Surface Differential Geometry, Movable Frame Method

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 19, 2020

Compute Geodesics

Figure: Geodesic on polyhedral surfaces.

Geodesic on a surface $\gamma:[0,1]\to(S,\mathbf{g})$:

$$D_{\dot{\gamma}}\dot{\gamma}\equiv 0.$$

Compute Geodesics

Figure: Conjugate point of geodesics.

Geodesic on a surface $\gamma:[0,1]\to(S,\mathbf{g})$:

$$D_{\dot{\gamma}}\dot{\gamma}\equiv 0.$$

Discrete Geodesics

Discrete Geodesics

Suppose γ is a discrete geodesic:

- lacktriangle isometrically flatten the strip of curve γ onto the plane;
- $oldsymbol{2}$ when the γ crosses an edge, it is straight;
- $oldsymbol{\circ}$ γ never crosses any convex vertex;
- when γ crosses a concave vertex, if we flatten the neighborhood from right, then $\theta_1 \geq \pi$; flatten from left, $\theta_2 \geq \pi$.

Discrete Harmonic Map

Smooth surface harmonic map $\varphi:(S,\mathbf{g})\to\mathbb{D}^2$, $\Delta_{\mathbf{g}}\varphi\equiv 0$, with Dirichlet boundary condition $\varphi|_{\partial}S=f$. A discrete harmonic ma satisfies $\sum_{v_i\sim v_i}w_{ij}(\varphi(v_i)-\varphi(v_j))=0$, $\forall v_i\not\in\partial M$.

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_i \sim v_j} w_{ij} (\mathbf{r}(v_i) - \mathbf{r}(v_j)) = 0$, $\forall v_i \notin \partial M$.

Discarete Harmonic One-Form

Harmonic map $\varphi: M \to \mathbb{D}^2$; minimal surface $\varphi: M \to \mathbb{R}^3$.

Parallel Transport

Given $\gamma\subset S$, find an envelope surface Σ_1 of all the tangent planes along $\gamma,\ \varphi:\gamma\to\Sigma_1$ isometrically maps γ to $\Sigma_1.\ \Sigma_1$ is developable, flatten Σ_1 to obtain a planar domain $\Sigma_2,\ \psi:\Sigma_1\to\Sigma_2$. The composition $\psi\circ\varphi$ maps $p,q,v_1\in T_pS,v_2\in T_pS$ to p',q',v_1',v_2' . On the plane, translate a tangent vector v_1' from starting point p to the ending point q to get v_2' , maps back $v_2',\ v_2=(\psi\circ\varphi)^{-1}(v_2')$. Then v_1 is parallelly transported along γ to get v_2 .

Parallel transport v along $\partial \Sigma$, to get v' when returned to the original point p, then the angle difference between v and v' equals to the total Gaussian curvature,

$$\theta = \int_{\Sigma} K dA.$$

Figure: Discrete parallel transport, $K(v) = \theta$.

Parallel transport a vector, when return to the original position, the difference angle equals to the discrete Gaussian curvature of the interior vertices.

Figure: Gaussian curvature.

Gauss map: $\mathbf{r}(p) \mapsto \mathbf{n}(p)$,

$$K(p) := \lim_{\Omega \to \{p\}} \frac{|G(\Omega)|}{|\Omega|}$$

Figure: Discrete Gaussian curvature.

 $G(v_i) := \{ \mathbf{n} \in \mathbb{S}^2 | \exists \text{Support plane with normal } \mathbf{n} \}.$

Figure: Discrete Gaussian curvature for convex vertex.

$$K(v_i) := |G(v_i)| = 2\pi - \sum_{jk} \theta^i_{jk}.$$

Gauss-Bonnet

For a closed oriented metric surface (S, \mathbf{g}) ,

$$\int_{S} K dA = 2\pi \chi(S).$$

For a closed oriented discrete polygonal surface M,

$$\sum_{v_i} K(v_i) = 2\pi \chi(M).$$

Figure: Discrete Gaussian curvature.

$$K(v_i) = \begin{cases} 2\pi - \sum_{jk} \theta_i^{jk} & v_i \notin \partial M \\ \pi - \sum_{jk} \theta_i^{jk} & v_i \in \partial M \end{cases}$$
(1)

Gauss-Bonnet

Theorem (Discrete Gauss-Bonnet Theorem)

Given polyhedral surface (S, V, \mathbf{d}) , the total discrete curvature is

$$\sum_{\mathbf{v} \notin \partial M} K(\mathbf{v}) + \sum_{\mathbf{v} \in \partial M} K(\mathbf{v}) = 2\pi \chi(S),$$

where $\chi(S)$ is the Euler characteristic number of S.

Proof.

We denote the polyhedral surface M = (V, E, F), if M is closed, then

$$\sum_{v_i \in V} K(v_i) = \sum_{v_i \in V} \left(2\pi - \sum_{jk} \theta_i^{jk} \right) = \sum_{v_i \in V} 2\pi - \sum_{v_i \in V} \sum_{jk} \theta_i^{jK} = 2\pi |V| - \pi |F|.$$

Since *M* is closed, 3|F| = 2|E|,

$$\chi(S) = |V| + |F| - |E| = |V| + |F| - \frac{3}{2}|F| = |V| - \frac{1}{2}|F|.$$

David Gu (Stony Brook University) Computational Conformal Geometry

Discrete Guass-Bonnet

continued.

Assume M has bounary ∂M . Assume the interior vertex set is V_0 , boundary vertex set is V_1 , then $|V|=|V_0|+|V_1|$; assume interior edge set is E_0 , boundary edge set is E_1 , then $|E|=|E_0|+|E_1|$. Furthermore, all boundaries are closed loops, hence boundry vertex number equals to the boundary edge number, $|V_1|=|E_1|$. Every interior edge is adjacent to two faces, every boundary edge is adjacent to one face, we have $3|F|=2|E_0|+|E_1|=2|E_0|+|v_1|$. We compute the Euler number

$$\chi(M) = |V| + |F| - |E| = |V_0| + |V_1| + |F| - |E_0| - |E_1| = |V_0| + |F| - |E_0|,$$

by
$$|E_0| = 1/2(3|F| - |V_1|)$$

$$\chi(M) = |V_0| - \frac{1}{2}|F| + \frac{1}{2}|V_1|$$

Discrete Guass-Bonnet

continued.

we have:

$$\sum_{v_{i} \in V_{0}} K(v_{i}) + \sum_{v_{j} \in V_{1}} K(v_{j}) = \sum_{v_{i} \in V_{0}} \left(2\pi - \sum_{jk} \theta_{i}^{jk} \right) + \sum_{v_{i} \in V_{1}} \left(\pi - \sum_{jk} \theta_{i}^{jk} \right)$$

$$= 2\pi |V_{0}| + \pi |V_{1}| - \pi |F|$$

$$= 2\pi \left(|V_{0}| - \frac{1}{2} |F| + \frac{1}{2} |V_{1}| \right)$$

$$= 2\pi \chi(M).$$
(2)

Movable Frame

Figure: A parametric surface.

Orthonormal Movable frame

Movable Frame

Suppose a regular surface S is embedded in \mathbb{R}^3 , a parametric representation is $\mathbf{r}(u, v)$. Select two vector fields $\mathbf{e}_1, \mathbf{e}_2$, such that

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}.$$

Let e_3 be the unit normal field of the surface. Then

$$\{r; e_1, e_2, e_3\}$$

form the orhonormal frame field of the surface.

Orthonormal Movalbe frame

Tangent Vector

The tangent vector is the linear combination of the frame bases,

$$d\mathbf{r} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2$$

where $\omega_k(\mathbf{v}) = \langle \mathbf{e}_k, \mathbf{v} \rangle$. $d\mathbf{r}$ is orthogonal to the normal vector \mathbf{e}_3 .

Motion Equation

$$d\mathbf{e}_i = \omega_{i1}\mathbf{e}_1 + \omega_{i2}\mathbf{e}_2 + \omega_{i3}\mathbf{e}_3,$$

where $\omega_{ij} = \langle d\mathbf{e}_i, \mathbf{e}_i \rangle$. Because

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}, \quad 0 = d \langle \mathbf{e}_i, \mathbf{e}_j \rangle = \langle d\mathbf{e}_i, \mathbf{e}_j \rangle + \langle \mathbf{e}_i, d\mathbf{e}_j \rangle$$

we get

$$\omega_{ij} + \omega_{ji} = 0, \omega_{ii} = 0.$$

Motion Equation

Motion Equation

$$d\mathbf{r} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2,$$
 $\begin{pmatrix} d\mathbf{e}_1 \\ d\mathbf{e}_2 \\ d\mathbf{e}_3 \end{pmatrix} = \begin{pmatrix} 0 & \omega_{12} & \omega_{13} \\ -\omega_{12} & 0 & \omega_{23} \\ -\omega_{13} & -\omega_{23} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}$

Fundamental Forms

The first fundamental form is

$$I = \langle d\mathbf{r}, d\mathbf{r} \rangle = \omega_1 \omega_1 + \omega_2 \omega_2.$$

The second fundamental form is

$$II = -\langle d\mathbf{r}, d\mathbf{e}_3 \rangle = -\omega_1 \omega_{31} - \omega_2 \omega_{32} = \omega_1 \omega_{13} + \omega_2 \omega_{23}.$$

Weingarten Mapping

Definition (Weingarten Mapping)

The Gauss mapping is

$$\mathbf{r} \rightarrow \mathbf{e}_3$$
,

its derivative map is called the Weingarten mapping,

$$d\mathbf{r} \rightarrow d\mathbf{e}_3, \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2 \rightarrow \omega_{31} \mathbf{e}_1 + \omega_{32} \mathbf{e}_2.$$

Definition (Gaussian Curvature)

The area ratio (Jacobian of the Weingarten mapping) is the Gaussian curvature

$$K\omega_1 \wedge \omega_2 = \omega_{31} \wedge \omega_{32}$$
.

Weigarten Mapping

 $\{\omega_1, \omega_2\}$ form the basis of the cotangent space, therefore ω_{13}, ω_{23} can be represented as the linear combination of them,

$$\left(\begin{array}{c}\omega_{13}\\\omega_{23}\end{array}\right) = \left(\begin{array}{cc}h_{11} & h_{12}\\h_{21} & h_{22}\end{array}\right) \left(\begin{array}{c}\omega_{1}\\\omega_{2}\end{array}\right)$$

therefore

$$\omega_{13} \wedge \omega_{23} = \begin{vmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{vmatrix} \omega_1 \wedge \omega_2$$

so $K = h_{11}h_{22} - h_{12}h_{21}$, the mean curvature $H = \frac{1}{2}(h_{11} + h_{22})$.

Gauss's theorem Egregium

Theorem (Gauss' Theorem Egregium)

The Gaussian curvature is intrinsic, solely determined by the first fundamental form.

Proof.

$$0 = d^{2}\mathbf{e}_{1}$$

$$= d(\omega_{12}\mathbf{e}_{2} + \omega_{13}\mathbf{e}_{3})$$

$$= d\omega_{12}\mathbf{e}_{2} - \omega_{12} \wedge d\mathbf{e}_{2} + d\omega_{13}\mathbf{e}_{3} - \omega_{13} \wedge d\mathbf{e}_{3}$$

$$= d\omega_{12}\mathbf{e}_{2} - \omega_{12} \wedge (\omega_{21}\mathbf{e}_{1} + \omega_{23}\mathbf{e}_{3}) +$$

$$d\omega_{13}\mathbf{e}_{3} - \omega_{13} \wedge (\omega_{31}\mathbf{e}_{1} + \omega_{32}\mathbf{e}_{2})$$

$$= (d\omega_{12} - \omega_{13} \wedge \omega_{32})\mathbf{e}_{2} + (d\omega_{13} - \omega_{12} \wedge \omega_{23})\mathbf{e}_{3}$$

therefore

$$d\omega_{12} = -\omega_{13} \wedge \omega_{23} = -K\omega_1 \wedge \omega_2$$
.

Gauss's theorem Egregium

Lemma

$$\omega_{12} = \frac{d\omega_1}{\omega_1 \wedge \omega_2} \omega_1 + \frac{d\omega_2}{\omega_1 \wedge \omega_2} \omega_2$$

Proof.

$$0 = d^{2}\mathbf{r}$$

$$= d(\omega_{1}\mathbf{e}_{1} + \omega_{2}\mathbf{e}_{2})$$

$$= d\omega_{1}\mathbf{e}_{1} - \omega_{1} \wedge d\mathbf{e}_{1} + d\omega_{2}\mathbf{e}_{2} - \omega_{w} \wedge d\mathbf{e}_{2}$$

$$= d\omega_{1}\mathbf{e}_{1} - \omega_{1} \wedge (\omega_{12}\mathbf{e}_{2} + \omega_{13}\mathbf{e}_{3}) + d\omega_{2}\mathbf{e}_{2} - \omega_{2} \wedge (\omega_{21}\mathbf{e}_{1} + \omega_{23}\mathbf{e}_{3})$$

$$= (d\omega_{1} - \omega_{2} \wedge \omega_{21})\mathbf{e}_{1} + (d\omega_{2} - \omega_{1} \wedge \omega_{12})\mathbf{e}_{2} + -(\omega_{1} \wedge \omega_{13} + \omega_{2} \wedge \omega_{23})\mathbf{e}_{3}.$$

Therefore $d\omega_1 = \omega_2 \wedge \omega_{21}$, $d\omega_2 = \omega_1 \wedge \omega_{12}$ and $h_{12} = h_{21}$.

Lemma (Gaussian curvature)

Under the isothermal coordinates, the Gaussian curvautre is given by

$$K = -\frac{1}{e^{2u}} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) u.$$

Proof.

Let (S, \mathbf{g}) be a metric surface, use isothermal coordinates

$$\mathbf{g}=e^{2u(x,y)}(dx^2+dy^2).$$

Then

$$\begin{cases} \omega_1 = e^u dx \\ \omega_2 = e^u dy \end{cases} \begin{cases} \mathbf{e}_1 = e^{-u} \frac{\partial}{\partial x} \\ \mathbf{e}_2 = e^{-u} \frac{\partial}{\partial y} \end{cases}$$

Continued.

By direct computation,

$$d\omega_1 = de^u \wedge dx \qquad d\omega_2 = de^u \wedge dy$$

$$= e^u (u_x dx + u_y dy) \wedge dx \qquad = e^u (u_x dx + u_y dy) \wedge dy$$

$$= e^u u_y dy \wedge dx \qquad = e^u u_x dx \wedge dy.$$

therefore

$$\begin{aligned} \omega_{12} &= \frac{d\omega_{1}}{\omega_{1} \wedge \omega_{2}} \omega_{1} + \frac{d\omega_{2}}{\omega_{1} \wedge \omega_{2}} \omega_{2} \\ &= \frac{e^{u} u_{y} dy \wedge dx}{e^{2u} dx \wedge dy} e^{u} dx + \frac{e^{u} u_{x} dx \wedge dy}{e^{2u} dx \wedge dy} e^{u} dy \\ \omega_{12} &= -u_{y} dx + u_{x} dy. \end{aligned}$$

Continued.

$$K = -\frac{d\omega_{12}}{\omega_1 \wedge_{\omega 2}} = -\frac{(u_{xx} + u_{yy})dx \wedge dy}{e^{2u}dx \wedge dy} = -\frac{1}{e^{2u}}\Delta u.$$

Example

The unit disk |z| < 1 equipped with the following metric

$$ds^2 = \frac{4dzd\bar{z}}{(1-z\bar{z})^2},$$

the Gaussian curvature is -1 everywhere.

Proof.

$$e^{2u} = \frac{4}{1-x^2-y^2}$$
, then $u = \log 2 - \log(1-x^2-y^2)$.

$$u_x = -\frac{-2x}{1 - x^2 - v^2} = \frac{2x}{1 - x^2 - v^2}.$$

Proof.

then

$$u_{xx} = \frac{2(1-x^2-y^2)-2x(-2x)}{(1-x^2-y^2)^2} = \frac{2+2x^2-2y^2}{(1-x^2-y^2)^2}$$

similarly

$$u_{yy} = \frac{2 + 2y^2 - 2x^2}{(1 - x^2 - y^2)^2}$$

SO

$$u_{xx} + u_{yy} = \frac{4}{(1 - x^2 - v^2)} = e^{2u}, K = -\frac{1}{e^{2u}}(u_{xx} + u_{yy}) = -1.$$

Yamabe Equation

Lemma (Yamabe Equation)

Conformal metric deformation $\mathbf{g} \to e^{2\lambda} \mathbf{g} = \mathbf{\tilde{g}}$, then

$$\tilde{\mathcal{K}} = \frac{1}{e^{2\lambda}} (\mathcal{K} - \Delta_{\mathbf{g}} \lambda).$$

Proof.

Use isothermal parameters, $\mathbf{g} = e^{2u}(dx^2 + dy^2)$, $K = -e^{2u}\Delta u$, similarly $\tilde{\mathbf{g}} = e^{2\tilde{u}}(dx^2 + dy^2)$, $\tilde{K} = -e^{2\tilde{u}}\Delta \tilde{u}$, $\tilde{u} = u + \lambda$,

$$\begin{split} \tilde{K} &= -\frac{1}{e^{2(u+\lambda)}} \Delta(u+\lambda) \\ &= \frac{1}{e^{2\lambda}} \left(-\frac{1}{e^{2u}} \Delta u - \frac{1}{e^{2u}} \Delta \lambda \right) \\ &= \frac{1}{e^{2\lambda}} (K - \Delta_{\mathbf{g}} \lambda). \end{split}$$

Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet)

Suppose M is a closed orientable C^2 surface, then

$$\int_{M} K dA = 2\pi \chi(M),$$

where dA is the area element of hte surface, $\chi(M)$ is the Euler characteristic number of M.

Proof.

Construct a smooth vector field v, with isolated zeros $\{p_1, p_2, \dots, p_n\}$. Choose a small disk $D(p_i, \varepsilon)$. On the surface

$$\bar{M} = M \setminus \bigcup_{i=1}^n D(p_i, \varepsilon)$$

Gauss-Bonnet Theorem

Proof.

construct orthonormal frame $\{p, e_1, e_2, e_3\}$, where

$$e_1(p) = \frac{v(p)}{|v(p)|}, \quad e_3(p) = n(p).$$

The integration

$$\int_{ar{M}} \mathsf{K} \mathsf{d} \mathsf{A} = \int_{ar{M}} \mathsf{K} \omega_1 \wedge \omega_2 = - \int_{ar{M}} \mathsf{d} \omega_{12}$$

by Stokes theorem and Poincarère-Hopf theorem, we obtain

$$-\sum_{i=1}^n \int_{\partial D(p_i,\varepsilon)} \omega_{12} = 2\pi \sum_{i=1}^n \operatorname{Index}(p_i,v) = 2\pi \chi(M).$$

Here by $\omega_{12}=\langle de_1,e_2\rangle$, ω_{12} is the rotation speed of e_1 . Let $\varepsilon\to 0$, the equation holds.

Computing Geodesics

Figure: Geodesics.

Covariant Differential

Definition (Covariant Differentiation)

Covariant differentiation is the generalization of directional derivatives, satisfies the following properties: assume v and w are tangent vector fields on a surface, $f: S \to \mathbb{R}$ is a C^1 function, then

$$D(f\mathbf{v}) = df \mathbf{v} + fD\mathbf{v},$$

By movable framework, the motion equation of the surface is

$$d\mathbf{e_1} = \omega_{12}\mathbf{e_2} + \omega_{13}\mathbf{e_3}, \quad d\mathbf{e_2} = \omega_{21}\mathbf{e_1} + \omega_{23}\mathbf{e_3},$$

We only keep tangential component, and delete the normal part to obtain covariant differential

$$D\mathbf{e_1} = \omega_{12}\mathbf{e_1}, \quad D\mathbf{e_2} = \omega_{21}\mathbf{e_1}.$$

Covariant Differential

Definition (Parallel transport)

Suppose S is a metric surface, $\gamma:[0,1]\to S$ is a smooth curve, v(t) is a vector field along γ , if

$$\frac{Dv}{dt}\equiv 0,$$

then we say the vector field v(t) is parallel transportation along γ .

Given a tangent vector field $v = f_1 \mathbf{e_1} + f_2 \mathbf{e_2}$, then

$$Dv = df_1 \mathbf{e}_1 + f_1 D \mathbf{e}_1 + df_2 \mathbf{e}_2 + f_2 D \mathbf{e}_2$$

= $(df_1 - f_2 \omega_{12}) \mathbf{e}_1 + (df_2 + f_1 \omega_{12}) \mathbf{e}_2$.

and

$$\frac{D\mathbf{v}}{dt} = \left(\frac{d\mathbf{f}_1}{dt} - \mathbf{f}_2 \frac{\omega_{12}}{dt}\right) \mathbf{e_1} + \left(\frac{d\mathbf{f}_2}{dt} + \mathbf{f}_1 \frac{\omega_{12}}{dt}\right) \mathbf{e_2}.$$

where $\frac{\omega_{12}}{dt} = \langle \omega_{12}, \dot{\gamma} \rangle$. If $\omega_{12} = \alpha dx + \beta dy$, then $\frac{\omega_{12}}{dt} = \alpha \dot{x} + \beta \dot{y}$.

Parallel Transport

Parallel Transport Equation

Therefore parallel vector field satisfies the ODE

$$\begin{cases} \frac{df_1}{dt} - f_2 \frac{\omega_{12}}{dt} &= 0\\ \frac{df_2}{dt} + f_1 \frac{\omega_{12}}{dt} &= 0 \end{cases}$$

Given an intial condition v(0), the solution uniquely exists.

Suppose the geodesic has local representation
$$\gamma(t)=(x(t),y(t))$$
, then $d\gamma=\dot{x}\partial_x+\dot{y}\partial_y=e^u\dot{x}\mathbf{e_1}+e^u\dot{y}\mathbf{e_2},\ \omega_{12}/dt=-u_y\dot{x}+u_x\dot{y},$
$$e^u(\ddot{x}+\dot{u}-\dot{y}(-u_y\dot{x}+u_x\dot{y}))=0$$

$$e^u(\ddot{y}+\dot{u}+\dot{x}(-u_y\dot{x}+u_x\dot{y}))=0$$

$$\begin{cases} \ddot{x}+\dot{u}+u_y\dot{x}\dot{y}-u_x\dot{y}^2=0\\ \ddot{y}+\dot{u}+u_x\dot{x}\dot{y}-u_x\dot{x}^2=0 \end{cases}$$

Levy-Civita Connection

Definition (Levy-Civita Connection)

The connection D is the Levy-Civita connection with respect to the Riemannian metic \mathbf{g} , it it satisfies:

1 compatible with the metric

$$\mathbf{x}\langle \mathbf{y}, \mathbf{z} \rangle_{\mathbf{g}} = \langle D_{\mathbf{x}}\mathbf{y}, \mathbf{z} \rangle_{\mathbf{g}} + \langle \mathbf{y}, D_{\mathbf{x}}\mathbf{z} \rangle_{\mathbf{g}}$$

free of torsion

$$D_{\mathbf{v}}\mathbf{w} - D_{\mathbf{w}}\mathbf{v} = [\mathbf{v}, \mathbf{w}]$$

Suppose \mathbf{v} and \mathbf{w} are two vector fields parallel along γ , then

$$rac{d}{dt}\langle \mathbf{v}, \mathbf{w}
angle_{\mathbf{g}} = \dot{\gamma} \langle \mathbf{v}, \mathbf{w}
angle_{\mathbf{g}} = \langle D_{\dot{\gamma}} \mathbf{v}, \mathbf{w}
angle + \langle \mathbf{v}, D_{\dot{\gamma}} \mathbf{w}
angle \equiv 0.$$

Namely, parallel transportation preserves inner product.

Definition (Geodesic Curvature)

Assume $\gamma:[0,1]\to S$ is a C^2 curve on a surface S,s is the arc length parameter. Construct orthonormal frame field along the curve $\{\mathbf{e_1},\mathbf{e_2},\mathbf{e_3}\}$, where $\mathbf{e_1}$ is the tangent vector field of γ , $\mathbf{e_3}$ is the normal field of the surface,

$$k_g := \frac{D\mathbf{e_1}}{ds} = k_g \mathbf{e_2}$$

is called geodesic curvature vector,

$$k_g = \langle \frac{D\mathbf{e_1}}{ds}, \mathbf{e_2} \rangle = \frac{\omega_{12}}{ds}$$

is called geodesic curvature.

Geodesic curvature, normal curvature

Given a spacial curve, its curvature vector satisfies

$$\frac{d^2\gamma}{ds^2}=k_g\mathbf{e_2}+k_n\mathbf{e_3},$$

where k_n is the normal curvature of the curve. The curvature of the curve, geodesic curvature and normal curvature satisfy

$$k^2 = k_g^2 + k_n^2.$$

Geodesic curvature k_g only depends on the Riemannian metric of the surface, is independent of the 2nd fundamental form. Therefore k_g is intrinsic, k_n is extrinsic.

Gauss-Bonnet

Theorem

Suppose (S, \mathbf{g}) is an oriented metric surface with boundaries, then

$$\int_{S} K dA + \int_{\partial S} k_{g} ds = 2\pi \chi(S).$$

Proof.

Construct a vector field with isolated zeros $\{p_i\}$, \mathbf{e}_1 is tangent to ∂S , small disks $D(p_i, \varepsilon)$. Define $\bar{S} := S \setminus \bigcup_i D(p_i, \varepsilon)$,

$$\begin{split} \int_{\bar{S}} K dA &= -\int_{\bar{S}} \frac{d\omega_{12}}{\omega_{1} \wedge \omega_{2}} dA = -\int_{\bar{S}} d\omega_{12} = -\int_{\partial \bar{S}} \omega_{12} \\ &= -\int_{\partial S - \bigcup_{i} \partial D(p_{i}, \varepsilon)} \omega_{12} = -\int_{\partial S} \frac{\omega_{12}}{ds} ds + \sum_{i} \int_{\partial D(p_{i}, \varepsilon)} \omega_{12} \\ &= -\int_{\partial S} k_{g} ds + 2\pi \sum_{i} \operatorname{Index}(p_{i}) = -\int_{\partial S} k_{g} ds + 2\pi \chi(S). \end{split}$$

We use isothermal parameter (u, v) of (S, \mathbf{g}) , given a curve $\gamma(s)$ with arc length parameter s. Construct orthonormal frame $\{p; \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, where \mathbf{e}_3 is the normal field of S. The tangent vector of γ is $\mathbf{\bar{e}_1}$, $\mathbf{\bar{e}_2}$ is orthogonal to $\mathbf{\bar{e}_1}$ everywhere. The angle between $\mathbf{\bar{e}_1}$ and $\mathbf{e_1}$ is $\theta(s)$,

$$\begin{cases} \mathbf{\bar{e}_1} &= \cos \theta \mathbf{e_1} + \sin \theta \mathbf{e_2} \\ \mathbf{\bar{e}_2} &= -\sin \theta \mathbf{e_1} + \cos \theta \mathbf{e_2} \end{cases}$$

Direct computation

$$\begin{split} D\mathbf{\bar{e}_1} &= D(\cos\theta\mathbf{e_1} + \sin\theta\mathbf{e_2}) = d\cos\theta\mathbf{e_1} + \cos\theta_1D\mathbf{e_1} + d\sin\theta\mathbf{e_2} + \sin\theta D\mathbf{e_2} \\ &= -\sin\theta d\theta\mathbf{e_1} + \cos\theta\omega_{12}\mathbf{e_2} + \cos\theta d\theta\mathbf{e_2} - \sin\theta\omega_{12}\mathbf{e_1} \\ &= -\sin\theta (d\theta + \omega_{12})\mathbf{e_1} + \cos\theta(\omega_{12} + d\theta)\mathbf{e_2} \end{split}$$

$$k_{\mathbf{g}} = \langle \frac{D\mathbf{\bar{e}_1}}{ds}, \mathbf{\bar{e}_2} \rangle = \frac{d\theta}{ds} + \frac{\omega_{12}}{ds}$$

Under the isothermal coordinates, we have $\omega_{12}=-u_ydx+u_xdy$. Suppose on the parameter domain, the planar curve arc length is dt, then $ds=e^udt$. The parameterization preserves angle, therefore

$$\begin{aligned} k_g &= \frac{d\theta}{ds} + \frac{-u_y dx + u_x dy}{ds} \\ &= \frac{d\theta}{dt} \frac{dt}{ds} + \frac{-u_y dx + u_x dy}{dt} \frac{dt}{ds} \\ &= e^{-u} (k - \langle \nabla u, n \rangle) \\ &= e^{-u} (k - \partial_{\mathbf{n}} u) \end{aligned}$$

where k is the curvature of the planar curve, n is the normal to the planar curve.

Lemma

Given a metric surface (S, \mathbf{g}) , under conformal deformation, $\mathbf{\bar{g}} = e^{2\lambda}\mathbf{g}$, the geodesic curvature satisfies

$$k_{\mathbf{\bar{g}}} = e^{-\lambda} (k_{\mathbf{g}} - \partial_{\mathbf{n},\mathbf{g}} \lambda).$$

Proof.

$$k_{\mathbf{g}} = e^{-(u+\lambda)} (k - \partial_{\mathbf{n}} (u + \lambda))$$

$$= e^{-\lambda} (e^{-u} (k - \partial_{\mathbf{n}} u) - e^{-u} \partial_{\mathbf{n}} \lambda)$$

$$= e^{-\lambda} (k_{\mathbf{g}} - \partial_{\mathbf{n}, \mathbf{g}} \lambda)$$

Geodesics

Definition (geodesic)

Given a metric surface (S, \mathbf{g}) , a curve $\gamma : [0, 1] \to S$ is a geodesic if $k_{\mathbf{g}}$ is zero everywhere.

Figure: Stable and unstable geodesics.

Geodesics

Lemma (geodesic)

If γ is the shortest curve connecting p and q, then γ is a geodesic.

Proof.

Consider a family of curves, $\Gamma: (-\varepsilon, \varepsilon) \to S$, such that $\Gamma(0, t) = \gamma(t)$, and

$$\Gamma(s,0) = p, \Gamma(s,1) = q, \frac{\partial \Gamma(s,t)}{\partial s} = \varphi(t)\mathbf{e}_2(t),$$

where $\varphi:[0,1]\to\mathbb{R}$, $\varphi(0)=\varphi(1)=0$. Fix parameter s, curve $\gamma_s:=\Gamma(s,\cdot)$, $\{\gamma_s\}$ for a variation. Define an energy,

$$L(s) = \int_0^1 \left| \frac{d\gamma_s(t)}{dt} \right| dt, \quad \frac{\partial L(s)}{\partial s} = -\int_0^1 \varphi k_{\mathbf{g}}(\tau) d\tau.$$

First Variation of arc length

Let $\gamma_{v}:[a,b]\to M$, where $v\in(-\varepsilon,\varepsilon)\in\mathbb{R}$ be a 1-parameter family of paths. We define the map $\Gamma:[a,b]\times[0,1]\to M$ by

$$\Gamma(u,v):=\gamma_v(u).$$

Define the vector fields \mathbf{u} and \mathbf{v} along γ_{ν} by

$$\mathbf{u} := \frac{\partial \Gamma}{\partial u} = \Gamma_*(\partial_u), \quad \text{and} \quad \mathbf{v} := \frac{\partial \Gamma}{\partial v} = \Gamma_*(\partial_v),$$

We call \mathbf{u} the tangent vector field and \mathbf{v} the variation vector field.

First Variation of arc length

Lemma (First variation of arc length)

If The length of γ_v is given by

$$L(\gamma_{\nu}):=\int_a^b |\mathbf{u}(\gamma_{\nu}(u))|du.$$

 γ_0 is parameterized by arc length, that is, $|\mathbf{u}(\gamma_0(u))| \equiv 1$, then

$$\frac{d}{dv}\big|_{v=0}L(\gamma_v)=-\int_a^b\langle D_{\mathbf{u}}\mathbf{u},\mathbf{v}\rangle du+\langle \mathbf{u},\mathbf{v}\rangle\big|_a^b.$$

If we choose $\mathbf{u}=\mathbf{e_1}$, the tangent vector of γ , $\mathbf{v}=\mathbf{e_2}$ orthogonal to $\mathbf{e_1}$, and fix the starting and ending points of paths, then

$$\frac{d}{dv}L(\gamma_v) = -\int_a^b k_g ds.$$

First variation of arc length

Proof.

Fixing $u \in [a, b]$, we may consider **u** and **v** as vector fields along the path $v \mapsto \gamma_v(u)$. Then

$$\begin{split} \frac{\partial}{\partial v} |\mathbf{u}(\gamma_{v}(u))| &= \frac{\partial}{\partial v} \sqrt{|\mathbf{u}(\gamma_{v}(u))|^{2}} \\ &= \frac{1}{2|\mathbf{u}(\gamma_{v}(u))|} \frac{\partial}{\partial v} |\mathbf{u}(\gamma_{v}(u))|^{2} \\ &= \frac{1}{2|\mathbf{u}|} \mathbf{v} |\mathbf{u}|^{2} = |\mathbf{u}|^{-1} \langle D_{\mathbf{v}} \mathbf{u}, \mathbf{u} \rangle_{\mathbf{g}} = \langle D_{\mathbf{v}} \mathbf{u}, \mathbf{u} \rangle_{\mathbf{g}} \end{split}$$

First variation of arc length

Proof.

$$\frac{d}{dv}L(\gamma_v) = \int_a^b \frac{\partial}{\partial v} |\mathbf{u}(\gamma_v(u))| du = \int_a^b \langle D_v \mathbf{u}, \mathbf{u} \rangle_{\mathbf{g}} du$$

Since $D_{\mathbf{v}}\mathbf{u} - D_{\mathbf{u}}\mathbf{v} = [\mathbf{v}, \mathbf{u}]$, and $[\mathbf{v}, \mathbf{u}] = \Gamma_*([\partial_v, \partial_u]) = 0$,

$$\frac{d}{dv}L(\gamma_{v}) = \int_{a}^{b} \langle D_{\mathbf{u}}\mathbf{v}, \mathbf{u} \rangle_{\mathbf{g}} du$$

$$= \int_{a}^{b} \left(\frac{d}{du} \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{g}} - \langle \mathbf{v}, D_{\mathbf{u}}\mathbf{u} \rangle_{\mathbf{g}} \right) du$$

$$= \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbf{g}} \Big|_{a}^{b} - \int_{a}^{b} \langle \mathbf{v}, D_{\mathbf{u}}\mathbf{u} \rangle_{\mathbf{g}} du.$$

Geodesics

The second derivative of the length variation L(s) depends on the Gaussian curvature of the underlying surface. If K < 0, then the second derivative is positive, the geodesic is stable; if K > 0, then the secondary derivative is negative, the geodesic is unstable.

Geodesics

Lemma (Uniqueness of geodesics)

Suppose (S, \mathbf{g}) is a closed oriented metric surface, \mathbf{g} induces negative Gaussian curvature everywhere, then each homotopy class has a unique geodesic.

Proof.

The existence can be obtained by variational method. The uniqueness is by Gauss-Bonnet theorem. Assume two geodesics $\gamma_1 \sim \gamma_2$, then they bound a topological annulus Σ , by Gauss-Bonnet,

$$\int_{\Sigma} K dA + \int_{\partial \Sigma} k_{g} ds = \chi(\Sigma),$$

The first term is negative, the second is along the geodesics, hence 0, $\chi(\Sigma) = 0$. Contradiction.

Algorithm: Homotopy Detection

Input: A high genus closed mesh M, two loops γ_1 and γ_2 ; Output: Whether $\gamma_1 \sim \gamma_2$;

- \bullet Compute a hyperbolic metric of M, using Ricci flow;
- **②** Homotopically deform γ_k to geodesics, k = 1, 2;
- if two geodesics coincide, return true; otherwise, return false;

Figure: Geodesics uniqueness.

Algorithm: Shortest Word

Input: A high genus closed mesh \emph{M} , one loop γ

- Compute a hyperbolic metric of M, using Ricci flow;
- **2** Homotopically deform γ to a geodesic;
- Compute a set of canonical fundamental group basis;
- Embed a finite portion of the universal covering space onto the Poincaré disk;
- **5** Lift γ to the universal covering space $\tilde{\gamma}$. If $\tilde{\gamma}$ crosses b_i^{\pm} , append a_i^{\pm} ; crosses a_i^{\pm} , append b_i^{\mp} .

Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies $\Delta_{\mathbf{g}} r \equiv 0$, equivalently $H(p) \equiv 0$. A discrete minimal surface satisfies $\sum_{v_i \sim v_j} w_{ij} (\mathbf{r}(v_i) - \mathbf{r}(v_j)) = 0$, $\forall v_i \notin \partial M$.

Minimal Surface

Lemma

Given a metric surface (S, \mathbf{g}) embedded in \mathbb{R}^3 , then $\Delta_{\mathbf{g}} \mathbf{r} = 2H(p)\mathbf{n}$, where \mathbf{r} , \mathbf{n} are the position and normal vectors.

Proof.

We choose isothermal coordinates (x,y). Then $\mathbf{g}=^{2\lambda}$, $\omega_{12}=-\lambda_y dx+\lambda_x dy$, $\omega_{13}=h_{11}\omega_1+h_{12}\omega_2$, $\omega_{23}=h_{12}\omega_1+h_{22}\omega_2$, $\omega_1=e^{\lambda}dx$, $\omega_2=e^{\lambda}dy$,

$$\begin{split} \frac{\partial}{\partial x} \mathbf{r_x} &= \frac{\partial}{\partial x} e^{\lambda} \mathbf{e_1} = e^{\lambda} \lambda_x \mathbf{e_1} + e^{\lambda} \frac{\partial}{\partial x} \mathbf{e_1} \\ &= e^{\lambda} \lambda_x \mathbf{e_1} + e^{\lambda} \langle d \mathbf{e_1}, \frac{\partial}{\partial x} \rangle = e^{\lambda} \lambda_x \mathbf{e_1} + e^{\lambda} \langle \omega_{12} \mathbf{e_2} + \omega_{13} \mathbf{e_3}, \partial_x \rangle \\ &= e^{\lambda} \lambda_x \mathbf{e_1} + e^{\lambda} (-\lambda_y) \mathbf{e_2} + e^{\lambda} \mathbf{e_3} \langle h_{11} \omega_1, \partial_x \rangle \\ &= e^{\lambda} \lambda_x \mathbf{e_1} - e^{\lambda} \lambda_y \mathbf{e_2} + e^{2\lambda} h_{11} \mathbf{e_3} \end{split}$$

Minimal Surface

Proof.

Similarly,

$$\frac{\partial}{\partial y} \mathbf{r_y} = \frac{\partial}{\partial y} e^{\lambda} \mathbf{e_2} = e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \frac{\partial}{\partial y} \mathbf{e_2}
= e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \langle d\mathbf{e_2}, \frac{\partial}{\partial y} \rangle = e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} \langle \omega_{21} \mathbf{e_1} + \omega_{23} \mathbf{e_3}, \partial_y \rangle
= e^{\lambda} \lambda_y \mathbf{e_2} + e^{\lambda} (-\lambda_y) \mathbf{e_2} + e^{\lambda} \mathbf{e_3} \langle h_{22} \omega_2, \partial_y \rangle
= e^{\lambda} \lambda_y \mathbf{e_2} - e^{\lambda} \lambda_x \mathbf{e_1} + e^{2\lambda} h_{22} \mathbf{e_3}$$

Therefore

$$\Delta_{\mathbf{g}}\mathbf{r} = \frac{1}{e^{2\lambda}}(\mathbf{r}_{xx} + \mathbf{r}_{yy}) = (h_{11} + h_{22})\mathbf{e}_3 = 2H\mathbf{e}_3.$$

Surface Area Variation

Lemma

Given a surface S with position vector $\mathbf{r}(x, y)$, perturb the surface along the normal direction

$$\mathbf{r}_{\varepsilon,\varphi}(x,y) = \mathbf{r}(x,y) + \varepsilon\varphi(x,y)\mathbf{n}(x,y),$$

the area variation is given by

$$\frac{d}{d\varepsilon}\big|_{\varepsilon=0}$$
Area $(\mathbf{r}_{\varepsilon,\varphi})=\int_{\mathcal{S}}2\varphi(x,y)He^{2u(x,y)}dxdy=\int_{\mathcal{S}}2\varphi HdA.$

Surface Area Variation

Proof.

We use isothermal coordinate, the first fundamental form:

$$E = \langle \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x}, \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x} \rangle = e^{2u} + 2\varepsilon \langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \varepsilon^{2} |\mathbf{n}_{x}|^{2}$$

$$G = \langle \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y}, \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y} \rangle = e^{2u} + 2\varepsilon \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle + \varepsilon^{2} |\mathbf{n}_{y}|^{2}$$

$$F = \langle \mathbf{r}_{x} + \varepsilon \mathbf{n}_{x}, \mathbf{r}_{y} + \varepsilon \mathbf{n}_{y} \rangle = \varepsilon \langle \mathbf{r}_{x}, \mathbf{n}_{y} \rangle + \varepsilon \langle \mathbf{r}_{y}, \mathbf{n}_{x} \rangle + \varepsilon^{2} \langle \mathbf{n}_{x}, \mathbf{n}_{y} \rangle$$

$$EG - F^{2} = e^{4u} + 2\varepsilon e^{2u} (\langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle) + O(\varepsilon^{2})$$

$$\frac{d}{d\varepsilon}|_{\varepsilon=0} \sqrt{EG - F^{2}} = \langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle \mathbf{r}_{y}, \mathbf{n}_{y} \rangle = 2He^{2u}$$

where we use the mean curvature formula

$$2H = \operatorname{Tr}\left(-\frac{H}{I}\right) = -e^{-2u}(\langle \mathbf{r}_{xx}, \mathbf{n} \rangle + \langle \mathbf{r}_{yy}, \mathbf{n} \rangle) = e^{-2u}(\langle \mathbf{r}_{x}, \mathbf{n}_{x} \rangle + \langle r_{y}, \mathbf{n}_{x} \rangle)$$
$$\frac{d}{d\varepsilon}Area(\varepsilon) = \frac{d}{d\varepsilon}\big|_{\varepsilon=0} \int_{S} \sqrt{EG - F^{2}} dxdy = \int_{S} 2He^{2u} dxdy.$$

Minimal Surface

Lemma

A surface M, $\mathbf{x}(u, v) = (x_1(u, v), x_2(u, v), x_3(u, v))$, with isothermal coordinates is minimal if and only if x_1, x_2 , and x_3 are all harmonic.

Proof.

If M is minimal, then H=0, $\Delta \mathbf{x}=(2H)e^{2\lambda}\mathbf{n}=0$, therefore x_1,x_2,x_3 are harmonic.

If x_1, x_2, x_3 are harmonic, then $\Delta x = 0$, $(2H)e^{2\lambda}\mathbf{n} = 0$. Now \mathbf{n} is the unit normal vector, so $\mathbf{n} \neq 0$ and $e^{2\lambda} = \langle x_u, x_u \rangle = |x_u|^2 \neq 0$. So H = 0, M is minimal.

Lemma

Let
$$z = u + \sqrt{-1}v$$
, $\frac{\partial x^j}{\partial z} = \frac{1}{2}(x_u^j - \sqrt{-1}x_v^j)$, define

$$\varphi = \frac{\partial \mathbf{x}}{\partial z} = (x_z^1, x_z^2, x_z^3)$$
$$(\varphi)^2 = (x_z^1)^2 + (x_z^2)^2 + (x_z^3)^2$$

if **x** is isothermal, then $(\varphi)^2 = 0$.

Proof.

$$(\varphi^{j})^{2} = (x_{z}^{j})^{2} = \frac{1}{4}((x_{j}^{j})^{2} - (x_{v}^{j})^{2} - 2ix_{u}^{j}x_{v}^{j})$$
, so $(\varphi)^{2} = \frac{1}{4}(|\mathbf{x}_{u}|^{2} - |\mathbf{x}_{v}|^{2} - 2i\mathbf{x}_{u} \cdot \mathbf{x}_{v})$. If \mathbf{x} is isothermal, then $(\varphi)^{2} = 0$.

Theorem

Suppose M is a surface with position **x**. Let $\varphi = \frac{\partial \mathbf{x}}{\partial z}$ and suppose $(\varphi)^2 = 0$. Then M is minimal if and only if φ^j is holomorphic.

Proof.

M is minimal, then x^j is harmonic, therefore $\Delta \mathbf{x} = 0$, therefore

$$\frac{\partial}{\partial \bar{z}} \left(\frac{\partial \mathbf{x}}{\partial z} \right) = \frac{\partial \varphi}{\partial \bar{z}} = 0$$

If φ^j is holomorphic, then $\frac{\partial \varphi}{\partial \bar{z}} = 0$, then $\Delta \mathbf{x} = 0$, x^j is harmonic, hence M is minimal.

Lemma

$$x^{j}(z,\bar{z})=c_{j}+\Re\left(\int \varphi^{j}dz\right).$$

Proof.

$$\varphi^{j}dz + \bar{\varphi}^{j}d\bar{z}^{j} = x^{j}_{u}du + x^{j}_{v}dv = dx^{j}.$$

hence

$$x^{j} = c_{j} + \int dx^{j} = c_{j} + \Re \left(\int \varphi^{j} dz \right).$$

Let f be a holomorphic function and g be a meromorphic function, such that fg^2 is holomorphic,

$$\varphi^{1} = \frac{1}{2}f(1-g^{2}), \varphi^{2} = \frac{i}{2}f(1+g^{2}), \varphi^{3} = fg,$$

then

$$(\varphi)^2 = \frac{1}{4}f^2(1-g^2)^2 - \frac{1}{4}f^2(1+g^2)^2 + f^2g^2 = 0.$$

Theorem (Weierstrass-Ennerper)

If f is holomorphic on a domain Ω , g is meromorphic in Ω , and fg^2 is holomorphic on Ω , then a minimal surface is defined by $\mathbf{x}(z,\bar{z}) = (x^1(z,\bar{z}),x^2(z,\bar{z}),x^3(z,\bar{z}))$, where

$$x^{1}(z,\bar{z}) = \Re\left(\int f(1-g^{2})dz\right)$$
$$x^{2}(z,\bar{z}) = \Re\left(\int \sqrt{-1}f(1+g^{2})dz\right)$$
$$x^{3}(z,\bar{z}) = \Re\left(\int 2fgdz\right)$$