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Compute Geodesics

Figure: Geodesic on polyhedral surfaces.

Geodesic on a surface γ : [0, 1]→ (S , g):

Dγ̇ γ̇ ≡ 0.
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Compute Geodesics

Figure: Conjugate point of geodesics.

Geodesic on a surface γ : [0, 1]→ (S , g):

Dγ̇ γ̇ ≡ 0.

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 3 / 67



Discrete Geodesics
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Discrete Geodesics
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K < 0

Suppose γ is a discrete geodesic:

1 isometrically flatten the strip of curve γ onto the plane;

2 when the γ crosses an edge, it is straight;

3 γ never crosses any convex vertex;

4 when γ crosses a concave vertex, if we flatten the neighborhood from
right, then θ1 ≥ π; flatten from left, θ2 ≥ π.
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Discrete Harmonic Map

Smooth surface harmonic map ϕ : (S , g)→ D2, ∆gϕ ≡ 0, with Dirichlet
boundary condition ϕ|∂S = f . A discrete harmonic ma satisfies∑

vi∼vj wij(ϕ(vi )− ϕ(vj)) = 0, ∀vi 6∈ ∂M.
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Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies ∆gr ≡ 0, equivalently H(p) ≡ 0. A
discrete minimal surface satisfies

∑
vi∼vj wij(r(vi )− r(vj)) = 0, ∀vi 6∈ ∂M.
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Discarete Harmonic One-Form

dω = 0 δω = 0

Harmonic map ϕ : M → D2; minimal surface ϕ : M → R3.
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Parallel Transport
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Given γ ⊂ S , find an envelope surface Σ1 of all the tangent planes along
γ, ϕ : γ → Σ1 isometrically maps γ to Σ1. Σ1 is developable, flatten Σ1

to obtain a planar domain Σ2, ψ : Σ1 → Σ2. The composition ψ ◦ ϕ maps
p, q, v1 ∈ TpS , v2 ∈ TpS to p′, q′, v ′1, v

′
2. On the plane, translate a tangent

vector v ′1 from starting point p to the ending point q to get v ′2, maps back
v ′2, v2 = (ψ ◦ϕ)−1(v ′2). Then v1 is parallelly transported along γ to get v2.
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Gaussian Curvature
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Parallel transport v along ∂Σ, to get v ′ when returned to the original
point p, then the angle difference between v and v ′ equals to the total
Gaussian curvature,

θ =

∫
Σ
KdA.
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Gaussian Curvature
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Figure: Discrete parallel transport, K (v) = θ.

Parallel transport a vector, when return to the original position, the
difference angle equals to the discrete Gaussian curvature of the interior
vertices.
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Gaussian Curvature
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Figure: Gaussian curvature.

Gauss map: r(p) 7→ n(p),

K (p) := lim
Ω→{p}

|G (Ω)|
|Ω|
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Gaussian Curvature

Gvi
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Figure: Discrete Gaussian curvature.

G (vi ) := {n ∈ S2|∃Support plane with normal n}.
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Gaussian Curvature

Gvi
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Figure: Discrete Gaussian curvature for convex vertex.

K (vi ) := |G (vi )| = 2π −
∑
jk

θijk .
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Gauss-Bonnet

For a closed oriented metric surface (S , g),∫
S
KdA = 2πχ(S).

For a closed oriented discrete polygonal surface M,∑
vi

K (vi ) = 2πχ(M).
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Gaussian Curvature
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Figure: Discrete Gaussian curvature.

K (vi ) =

{
2π −∑jk θ

jk
i vi 6∈ ∂M

π −∑jk θ
jk
i vi ∈ ∂M

(1)
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Gauss-Bonnet

Theorem (Discrete Gauss-Bonnet Theorem)

Given polyhedral surface (S ,V ,d), the total discrete curvature is∑
v 6∈∂M

K (v) +
∑
v∈∂M

K (v) = 2πχ(S),

where χ(S) is the Euler characteristic number of S.

Proof.

We denote the polyhedral surface M = (V ,E ,F ), if M is closed, then

∑
vi∈V

K (vi ) =
∑
vi∈V

2π −
∑
jk

θjki

 =
∑
vi∈V

2π−
∑
vi∈V

∑
jk

θjKi = 2π|V |−π|F |.

Since M is closed, 3|F | = 2|E |,
χ(S) = |V |+ |F | − |E | = |V |+ |F | − 3

2 |F | = |V | − 1
2 |F |.
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Discrete Guass-Bonnet

continued.

Assume M has bounary ∂M. Assume the interior vertex set is V0,
boundary vertex set is V1, then |V | = |V0|+ |V1|; assume interior edge set
is E0, boundary edge set is E1, then |E | = |E0|+ |E1|. Furthermore, all
boundaries are closed loops, hence boundry vertex number equals to the
boundary edge number, |V1| = |E1|. Every interior edge is adjacent to two
faces, every boundary edge is adjacent to one face, we have
3|F | = 2|E0|+ |E1| = 2|E0|+ |v1|. We compute the Euler number

χ(M) = |V |+ |F |− |E | = |V0|+ |V1|+ |F |− |E0|− |E1| = |V0|+ |F |− |E0|,

by |E0| = 1/2(3|F | − |V1|)

χ(M) = |V0| −
1

2
|F |+ 1

2
|V1|
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Discrete Guass-Bonnet

continued.

we have:

∑
vi∈V0

K (vi ) +
∑
vj∈V1

K (vj) =
∑
vi∈V0

2π −
∑
jk

θjki

+
∑
vi∈V1

π −∑
jk

θjki


= 2π|V0|+ π|V1| − π|F |

= 2π

(
|V0| −

1

2
|F |+ 1

2
|V1|

)
= 2πχ(M).

(2)

�.
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Movable Frame
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Figure: A parametric surface.
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Orthonormal Movable frame

Movable Frame

Suppose a regular surface S is embedded in R3, a parametric
representation is r(u, v). Select two vector fields e1, e2, such that

〈ei , ej〉 = δij .

Let e3 be the unit normal field of the surface. Then

{r; e1, e2, e3}

form the orhonormal frame field of the surface.
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Orthonormal Movalbe frame

Tangent Vector

The tangent vector is the linear combination of the frame bases,

dr = ω1e1 + ω2e2

where ωk(v) = 〈ek , v〉. dr is orthogonal to the normal vector e3.

Motion Equation

dei = ωi1e1 + ωi2e2 + ωi3e3,

where ωij = 〈dei , ej〉. Because

〈ei , ej〉 = δij , 0 = d〈ei , ej〉 = 〈dei , ej〉+ 〈ei , dej〉

we get
ωij + ωji = 0, ωii = 0.
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Motion Equation

Motion Equation

dr = ω1e1 + ω2e2, de1

de2

de3

 =

 0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

 e1

e2

e3


Fundamental Forms

The first fundamental form is

I = 〈dr, dr〉 = ω1ω1 + ω2ω2.

The second fundamental form is

II = −〈dr, de3〉 = −ω1ω31 − ω2ω32 = ω1ω13 + ω2ω23.
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Weingarten Mapping

Definition (Weingarten Mapping)

The Gauss mapping is
r→ e3,

its derivative map is called the Weingarten mapping,

dr→ de3, ω1e1 + ω2e2 → ω31e1 + ω32e2.

Definition (Gaussian Curvature)

The area ratio (Jacobian of the Weingarten mapping) is the Gaussian
curvature

Kω1 ∧ ω2 = ω31 ∧ ω32.
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Gaussian curvature

Weigarten Mapping

{ω1, ω2} form the basis of the cotangent space, therefore ω13, ω23 can be
represented as the linear combination of them,(

ω13

ω23

)
=

(
h11 h12

h21 h22

)(
ω1

ω2

)
therefore

ω13 ∧ ω23 =

∣∣∣∣ h11 h12

h21 h22

∣∣∣∣ω1 ∧ ω2

so K = h11h22 − h12h21, the mean curvature H = 1
2 (h11 + h22).
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Gauss’s theorem Egregium

Theorem (Gauss’ Theorem Egregium)

The Gaussian curvature is intrinsic, solely determined by the first
fundamental form.

Proof.

0 =d2e1

=d(ω12e2 + ω13e3)

=dω12e2 − ω12 ∧ de2 + dω13e3 − ω13 ∧ de3

=dω12e2 − ω12 ∧ (ω21e1 + ω23e3)+

dω13e3 − ω13 ∧ (ω31e1 + ω32e2)

=(dω12 − ω13 ∧ ω32)e2 + (dω13 − ω12 ∧ ω23)e3

therefore
dω12 = −ω13 ∧ ω23 = −Kω1 ∧ ω2.
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Gauss’s theorem Egregium

Lemma

ω12 =
dω1

ω1 ∧ ω2
ω1 +

dω2

ω1 ∧ ω2
ω2

Proof.

0 = d2r

= d(ω1e1 + ω2e2)

= dω1e1 − ω1 ∧ de1 + dω2e2 − ωw ∧ de2

= dω1e1 − ω1 ∧ (ω12e2 + ω13e3) +

dω2e2 − ω2 ∧ (ω21e1 + ω23e3)

= (dω1 − ω2 ∧ ω21)e1 + (dω2 − ω1 ∧ ω12)e2 +

−(ω1 ∧ ω13 + ω2 ∧ ω23)e3.

Therefore dω1 = ω2 ∧ ω21 ,dω2 = ω1 ∧ ω12 and h12 = h21.
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Gaussian Curvature

Lemma (Gaussian curvature)

Under the isothermal coordinates, the Gaussian curvautre is given by

K = − 1

e2u

(
∂2

∂x2
+

∂2

∂y2

)
u.

Proof.

Let (S , g) be a metric surface, use isothermal coordinates

g = e2u(x ,y)(dx2 + dy2).

Then {
ω1 = eudx
ω2 = eudy

{
e1 = e−u ∂

∂x

e2 = e−u ∂
∂y
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Gaussian Curvature

Continued.

By direct computation,

dω1 = deu ∧ dx

= eu(uxdx + uydy) ∧ dx

= euuydy ∧ dx

dω2 = deu ∧ dy

= eu(uxdx + uydy) ∧ dy

= euuxdx ∧ dy .

therefore

ω12 =
dω1

ω1 ∧ ω2
ω1 +

dω2

ω1 ∧ ω2
ω2

=
euuydy ∧ dx

e2udx ∧ dy
eudx +

euuxdx ∧ dy

e2udx ∧ dy
eudy

ω12 = −uydx + uxdy .
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Gaussian Curvature

Continued.

K = − dω12

ω1 ∧ω 2
= −(uxx + uyy )dx ∧ dy

e2udx ∧ dy
= − 1

e2u
∆u.
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Gaussian Curvature

Example

The unit disk |z | < 1 equipped with the following metric

ds2 =
4dzdz̄

(1− zz̄)2
,

the Gaussian curvature is −1 everywhere.

Proof.

e2u = 4
1−x2−y2 , then u = log 2− log(1− x2 − y2).

ux = − −2x

1− x2 − y2
=

2x

1− x2 − y2
.
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Gaussian Curvature

Proof.

then

uxx =
2(1− x2 − y2)− 2x(−2x)

(1− x2 − y2)2
=

2 + 2x2 − 2y2

(1− x2 − y2)2

similarly

uyy =
2 + 2y2 − 2x2

(1− x2 − y2)2

so

uxx + uyy =
4

(1− x2 − y2)
= e2u,K = − 1

e2u
(uxx + uyy ) = −1.
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Yamabe Equation

Lemma (Yamabe Equation)

Conformal metric deformation g→ e2λg = g̃, then

K̃ =
1

e2λ
(K −∆gλ).

Proof.

Use isothermal parameters, g = e2u(dx2 + dy2), K = −e2u∆u, similarly
g̃ = e2ũ(dx2 + dy2), K̃ = −e2ũ∆ũ, ũ = u + λ,

K̃ = − 1

e2(u+λ)
∆(u + λ)

=
1

e2λ
(− 1

e2u
∆u − 1

e2u
∆λ)

=
1

e2λ
(K −∆gλ).
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Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet)

Suppose M is a closed orientable C 2 surface, then∫
M
KdA = 2πχ(M),

where dA is the area element of hte surface, χ(M) is the Euler
characteristic number of M.

Proof.

Construct a smooth vector field v , with isolated zeros {p1, p2, · · · , pn}.
Choose a small disk D(pi , ε). On the surface

M̄ = M \
n⋃

i=1

D(pi , ε)
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Gauss-Bonnet Theorem

Proof.

construct orthonormal frame {p, e1, e2, e3}, where

e1(p) =
v(p)

|v(p)| , e3(p) = n(p).

The integration ∫
M̄
KdA =

∫
M̄
Kω1 ∧ ω2 = −

∫
M̄
dω12

by Stokes theorem and Poincarère-Hopf theorem, we obtain

−
n∑

i=1

∫
∂D(pi ,ε)

ω12 = 2π
n∑

i=1

Index(pi , v) = 2πχ(M).

Here by ω12 = 〈de1, e2〉, ω12 is the rotation speed of e1. Let ε→ 0, the
equation holds.
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Computing Geodesics

Figure: Geodesics.
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Covariant Differential

Definition (Covariant Differentiation)

Covariant differentiation is the generalization of directional derivatives,
satisfies the following properties: assume v and w are tangent vector fields
on a surface, f : S → R is a C 1 function, then

1 D(v + w) = D(v) + D(w),

2 D(f v) = df v + fDv,

3 D〈v,w〉 = 〈Dv,w〉+ 〈v,Dw〉.

By movable framework, the motion equation of the surface is

de1 = ω12e2 + ω13e3, de2 = ω21e1 + ω23e3,

We only keep tangential component, and delete the normal part to obtain
covariant differential

De1 = ω12e1, De2 = ω21e1.
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Covariant Differential

Definition (Parallel transport)

Suppose S is a metric surface, γ : [0, 1]→ S is a smooth curve, v(t) is a
vector field along γ, if

Dv

dt
≡ 0,

then we say the vector field v(t) is parallel transportation along γ.

Given a tangent vector field v = f1e1 + f2e2, then

Dv = df1e1 + f1De1 + df2e2 + f2De2

= (df1 − f2ω12)e1 + (df2 + f1ω12)e2.

and
Dv

dt
=

(
df1
dt
− f2

ω12

dt

)
e1 +

(
df2
dt

+ f1
ω12

dt

)
e2.

where ω12
dt = 〈ω12, γ̇〉. If ω12 = αdx + βdy , then ω12

dt = αẋ + βẏ .
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Parallel Transport

Parallel Transport Equation

Therefore parallel vector field satisfies the ODE{
df1
dt − f2

ω12
dt = 0

df2
dt + f1

ω12
dt = 0

Given an intial condition v(0), the solution uniquely exists.

Suppose the geodesic has local representation γ(t) = (x(t), y(t)), then
dγ = ẋ∂x + ẏ∂y = eu ẋe1 + eu ẏe2, ω12/dt = −uy ẋ + ux ẏ ,

eu(ẍ + u̇ − ẏ(−uy ẋ + ux ẏ)) = 0

eu(ÿ + u̇ + ẋ(−uy ẋ + ux ẏ)) = 0{
ẍ + u̇ + uy ẋ ẏ − ux ẏ

2 = 0

ÿ + u̇ + ux ẋ ẏ − uy ẋ
2 = 0
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Levy-Civita Connection

Definition (Levy-Civita Connection)

The connection D is the Levy-Civita connection with respect to the
Riemannianmetic g, it it satisfies:

1 compatible with the metric

x〈y, z〉g = 〈Dxy, z〉g + 〈y,Dxz〉g

2 free of torsion
Dvw − Dwv = [v,w]

Suppose v and w are two vector fields parallel along γ, then

d

dt
〈v,w〉g = γ̇〈v,w〉g = 〈Dγ̇v,w〉+ 〈v,Dγ̇w〉 ≡ 0.

Namely, parallel transportation preserves inner product.
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Geodesic Curvature

Definition (Geodesic Curvature)

Assume γ : [0, 1]→ S is a C 2 curve on a surface S , s is the arc length
parameter. Construct orthonormal frame field along the curve {e1, e2, e3},
where e1 is the tangent vector field of γ, e3 is the normal field of the
surface,

kg :=
De1

ds
= kge2

is called geodesic curvature vector,

kg = 〈De1

ds
, e2〉 =

ω12

ds

is called geodesic curvature.
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Geodesic Curvature

Geodesic curvature, normal curvature

Given a spacial curve, its curvature vector satisfies

d2γ

ds2
= kge2 + kne3,

where kn is the normal curvature of the curve. The curvature of the curve,
geodesic curvature and normal curvature satisfy

k2 = k2
g + k2

n .

Geodesic curvature kg only depends on the Riemannian metric of the
surface, is independent of the 2nd fundamental form. Therefore kg is
intrinsic, kn is extrinsic.
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Gauss-Bonnet

Theorem

Suppose (S , g) is an oriented metric surface with boundaries, then∫
S
KdA +

∫
∂S

kgds = 2πχ(S).

Proof.

Construct a vector field with isolated zeros {pi}, e1 is tangent to ∂S ,
small disks D(pi , ε). Define S̄ := S \⋃i D(pi , ε),∫

S̄
KdA = −

∫
S̄

dω12

ω1 ∧ ω2
dA = −

∫
S̄
dω12 = −

∫
∂S̄
ω12

= −
∫
∂S−

⋃
i ∂D(pi ,ε)

ω12 = −
∫
∂S

ω12

ds
ds +

∑
i

∫
∂D(pi ,ε)

ω12

= −
∫
∂S

kgds + 2π
∑
i

Index(pi ) = −
∫
∂S

kgds + 2πχ(S).

�
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Geodesic Curvature

We use isothermal parameter (u, v) of (S , g), given a curve γ(s) with arc
length parameter s. Construct orthonormal frame {p; e1, e2, e3}, where e3

is the normal field of S . The tangent vector of γ is ē1, ē2 is orthogonal to
ē1 everywhere. The angle between ē1 and e1 is θ(s),{

ē1 = cos θe1 + sin θe2

ē2 = − sin θe1 + cos θe2

Direct computation

Dē1 = D(cos θe1 + sin θe2) = d cos θe1 + cos θ1De1 + d sin θe2 + sin θDe2

= − sin θdθe1 + cos θω12e2 + cos θdθe2 − sin θω12e1

= − sin θ(dθ + ω12)e1 + cos θ(ω12 + dθ)e2

kg = 〈Dē1

ds
, ē2〉 =

dθ

ds
+
ω12

ds
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Geodesic Curvature

Under the isothermal coordinates, we have ω12 = −uydx + uxdy . Suppose
on the parameter domain, the planar curve arc length is dt, then
ds = eudt. The parameterization preserves angle, therefore

kg =
dθ

ds
+
−uydx + uxdy

ds

=
dθ

dt

dt

ds
+
−uydx + uxdy

dt

dt

ds
= e−u(k − 〈∇u, n〉)
= e−u(k − ∂nu)

where k is the curvature of the planar curve, n is the normal to the planar
curve.
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Geodesic Curvature

Lemma

Given a metric surface (S , g), under conformal deformation, ḡ = e2λg, the
geodesic curvature satisfies

kḡ = e−λ(kg − ∂n,gλ).

Proof.

kg = e−(u+λ)(k − ∂n(u + λ))

= e−λ(e−u(k − ∂nu)− e−u∂nλ)

= e−λ(kg − ∂n,gλ)
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Geodesics

Definition (geodesic)

Given a metric surface (S , g), a curve γ : [0, 1]→ S is a geodesic if kg is
zero everywhere.

γ γ

Figure: Stable and unstable geodesics.
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Geodesics

Lemma (geodesic)

If γ is the shortest curve connecting p and q, then γ is a geodesic.

Proof.

Consider a family of curves, Γ : (−ε, ε)→ S , such that Γ(0, t) = γ(t), and

Γ(s, 0) = p, Γ(s, 1) = q,
∂Γ(s, t)

∂s
= ϕ(t)e2(t),

where ϕ : [0, 1]→ R, ϕ(0) = ϕ(1) = 0. Fix parameter s, curve
γs := Γ(s, ·), {γs} for a variation. Define an energy,

L(s) =

∫ 1

0

∣∣∣∣dγs(t)

dt

∣∣∣∣ dt, ∂L(s)

∂s
= −

∫ 1

0
ϕkg(τ)dτ.
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First Variation of arc length

a b

−ε

ε

u

v

S

Γ

Let γv : [a, b]→ M, where v ∈ (−ε, ε) ∈ R be a 1-parameter family of
paths. We define the map Γ : [a, b]× [0, 1]→ M by

Γ(u, v) := γv (u).

Define the vector fields u and v along γv by

u :=
∂Γ

∂u
= Γ∗(∂u), and v :=

∂Γ

∂v
= Γ∗(∂v ),

We call u the tangent vector field and v the variation vector field.
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First Variation of arc length

Lemma (First variation of arc length)

If The length of γv is given by

L(γv ) :=

∫ b

a
|u(γv (u))|du.

γ0 is parameterized by arc length, that is, |u(γ0(u))| ≡ 1, then

d

dv

∣∣
v=0

L(γv ) = −
∫ b

a
〈Duu, v〉du + 〈u, v〉

∣∣b
a
.

If we choose u = e1, the tangent vector of γ, v = e2 orthogonal to e1, and
fix the starting and ending points of paths, then

d

dv
L(γv ) = −

∫ b

a
kgds.
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First variation of arc length

Proof.

Fixing u ∈ [a, b], we may consider u and v as vector fields along the path
v 7→ γv (u). Then

∂

∂v
|u(γv (u))| =

∂

∂v

√
|u(γv (u))|2

=
1

2|u(γv (u))|
∂

∂v
|u(γv (u))|2

=
1

2|u|v|u|
2 = |u|−1〈Dvu,u〉g = 〈Dvu,u〉g
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First variation of arc length

Proof.

d

dv
L(γv ) =

∫ b

a

∂

∂v
|u(γv (u))|du =

∫ b

a
〈Dvu,u〉gdu

Since Dvu− Duv = [v,u], and [v,u] = Γ∗([∂v , ∂u]) = 0,

d

dv
L(γv ) =

∫ b

a
〈Duv,u〉gdu

=

∫ b

a

(
d

du
〈u, v〉g − 〈v,Duu〉g

)
du

= 〈u, v〉g
∣∣b
a
−
∫ b

a
〈v,Duu〉gdu.
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Geodesics

The second derivative of the length variation L(s) depends on the
Gaussian curvature of the underlying surface. If K < 0, then the second
derivative is positive, the geodesic is stable; if K > 0, then the secondary
derivative is negative, the geodesic is unstable.
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Geodesics

Lemma (Uniqueness of geodesics)

Suppose (S , g) is a closed oriented metric surface, g induces negative
Gaussian curvature everywhere, then each homotopy class has a unique
geodesic.

Proof.

The existence can be obtained by variational method. The uniqueness is
by Gauss-Bonnet theorem. Assume two geodesics γ1 ∼ γ2, then they
bound a topological annulus Σ, by Gauss-Bonnet,∫

Σ
KdA +

∫
∂Σ

kgds = χ(Σ),

The first term is negative, the second is along the geodesics, hence 0,
χ(Σ) = 0. Contradiction.
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Algorithm: Homotopy Detection

Input: A high genus closed mesh M, two loops γ1 and γ2;
Output: Whether γ1 ∼ γ2;

1 Compute a hyperbolic metric of M, using Ricci flow;

2 Homotopically deform γk to geodesics, k = 1, 2;

3 if two geodesics coincide, return true; otherwise, return false;

Σ

γ1
γ2

Figure: Geodesics uniqueness.
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Algorithm: Shortest Word

Input: A high genus closed mesh M, one loop γ
1 Compute a hyperbolic metric of M, using Ricci flow;
2 Homotopically deform γ to a geodesic;
3 Compute a set of canonical fundamental group basis;
4 Embed a finite portion of the universal covering space onto the

Poincaré disk;
5 Lift γ to the universal covering space γ̃. If γ̃ crosses b±i , append a±i ;

crosses a±i , append b∓i .

Σ

γ1
γ2

Figure: Geodesics uniqueness.David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 56 / 67



Compute Minimal Surface

Figure: Minimal surface.

Smooth minimal surface satisfies ∆gr ≡ 0, equivalently H(p) ≡ 0. A
discrete minimal surface satisfies

∑
vi∼vj wij(r(vi )− r(vj)) = 0, ∀vi 6∈ ∂M.
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Minimal Surface

Lemma

Given a metric surface (S , g) embedded in R3, then ∆gr = 2H(p)n, where
r, n are the position and normal vectors.

Proof.

We choose isothermal coordinates (x , y). Then g =2λ,
ω12 = −λydx + λxdy , ω13 = h11ω1 + h12ω2, ω23 = h12ω1 + h22ω2,
ω1 = eλdx , ω2 = eλdy ,

∂

∂x
rx =

∂

∂x
eλe1 = eλλxe1 + eλ

∂

∂x
e1

= eλλxe1 + eλ〈de1,
∂

∂x
〉 = eλλxe1 + eλ〈ω12e2 + ω13e3, ∂x〉

= eλλxe1 + eλ(−λy )e2 + eλe3〈h11ω1, ∂x〉
= eλλxe1 − eλλye2 + e2λh11e3
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Minimal Surface

Proof.

Similarly,

∂

∂y
ry =

∂

∂y
eλe2 = eλλye2 + eλ

∂

∂y
e2

= eλλye2 + eλ〈de2,
∂

∂y
〉 = eλλye2 + eλ〈ω21e1 + ω23e3, ∂y 〉

= eλλye2 + eλ(−λy )e2 + eλe3〈h22ω2, ∂y 〉
= eλλye2 − eλλxe1 + e2λh22e3

Therefore

∆gr =
1

e2λ
(rxx + ryy ) = (h11 + h22)e3 = 2He3.
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Surface Area Variation

r(x, y) + εn(x, y)

Lemma

Given a surface S with position vector r(x , y), perturb the surface along
the normal direction

rε,ϕ(x , y) = r(x , y) + εϕ(x , y)n(x , y),

the area variation is given by

d

dε

∣∣
ε=0

Area(rε,ϕ) =

∫
S

2ϕ(x , y)He2u(x ,y)dxdy =

∫
S

2ϕHdA.
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Surface Area Variation

Proof.
We use isothermal coordinate, the first fundamental form:

E = 〈rx + εnx , rx + εnx〉 = e2u + 2ε〈rx ,nx〉+ ε2|nx |2

G = 〈ry + εny , ry + εny 〉 = e2u + 2ε〈ry ,ny 〉+ ε2|ny |2

F = 〈rx + εnx , ry + εny 〉 = ε〈rx ,ny 〉+ ε〈ry ,nx〉+ ε2〈nx ,ny 〉

EG − F 2 = e4u + 2εe2u(〈rx ,nx〉+ 〈ry ,ny 〉) + O(ε2)

d

dε

∣∣
ε=0

√
EG − F 2 = 〈rx ,nx〉+ 〈ry ,ny 〉 = 2He2u

where we use the mean curvature formula

2H = Tr

(
− II

I

)
= −e−2u(〈rxx ,n〉+ 〈ryy ,n〉) = e−2u(〈rx ,nx〉+ 〈ry ,nx〉)

d

dε
Area(ε) =

d

dε

∣∣
ε=0

∫
S

√
EG − F 2dxdy =

∫
S

2He2udxdy .
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Minimal Surface

Lemma

A surface M, x(u, v) = (x1(u, v), x2(u, v), x3(u, v)), with isothermal
coordinates is minimal if and only if x1, x2, and x3 are all harmonic.

Proof.

If M is minimal, then H = 0, ∆x = (2H)e2λn = 0, therefore x1, x2, x3 are
harmonic.
If x1, x2, x3 are harmonic, then ∆x = 0, (2H)e2λn = 0. Now n is the unit
normal vector, so n 6= 0 and e2λ = 〈xu, xu〉 = |xu|2 6= 0. So H = 0, M is
minimal.
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Weierstrass-Ennerper Representation

Lemma

Let z = u +
√
−1v, ∂x j

∂z = 1
2 (x ju −

√
−1x jv ), define

ϕ =
∂x

∂z
= (x1

z , x
2
z , x

3
z )

(ϕ)2 = (x1
z )2 + (x2

z )2 + (x3
z )2

if x is isothermal, then (ϕ)2 = 0.

Proof.

(ϕj)2 = (x jz)2 = 1
4 ((x jj )2 − (x jv )2 − 2ix jux

j
v ), so

(ϕ)2 = 1
4 (|xu|2 − |xv |2 − 2ixu · xv ). If x is isothermal, then (ϕ)2 = 0.

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 63 / 67



Weierstrass-Ennerper Representation

Theorem

Suppose M is a surface with position x. Let ϕ = ∂x
∂z and suppose

(ϕ)2 = 0. Then M is minimal if and only if ϕj is holomorphic.

Proof.

M is minimal, then x j is harmonic, therefore ∆x = 0, therefore

∂

∂z̄

(
∂x

∂z

)
=
∂ϕ

∂z̄
= 0

If ϕj is holomorphic, then ∂ϕ
∂z̄ = 0, then ∆x = 0, x j is harmonic, hence M

is minimal.
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Weierstrass-Ennerper Representation

Lemma

x j(z , z̄) = cj + <
(∫

ϕjdz

)
.

Proof.

ϕjdz + ϕ̄jdz̄ j = x judu + x jvdv = dx j .

hence

x j = cj +

∫
dx j = cj + <

(∫
ϕjdz

)
.
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Weierstrass-Ennerper Representation

Let f be a holomorphic function and g be a meromorphic function, such
that fg2 is holomorphic,

ϕ1 =
1

2
f (1− g2), ϕ2 =

i

2
f (1 + g2), ϕ3 = fg ,

then

(ϕ)2 =
1

4
f 2(1− g2)2 − 1

4
f 2(1 + g2)2 + f 2g2 = 0.
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Weierstrass-Ennerper Representation

Theorem (Weierstrass-Ennerper)

If f is holomorphic on a domain Ω, g is meromorphic in Ω, and fg2 is
holomorphic on Ω, then a minimal surface is defined by
x(z , z̄) = (x1(z , z̄), x2(z , z̄), x3(z , z̄)), where

x1(z , z̄) = <
(∫

f (1− g2)dz

)
x2(z , z̄) = <

(∫ √
−1f (1 + g2)dz

)
x3(z , z̄) = <

(∫
2fgdz

)
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