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Finite Element Method J
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Finite Element Method

Given a smooth surface (S, g), we can construct a sequence of triangle
meshes ¢, : S — (M,,d,), the pull back metric {¢}d,} converge to g.
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Finite Element Method

For each M, construct a harmonic map f, : M, — D?. Then {f,}
converge to the smooth harmonic map f : S — D?.
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Finite Element Method

Lemma (Discrete Harmonic Energy)

Given a piecewise linear function f : M — R, then the harmonic energy of
f is given by

E(=5 2 wlfln) =)

wjj = cot 95 + cot le-i.

—s;
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Finite Element Method

Definition (Barry-centric Coordinates)

Given a Euclidean triangle with vertices v;,v;, vithe bary-centric
coordinates of a planar point p € R? with respect to the triangle are
()\,‘, )\j, )\k), p=A\v+ /\jVj + AkVk, where

_ (vj—=p)x(vk—p)-n
)\'_(vj—v,-)x(vk—v,')‘n

the ratio between the area of the triangle p, v;, v, and the area of
Vi,Vj,Vi. Aj and A are defined similarly.

By direct computation, the sum of the bary-centric coordinates is 1
Ai + A+ A =1

If p is the interior point of the triangle, then all components of the
bary-centric coordinates are positive.
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Finite Element Method

Suppose f : A — R is a linear function,

f(p) = Nif (vi) + Nif (vj) + Akf (vi),

then the gradient of the function is

VH(p) = 5 (F(v) + 57 () + s ().

its harmonic energy is

/ (VF,Vf)dA = C°t9 L(F— £)2 + Cogef(fk — )2+ C°t20k(f,- —£)2 (1)
A

v
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Finite Element Method

We have

s;+sj+sk =n X {(Vk—Vj)—l—(V,'—Vk)+(Vj—V;)} =0
therefore
(si,si) = (si,—sj — sk) = —(si,Sj) — (Si,Sk)-

pick a point p = Ajv; + Ajv; + Agvy, bary-centric coordinates

A= i(w —V,p—Vjn) = im X (Vi = vj), P — V)
hence
)\;:iﬂ)—w,s;),)\j: ! P vk,sj>,/\k_i<p—v,-,s;<>,
2A 2A 2A
where A is the triangle area. [

4
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Finite Element Method

continued

The linear function is

f(p) = Aifi + \jf; + Aifx

1 1
= ﬂ< = V) fisi) + 57 (P = Vi, i) + —7(p — Vi, fis)
1
= (P, 2A(f5: + fisj + fisk)) — 2A(<vj’ fisi) + (v, fis;) + (Vi, fksk))-

Hence we obtain the gradient

1
Vf = ﬂ(f,-s,- + fJ'SJ' aF fksk).
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Finite Element Method

continued

we compute the harmonic energy

/ (Vf,VF)dA
A

4A<fs,+—f§,+—ﬂsk,fs,+-f$,+-ﬂsk)

:ﬁ Zs,, f—|—2Zs,,sj
i

i<j

~1A = (sivsit s +2> (si s)fif;

i i<j

= — o () — £+ (85,506 — R+ (51 (e — D)

v
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Finite Element Method

continued

Since
(sirsj) _ (sj,Sk) (sk,si) ,
oA = cot@k,T— cot 6;, A cot 0);.
Hence the harmonic energy is
t 6; to; td
J (VA= SR 1+ S - 1 + SR - 62
A
O. )

David Gu (Stony Brook University) Computational Conformal Geometry July 25, 2020 11/40



Finite Element Method

Lemma (Discrete Harmonic Energy)

Given a piecewise linear function f : M — R, then the harmonic energy of
f is given by
1

E(f)=5 > wi(f(w)—f(v))*
[Vl'7Vj]EM
wjj = cot 9;} + cot HJ’-,-.

We add the harmonic energies on all faces together, and merge the items
associated with the same edge, then each edge contributes

swii(fi — fi)?. m

v
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Computation under Isothermal Coordinates )
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Isothermal Coordinates

Lemma (Isothermal Coordinates)

Let (S,g) be a metric surface, use isothermal coordinates
g= e2u(x,y)(dx2 + dy2).

Then we obtain

w1 = e'dx wy = e“dy‘

and the orthonormal frame is

eg=e "0x ex=¢e"0,

and the connection

W12 = —Ude P dey
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Gaussian Curvature

By direct computation, ds? = w? + w2,

dwy = de" A dx dwy = de" A dy
= e"(uxdx + uydy) A dx = e"(uxdx + uydy) A dy
= e'uy,dy A dx = e"uydx A dy.
therefore
dwq dwo
wpp=——w +———w
12 w1 N\ wo 1 w1 N\ wo 2
e'u,dy Ndx eu,dx A dy
=" edx+ ———=¢"d
e2Udx A dy Xt e2udx A dy v
w12 = —uydx + uxdy.

Ol

v
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Gaussian Curvature

Lemma (Gaussian curvature)

Under the isothermal coordinates, the Gaussian curvautre is given by

K—_i 8724_872
 e2u \9gx2 ' Oy? .

From
w12 = —Uydx + uxdy
we get
K—_ dwiz  (wxFuy)dxAdy 1 Ay
T wiAwr e2Udx A dy o eu
]

v
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Gaussian Curvature

The unit disk |z| < 1 equipped with the following metric

ddzdz

2 _
= A=)

the Gaussian curvature is —1 everywhere.

Proof.

e2u = m, then u = |Og2 — |0g(1 - X2 _y2)

—2x 2x
u, = — =
X 1-x2—y2 1—-x2-y

5

Ol

v
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Gaussian Curvature

then
e 2(1 — x2 — y?) — 2x(—2x) _ 2+ 2x2 — 2y?
x (1—x2—y2)2 (1—x2—y2)2
similarly
_242y2 —2x2
SO
4 5 1
Uxx + Uy = (1 — x2 — y2)2 = K= —— (b +uy) = -1
D)
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Yamabe Equation

Lemma (Yamabe Equation)

Conformal metric deformation g — e g = g, then

~ 1

Proof.

Use isothermal parameters, g = e*“(dx? + dy?), K = —e ?“Au, similarly
g = e2‘7(dx2 +dy?), K = —e 20NG, {i=u+ )\

~ 1
1 1 1
= ezA( abu— AN
1
= (K- Bg)
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Geodesics J
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Geodesic Equation

Lemma (Geodesic Equation on a Riemann Surface)

Suppose S is a Riemann surface with a metric, p(z)dzdz = e*“(9)dzdz,
then a geodesic vy with local representation z(t) satisfies the equation:

2
fy—l—ﬁﬁgzo.
p

equivalently,

5+ 4uy? = 0.
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Geodesic Equation

Proof.

Assume the velocity vector is 7 = fie; + ez, which is parallel along v, by
parallel transport ODE,
df _
g+ f 2 =0

Suppose the geodesic has local representation v(t) = (x(t), y(t)), then
dy = x0x + y0, = e'xe1 + e'yey, wip/dt = —u,x + uxy, p =€,

(%) ~ (9)(~uk + ) = 0
(09 + (PR (—uyi + ) = 0

Ol

v
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Geodesic Equation

continued

in turn,

pX + px — y(—pyXx + pxy) = pX + (pxX + pyy )X — y(—pyx + pxy) =0
py + py + X(=pyx + pxy) = py + (pxX + pyy)y + X(—pyx + pxy) = 0
namely

px + px (52 = y%) + 2py %y = 0

py — py(x* = 7%) + 2pxy =0
The first row plus /—1 times the second row,

p(% + V=19) + (px — V=1p,)(* + vV=1y)* = 0.
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Geodesic Equation

continued.

Represent 7(t) = z(t), where z = x + /=1y, p, = 3(px — vV—1py), w
obtain the equation for geodesic on complex domain,

. 204,
j+ 42 =
p
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Geodesic Curvature

Given a curve y on a surface (S, g), with isothermal coordinates (x, y),
the angle between O, and 7 is 0, then

do w12
kg(s) = ds + ds

Proof.
Construct an orthonormal frame {€1,€>} by rotating {ej, e} by angle 6,
hence €; is the tangent vector of ~.
e = cos fey + sin fes
{ € = —sinfe; + cosbe;

de; = —sinfdfey + cosfde; + cosfdbey + sin Ode;
= (—sin0d0O — sin bwi2)e + (cos Bwir + cosfdb)e;

+ (cos Bwi3z + sin Hwaz)es
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Geodesic Curvature

continued

w12 = (dé1, &)
= (—sinfdf — sin fwi2)(— sin §) + (cos Bwio + cos Od0) cos O
= df + wio.

Therefore
W12 df wip

€= s ds | ds
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Geodesic Curvature

Lemma (Geodesic Curvature)

Under the isothermal coordinates, the geodesic curvature is given by

kg = e Y(k — Onu)

where k is the curvature on the parameter plane, n is the exterior normal
to the cure on the parameter plane.

Proof.

We have wip = —uydx + ucdy. On the parameter plane, the arc length is
dt, then ds = e“dt. The parameterization preserves angle, therefore

do i —uydx +uxdy dt df —uydx+ ucdy

k. — —~ -

€ ds ds ds " dt + dt )
=e Y“(k—(Vu,n))
=e “(k — Onu)
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Geodesic Curvature

Lemma

Given a metric surface (S, g), under conformal deformation, g = e**g, the
geodesic curvature satisfies

kg = e_)\(kg — Ong))

Proof.

kg = e N (k — Ba(u + N)
— e e U(k — Dqu) — e UOpN)
= e (kg — Ong)

Ol

v
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Geodesics

Definition (geodesic)

Given a metric surface (S, g), a curve v : [0,1] — S is a geodesic if kg is
zero everywhere.

Y Y

Figure: Stable and unstable geodesics.
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Geodesics

Lemma (geodesic)
If v is the shortest curve connecting p and q, then vy is a geodesic.

Proof.
Consider a family of curves, ' : (—¢,¢) — S, such that I'(0, t) = (t), and

al (s, t)
0s

where ¢ : [0,1] = R, ¢(0) = ¢(1) = 0. Fix parameter s, curve
vs :=TI(s,-), {s} for a variation. Define an energy,

L(s) = /01 st(t)‘ dt, OL(s) _ /01 kg (T)dT.

dt 0s
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M(s,0)=p,T(s,1) =g, = p(t)ex(2),
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First Variation of arc length

a u b

Let 7, : [a,b] = M, where v € (—¢,¢) € R be a 1-parameter family of
paths. We define the map I : [a, b] x [0,1] — M by

M(u,v) =y (u).

Define the vector fields u and v along 7, by

_or
u'_8u_

We call u the tangent vector field and v the variation vector field.

or

M«(0y), and wv:= Evin r(0y),
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First Variation of arc length

Lemma (First variation of arc length)

If The length of ~y, is given by

b
) o= / (o (1))l

Yo is parameterized by arc length, that is,

u(vo(u))| =1, then

4| )= [ (Duv)d b
v lv=ot(0) = = | (Duuv)du+ (u,v)|,.

a

v

If we choose u = e, the tangent vector of v, v = e orthogonal to e, and
fix the starting and ending points of paths, then

d b
—L(y) = — kyds.
dv () /a gds
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First variation of arc length

Fixing u € [a, b], we may consider u and v as vector fields along the path
v = vy (u). Then

()] = 5o/l ()
RS S R
- 2|U(’YV(U))’ aV’ (’YV( ))|

1
2|u|v|u|2 = |u|” 1( Wu,u)g = (Dyu, u)g
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First variation of arc length

b b
o= [ SO @)ida = [ (D u)gd

Since Dyu — Dyv = [v,u], and [v,u] = ".([0y,du]) = 0,

d b
EL(%):/a (Duv, u)gdu

_ /ab (%@,v)g _ (v, Duu>g> du

b
= (u’v>g}:—/a (v, Dyu)gdu.
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Geodesics

The second derivative of the length variation L(s) depends on the
Gaussian curvature of the underlying surface. If K < 0, then the second
derivative is positive, the geodesic is stable; if K > 0, then the secondary
derivative is negative, the geodesic is unstable.

David Gu (Stony Brook University) Computational Conformal Geometry July 25, 2020 35 /40



Geodesics

Lemma (Uniqueness of geodesics)

Suppose (S,g) is a closed oriented metric surface, g induces negative
Gaussian curvature everywhere, then each homotopy class has a unique
geodesic.

Proof . |

The existence can be obtained by variational method. The uniqueness is
by Gauss-Bonnet theorem. Assume two geodesics 1 ~ 72, then they
bound a topological annulus ¥, by Gauss-Bonnet,

/KdA+/ e o))
N ox

The first term is negative, the second is along the geodesics, hence 0,
x(X) = 0. Contradiction. O

v

David Gu (Stony Brook University) Computational Conformal Geometry July 25, 2020 36 /40



Algorithm: Homotopy Detection

Input: A high genus closed mesh M, two loops 1 and ~o;
Output: Whether v; ~ ~2;

@ Compute a hyperbolic metric of M, using Ricci flow;
@ Homotopically deform v, to geodesics, k = 1,2;

© if two geodesics coincide, return true; otherwise, return false;

71

X

Figure: Geodesics uniqueness.
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Algorithm: Shortest Word

Input: A high genus closed mesh M, one loop

Compute a hyperbolic metric of M, using Ricci flow;
Homotopically deform « to a geodesic;

Compute a set of canonical fundamental group basis;

Embed a finite portion of the universal covering space onto the
Poincaré disk;

Lift v to the universal covering space 4. If 5 crosses b?[, append a
crosses a, append by .

© ©0600COC

+.

i

71
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Hyperbolic Geodesics

Let ¥ be a compact hyperbolic Riemann surface, K = —1, p,q € ¥, then
there exists a unique geodesic in each homotopy class, the geodesic
depends on p and q continuously.

Proof.
Given a path 7 : [0,1] — X connecting p and g. Let 7 : H? — X be the
universal covering space of ¥. Fix one point p € 7~1(p), then there exists
a unique lifting of 7, 5 : [0,1] — H?, 5(0) = p and 5(1) = §. On the
hyperbolic plane, the geodesic between p and § exists and is unique, ¥
depends on p and § continuously. [

v
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Hyperbolic Geodesic

geodesic on surface Poincaré’s disk model
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