ

ρ
ρūūz ūz̄

)
+

(
ψ̄z̄uz −

2ψ̄

ρ
ρuuz̄uz

)
ūzρ

2ϕz̄ + uz̄ρ
2ϕ̄z =

(
ψz̄ ūz −

2ψ

ρ
ρūūz̄ ūz

)
+

(
ψ̄zuz̄ −

2ψ̄

ρ
ρuuzuz̄

)
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General Harmonic Map

continued

The above equation becomes

0 =2<
∫ (

ψ̄z̄uz −
2ψ̄

ρ
ρuuz̄uz

)
idzdz̄

+2<
∫ (

ψz̄ ūz −
2ψ

ρ
ρūūz̄ ūz

)
idzdz̄

If u ∈ C 2, we can integrate by parts, (uz ψ̄)z̄ = uzz̄ ψ̄ + uz ψ̄z̄ ,

0 =2<
∫ (

uzz̄ +
2ρu
ρ

uz̄uz

)
ψ̄idzdz̄

+2<
∫ (

ūzz̄ +
2ρū
ρ

ūz̄ ūz

)
ψidzdz̄
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General Harmonic Map

continued

Therefore

0 =2<
∫ (

uzz̄ +
2ρu
ρ

uz̄uz

)
ψ̄idzdz̄

�
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Hopf Differential of Harmonic Maps

Theorem (Hopf Diffential of Harmonic Maps)

Let u : (Σ1, λ
2(z)dzdz̄)→ (Σ2, ρ

2(u)dudū) is harmonic, then the Hopf
differential of the map

Φ(u) := ρ2uz ūzdz
2

is holomorphic quadratic differential on Σ1. Furthermore Φ(u) ≡ 0, if and
only if u is holomorphic or anti-holomorprhic.

Proof.

If u is harmonic, then

∂

∂z̄
(ρ2uz ūz) = ρ2uzz̄ ūz + ρ2uz ūzz̄ + 2ρρuuz̄uz ūz + 2ρρūūz̄uz ūz

= (ρ2uzz̄ + 2ρρuuz̄uz)ūz + (ρ2ūzz̄ + 2ρρūūz̄ ūz)uz = 0.

Therefore Φ(u) is holomorphic.
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Hopf Differential of Harmonic Maps

Proof.

If Φ(u) = ρ2uz ūz ≡ 0, then either uz = 0 or ūz = 0. Since the Jacobian
determinant equals to

|uz |2 − |uz̄ |2 > 0,

therefore ūz = 0, namely uz̄ = 0, u is holomorphic or anti-holomorphic.
u is holomorphic, equivalent to L ≡ 0; u is anti-holomorphic, equivalent to
H ≡ 0. We know H and L have isolated zeros, unless they are zero
everywhere. Hence u is entirely holomorphic or anti-holomorphic.
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Spherical Harmonic Map

Lemma

A holomorphic quadratic differential ω is on the unit sphere, then ω is zero.

Proof.

Choose two charts z and w = 1
z . Let ω = ϕ(z)dz2, then

ϕ(z)dz2 = ϕ

(
1

w

)(
dz

dw

)2

dw2 = ϕ

(
1

w

)
1

w4
dw2.

since ω is globally holomorphic, when w → 0,

ϕ

(
1

w

)
1

w4
<∞,

hence z →∞, ϕ(z)→ 0. By Liouville theorem, ϕ ≡ 0.
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Spherical Harmonic Map

Theorem (Spherical Harmonic Maps)

Harmonic maps between genus zero closed metric surfaces must be
conformal.

Proof.

Suppose u : Σ1 → Σ2 is a harmonic map, then Φ(u) must be a
holomorphic quadratic differential. Since Σ1 is of genus zero, therefore
Φ(u) ≡ 0. Hence u is holomorphic.
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Spherical Harmonic Map

Figure: Spherical Harmonic Map
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Uniqueness Spherical Harmonic Map

Definition (Möbius Transformation)

A Möbius transformation ϕ : Ĉ→ Ĉ has the form

z 7→ az + b

cz + d
, a, b, c, d ∈ C, ad − bc = 1.

Given {z0, z1, z2}, there is a unique Möbius transformation, that maps
them to {0, 1,∞},

z 7→ z − z0

z − z2

z1 − z2

z1 − z0
.

Theorem (Uniquess of Spherical Conformal Automorphisms)

Suppose f : S2 → S2 is a biholomorphic automorphism, then f must be a
Möbius transformation.
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Uniqueness of Spherical Harmonic Map

Proof.

By stereo-graphic projection, we map the sphere to the extened complex
plane Ĉ = C ∪ {∞}. First, the poles of f must be finite. Suppose there
are infinite poles of f , because S2 is compact, there must be accumulation
points, then f must be a constant value function.
Let z1, z2, . . . , zn be the finite poles of f , with degrees e1, e2, . . . , en. Let
g = Πi (z − zi )

ei , then fg is a holomorphic function on C, therefore fg is
entire, namely, fg is a polynomial. Therefore

f =

∑n
i=1 aiz

i∑
j bjz

j
,

if n > 1 then f has multiple zeros, contradict to the condition that f is an
automorphism. Therefore n = 1. Similarly m = 1.
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Computational Algorithm for Spherical Harmonic Map

Input: A genus zero closed mesh M;
Output: A spherical harmonic map ϕ : M → S2;

1 Compute Gauss map ϕ : M → S2, ϕ(v)← n(v);

2 Compute the cotangent edge weight, compute Laplacian

∆ϕ(vi ) =
∑
vi∼vj

wij(ϕ(vj)− ϕ(vi )),

3 project the Laplacian to the tangent plane,

Dϕ(vi ) = ∆ϕ(vi )− 〈∆ϕ(vi ), ϕ(vi )〉ϕ(vi )

4 for each vertex, ϕ(vi )← ϕ(vi )− λDϕ(vi );

5 compute the mass center c =
∑

Aiϕ(vi )/
∑

j Aj ; normalize
ϕ(vi ) = ϕ(vi )− c/|ϕ(vi )− c |;

6 Repeat step 2 through 5, until the Laplacian norm is less than ε.
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General theory for Surface Harmonic Maps

David Gu (Stony Brook University) Computational Conformal Geometry July 31, 2020 34 / 66



Existence of Harmonic Map

Theorem (Existence of Harmonic Maps)

Assume Σ is a Riemann surface, (N, ρ(u)dudū) is a metric surface, then
for any smooth mapping ϕ : Σ→ N, there is a harmonic map f : Σ→ N
homotopic to ϕ.

The can be proven using Courant-Leesgue lemma, which controls the
geodesic distance between image points by harmonic energy.
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Regularity of Harmonic Map

Theorem (Regularity of Harmonic Maps)

Let u : Σ1 → Σ2 be a (weak) harmonic map between Riemann surfaces,
Σ2 is with hyperbolic metric, the harmonic energy of u is finite, then u is a
smooth map.

This is based on the regularity theory of ellptic PDEs.
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Diffeomorphic Properties of Harmonic Maps

Theorem (Diffeomorphic Properties of Harmonic Maps)

Let Σ1 and Σ2 are compact Riemann surfaces with the same genus,
K2 ≤ 0. If u : Σ1 → Σ2 is a degree one harmonic map, then u is a
diffeomorphism.
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Uniqueness of Harmonic Map

Theorem (Uniqueness of Harmonic Map)

Suppose Σ1 and Σ2 are compact Riemann surface, Σ2 is with hyperbolic
metric. u0, u1 : Σ1 → Σ2 are homotopic harmonic maps. If one of the
Jacobian matrix is non-degenerated at a point, then u0 ≡ u1.
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Uniqueness of Harmonic Map

Theorem

Suppose Σ1 and Σ2 are Riemann surfaces, the Riemannian metric on Σ2

induces non-positive curvature K. Let u ∈ C 2(Σ1,Σ2), ϕ(z , t) is the
variation of u, ϕ̇ 6= 0. If u is harmonic, or for any point z ∈ Σ1, ϕ(z1, ·) is
geodesic, then

d

dt2
E (u + ϕ(t))

∣∣∣
t=0
≥ 0. (3)

If K < 0, then either

d

dt2
E (u + ϕ(t))

∣∣∣
t=0

> 0. (4)

or
uz ūz̄ − uz̄ ūz ≡ 0, (5)

Namely the rank of u is ≤ 1 everywhere.

David Gu (Stony Brook University) Computational Conformal Geometry July 31, 2020 39 / 66



Uniqueness of Harmonic Map

Consider the variation of the mapping u, u(z) + ϕ(z , t), where

ϕ(z , 0) ≡ 0. Let ϕ̇ = ∂
∂tϕ, ϕ̈ := ∂2

∂t2ϕ. K = −∆ log ρ = − 4
ρ4 (ρρuū − ρuρū)

d2

dt2
E (u + ϕ(t))

∣∣∣
t=0

= 2

∫ {
ρ2

(
ϕ̇z + 2

ρu
ρ
uz ϕ̇

)(
˙̄ϕz̄ + 2

ρū
ρ
ūz̄ ˙̄ϕ

)
+ ρ2

(
˙̄ϕz + 2

ρū
ρ
ūz ˙̄ϕ

)(
ϕ̇z̄ + 2

ρu
ρ
uz̄ ϕ̇

)
− ρ4K

2
(uz ˙̄ϕ− ūz ϕ̇)(ūz̄ ϕ̇− uz̄ ˙̄ϕ)

− (ρ2ϕ̈+ 2ρρuϕ̇
2)

(
ūzz̄ +

2ρū
ρ

ūz ūz̄

)
−(ρ2 ¨̄ϕ+ 2ρρū ˙̄ϕ2)

(
uzz̄ +

2ρu
ρ

uzuz̄

)}
idzdz̄

(6)
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Uniqueness of Harmonic Map

If u is harmonnic, then

uzz̄ +
2ρu
ρ

uzuz̄ = 0,

or if ϕ(z , ·) is geodesic, then

ρ2ϕ̈+ 2ρρuϕ̇
2 = 0.

Then, the last two items vanish. Since K ≤ 0, there first three items are
non-negative.
If K < 0, then d2

dt2E (u + ϕ(t))|t=0 is either positive or zero. If it is 0, then
the integrands must be 0 everywhere, therefore

uz ˙̄ϕ− ūz ϕ̇ ≡ ūz̄ ϕ̇− uz̄ ˙̄ϕ ≡ 0. (7)
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Uniqueness of Harmonic Map

Furthermore

∂

∂z
(ρ2ϕ̇ ˙̄ϕ) = (ρ2ϕ̇z + 2ρρuuz ϕ̇) ˙̄ϕ+ (ρ2 ˙̄ϕ+ 2ρρuūz ˙̄ϕ)ϕ̇ = 0. (8)

Similarly
∂

∂z̄
(ρ2ϕ̇ ˙̄ϕ) = 0. (9)

We obtain
ρ2ϕ̇ ˙̄ϕ ≡ const. (10)

By assumption ϕ̇ 6≡ 0, the constant is non-zero, hence ϕ̇ and ˙̄ϕ are
non-zero everywhere, by (7) we get

|uz ||ϕ̇| = |ūz || ˙̄ϕ|

hence
|uz | = |ūz | = |uz̄ |

we get (5). �
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Uniqueness of Harmonic Map

Theorem (Uniqueness)

Suppose Σ1 and Σ2 are compact Riemann surface, Σ2 is with hyperbolic
metric. u0, u1 : Σ1 → Σ2 are homotopic harmonic maps. If one of the
Jacobian matrix is non-degenerated at a point, then u0 ≡ u1.

Proof.

Given a homotopy connecting u0 and u1, h(z , t) : Σ1 × [0, t]→ Σ2, such
that h(z , 0) = u0(z), h(z , 1) = u1(z). Let ψ(z , t) is a geodesic from u0(z)
to u1(z) and homotopic to h(z , t), with parameter

ρ(ψ(z , t))|ψ̇(z , t)| ≡ const

then ut(z) := ψ(z , t) is also a homotopy connecting u0 and u1.
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Uniqueness of Harmonic Map

p

u0

u1

ψ(z, t)

continue

We define function f (t) := E (ut). By above theorem, ∀t ∈ [0, 1],
f̈ (t) ≥ 0, hence f (t) is convex. Since u0 and u1 are harmonic,
ḟ (0) = ḟ (1) = 0. By the assumption of the Jacobian matrix, either
f̈ (0) > 0 or f̈ (1) > 0, hence we must have ψ̇(t) ≡ 0, namely u0 ≡ u1. �
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Riemann Mapping
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Riemann Mapping
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Riemann Mapping Proof I

Σ

Σ′

Figure: Surface double covering.

David Gu (Stony Brook University) Computational Conformal Geometry July 31, 2020 47 / 66



Surface Double Covering Algorithm

Input: A oriented surface with boundaries M;
Output: The double covering M̄;

1 Make a copy of M, denoted as M ′;

2 Reverse the order of the vertices of each face of M ′;

3 Glue M and M ′ along their corresponding boundary edges to obtain
M̄.
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Surface Double Covering Algorithm

Figure: Spherical harmonic map for a double covering of a facial surface.
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Surface Riemann Mapping Theorem

Theorem (Riemann Mapping)

Suppose (S , g) is a topological disk with a Riemannian metric g, then
there exists a conformal map ϕ : (S , g)→ D2. Furthermore, such kind of
mappings differ by a Möbius transformation with the form

z → e iθ
z − z0

1− z̄0z
, |z0| < 1, θ ∈ [0, 2π). (11)
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Surface Riemann Mapping Theorem

Proof.

First, we double cover (S , g) to obtain S̄ with a Riemannian metric ḡ.
According to the symmetry, ḡ is well defined. Then there is a harmonic
map ϕ : (S̄ , ḡ)→ S2. We use a Möbius transformation to adjust the
mapping, such that the boundary ∂S is mapped to the equator. Due to
the symmetry of S̄ , such kind of Möbius transformation exists. Then by
the stereo-graphic projection, we map one hemi-sphere onto the unit
planar disk. Then the composition of the stereo-graphic projection and ϕ
gives the desired conformal mapping.
All the Mobius transformations maps the unit disk onto itself has the form
of Eqn. 11.
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Riemann Mapping Algorithm I

Input: A topological disk surface M;
Output: A Riemann mapping ϕ : M → D2.

1 Compute a double covering M̄ of M;

2 Compute a harmonic map ϕ : M̄ → S2;

3 Use a stereo-graphics projection to τ : S2Ĉ;

4 Use a Möbius transformation, to maps the hemisphere to the unit
disk.
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Topological Annulus

Conformal mapping for topological annulus.
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Topological Annulus

exact harmonic form closed harmonic 1-form
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Topological Fundamental Domain

Find the shortest path τ connecting γ0 and γ1, slice the mesh along τ to
get a topological disk M̄.
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Integration

2π

Integrating ω +
√
−1∗ω on M̄, normalize the rectangular image ϕ(M̄),

such that ϕ(γ0) is along the imaginary axis, the height is 2π, ϕ(γ1) is
x = −c , c > 0 is a real number.
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Integration

Compute the polar map eϕ, which maps ϕ(M̄) to an annulus.
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Riemann Mapping

Riemann mapping can be obtained by puncturing a small hole on the
surface, then use topological annulus conformal mapping algorithm.
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Riemann Mapping

ω ∗ω ω +
√
−1∗ω

Exact harmonic 1-form and closed, non-exact harmonic 1-form.
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Riemann Mapping

Periodic conformal mapping image ϕ(M).
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Riemann Mapping

Polar map eϕ(p) induces the Riemann mapping.
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Riemann Mapping

The choice of the central puncture, and the rotation determine a Möbius
transformation.
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Riemann Mapping

The conformal automorphism of the unit disk is the Möbius transformation
group.
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Riemann Mapping Proof II

Proof.

We punch a small hole in the center of S , to get an annulus S̄ , with two
boundary components ∂S̄ = γ0 − γ1. By Hodge theory, there exists a
harmonic 1-form ω, such that

∫
γ0
ω = 2π.

The Laplace equation

∆gf ≡ 0, f |∂γ0 = 0, f |∂γ1 = −1,

has unique solution. Then there is a constant λ, such that

λ∗df = ω,

then λdf +
√
−1ω is a holomorphic 1-form. Choose a point p ∈ S̄ , then

mapping

ϕ(q) := exp

(∫ q

p
λdf +

√
−1ω

)
maps S̄ to a planar canonical annulus.
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Riemann Mapping Proof II

Proof.

When the punched hole shrinks to a point, ϕ converges to a global
conformal map, which is the desired Riemann mapping.
The choice of the puncture, and the rotation of the unit disk gives all
possible conformal automorphisms of the unit planar disk, which is the
Möbius transformation.
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Riemann Mapping Algorithm II

Input: A topological surface (M, g);
Output: A Riemann mapping ϕ : M → D2;

1 Punch a small hole on M, to get M̄, ∂M̄ = γ0 − γ1;

2 Solve Laplace equation ∆gf ≡ 0 with Dirichlet boundary condition,
f |γ0 = 0 and f |γ1 = −1;

3 Compute a harmonic 1-form ω, such that
∫
γ0
ω = 2π;

4 Find a constant , such that ∗ω = −λdf ;

5 Find the shortest path τ between γ0 and γ1, slice M̄ along τ to get
an open surface M̂;

6 Choose a base point p ∈ M̂, compute the mapping

ϕ(q) := exp

(∫ q

p
λdf +

√
−1ω

)
,

7 The mapping ϕ is the desired conformal mapping.
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