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Compute Geodesics

Figure: Geodesic on polyhedral surfaces.

Geodesic on a surface v : [0,1] — (S, g
D% = 0.
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Compute Geodesics

Figure: Conjugate point of geodesics.

Geodesic on a surface v : [0,1] — (S, g):
D:Y;y =0.
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Discrete Geodesics
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Discrete Geodesics

Suppose 7 is a discrete geodesic:
@ isometrically flatten the strip of curve « onto the plane;
@ when the v crosses an edge, it is straight;
© ~ never crosses any convex vertex;

© when ~ crosses a concave vertex, if we flatten the neighborhood from
right, then 61 > 7, flatten from left, 6, > 7.
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Discrete Harmonic Map

Smooth surface harmonic map ¢ : (S,g) — D?, Agp = 0, with Dirichlet
boundary condition |35 = f. A discrete harmonic ma satisfies

Zv,-wvj WIJ(SO(VI) - QD(VJ)) = 0' VV,' ¢ aM
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Compute Minimal Surface
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Figure: Minimal surface.

Smooth minimal surface satisfies Agr = 0, equivalently H(p) =0. A
discrete minimal surface satisfies >, ., w;i(r(v;) —r(v;)) =0, Vv; ¢ OM.
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Discarete Harmonic One-Form

Harmonic map ¢ : M — D?; minimal surface ¢ : M — R3.
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Parallel Transport

Given v C S, find an envelope surface X1 of all the tangent planes along
v, @ 1 v — X1 isometrically maps v to ¥X1. X1 is developable, flatten ¥
to obtain a planar domain X5, ¥ : X1 — Y¥». The composition ¥ o ¢ maps
p.q,vi € TS, vo € TS to p',q’, vi, v5. On the plane, translate a tangent
vector v; from starting point p to the ending point g to get v5, maps back
vh, va = (1o o) 1(v4). Then vy is parallelly transported along 7 to get v».
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Gaussian Curvature

Parallel transport v along 9%, to get v/ when returned to the original
point p, then the angle difference between v and v’ equals to the total

Gaussian curvature,
0:/ KdA.
¥
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Gaussian Curvature

Figure: Discrete parallel transport, K(v) = 6.
Parallel transport a vector, when return to the original position, the

difference angle equals to the discrete Gaussian curvature of the interior

vertices.
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Gaussian Curvature

Figure: Gaussian curvature.

Gauss map: r(p) — n(p),
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Gaussian Curvature

Figure: Discrete Gaussian curvature.

G(v;) := {n € S?|3Support plane with normal n}.
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Gaussian Curvature

Figure: Discrete Gaussian curvature for convex vertex.

K(vi) = |G(vi)| =2m — Y 0.
Jjk
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For a closed oriented metric surface (S, g),

/ KdA = 2mx(S).
S
For a closed oriented discrete polygonal surface M,

> K(v) = 2mx(M).

Vi

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 15 /67



Gaussian Curvature

Figure: Discrete Gaussian curvature.

N 27T—ij0{k vi € OM
K(V')_{ W—ijO{k v; € OM
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Theorem (Discrete Gauss-Bonnet Theorem)

Given polyhedral surface (S, V,d), the total discrete curvature is

S K+ Y K(v) =2mx(S),

vgoM veoM

where x(S) is the Euler characteristic number of S.

We denote the polyhedral surface M = (V, E, F), if M is closed, then

vieV vieV jk

YK=Y [2r =Y ¢ =D 2> > ¢ =2x|V|-n|F|.
Jjk

v,ieV v,ieV

Since M is closed, 3|F| = 2|E]|,
X(S) = V| +|F| — |E| = V| +|F| - 3|F| = |V| - 3IF]. ]
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Discrete Guass-Bonnet

continued.

Assume M has bounary OM. Assume the interior vertex set is Vg,
boundary vertex set is V4, then |V| = |Vy| + |V1|; assume interior edge set
is Eg, boundary edge set is Ej, then |E| = |Eg| + |E1|. Furthermore, all
boundaries are closed loops, hence boundry vertex number equals to the
boundary edge number, |V;| = |Ez|. Every interior edge is adjacent to two
faces, every boundary edge is adjacent to one face, we have

3|F| = 2|Ep| + |E1| = 2|Eg| + |v1]. We compute the Euler number

X(M) = [V]+|F| = |E| = [Vo| + Vi| +|F| = |Eo| = | Ex| = |Vo| + [F| = | Eol,

by |Eo| = 1/2(3|F| — [Val)

1 1
M) = |Vo| — Z|F| + 2| V.
X(M) = [Vo| = 5IF+ 5V
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Discrete Guass-Bonnet

continued.

we have:
STk + > Ky = 27r—291k + ) W—ZM
vieVy vieVs vieVo vieVy

=27r|Vo|+7r|V1|—7r|F|

1 1
=2r (|Vo| — Z|F| + = |V
(1wl - 3171+ 51
= 2mx(M).
(2)

0.
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Movable Frame

. -
.'I,'1

Figure: A parametric surface.
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Orthonormal Movable frame

Movable Frame

Suppose a regular surface S is embedded in R3, a parametric
representation is r(u, v). Select two vector fields e, ey, such that

(e,-, ej> = 5']
Let e3 be the unit normal field of the surface. Then

{r;e1,ep,e3}

form the orhonormal frame field of the surface.
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Orthonormal Movalbe frame

Tangent Vector

The tangent vector is the linear combination of the frame bases,
dr = wie; + woes

where wy(v) = (ex,v). dr is orthogonal to the normal vector e3.

Motion Equation
de; = wjre1 + wjres + wjzes,

where wjj = (de;, ej). Because
<e,-,ej) =d;;, 0= d(e,-,ej> = (de,-,ej> + (ej, dej)

we get

wjj + wji = 0,wjj = 0.

V.
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Motion Equation

Motion Equation

dr = wie; + weey,

de; 0 w12 w13 e;
dEQ = —Ww12 0 w23 (S}
des w1z —w3 0 e3

Fundamental Forms
The first fundamental form is

I = (dr,dr) = wiwi + wows.

The second fundamental form is

Il = —(dr,des) = —wiw31 — wawzp = WiwWi3 + Wowy3.
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Weingarten Mapping

Definition (Weingarten Mapping)

The Gauss mapping is
r — es,

its derivative map is called the Weingarten mapping,

dr — des,wie; + wrer — wsje; + wszpes.

\

Definition (Gaussian Curvature)

The area ratio (Jacobian of the Weingarten mapping) is the Gaussian
curvature

Kwi A wy = w31 A w3p.
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Gaussian curvature

Weigarten Mapping

{w1,ws} form the basis of the cotangent space, therefore wi3,wz3 can be
represented as the linear combination of them,

<w13>:<h11 h12><w1)
w23 ho1 hyo Wy

hi1 hiz
ho1  hao

therefore

w13 A Wo3z = ‘ w1 N\ wo

so K = hi1hyo — hioho1, the mean curvature H = %(hn = h22).

David Gu (Stony Brook University)
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Gauss's theorem Egregium

Theorem (Gauss' Theorem Egregium)

The Gaussian curvature is intrinsic, solely determined by the first
fundamental form.

Proof.

0 =d%e;
=d(wi2e2 + wizes)
=dwirey — wio A des + dwizez — wiz A des
=dwizer — w1z A (w21er + wazes)+
dwizes — w3 A (w31€1 + w3zer)

=(dwi2 — w1z Awsz)er + (dwiz — wiz A woz)es

therefore
dwip = —wiz3 A woz = —Kwi A wa.
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Gauss's theorem Egregium

Lemma

dwq i dwo

Wiz = w

1 w2
w1 N\ wo w1 N\ wo

0 = d°r

= d(wlel + w262)

= dwie; —wi Adej + dwres —wy A dep
dwie; — wi A (wi2€2 + wizes) +
dwores — wr A (wzlel o w23e3)

= (dwi — w2 Awri)er + (dwy — w1 Awin)er +
—(w1 A w1z + w2 A was)es.

Therefore dwi = wr A wr1 ,dws = w1 A wia and hia = hoy. L]

v
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Gaussian Curvature

Lemma (Gaussian curvature)

Under the isothermal coordinates, the Gaussian curvautre is given by

K__i 8724_872
- e2u \ 9x2 1 9y? .

Let (S, g) be a metric surface, use isothermal coordinates

g = 0N (dx? + dy?).

Then
Wi eldx [ er = e‘“%
wy = e"dy e = e‘“a—y
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Gaussian Curvature

By direct computation,
dwy = de' A dx dwy = de" A dy
= e"(uxdx + uydy) A dx = e"(uxdx + uydy) A dy
= e"u,dy A dx = e"uydx A dy.
therefore
dwy i dwo
Wipp=—"w + ———w
12 w1 N\ wo 1 w1 N\ wo 2
e'u,dy Ndx eu,dx A dy
= ———e'dx+ ————¢"d
e2Udx A dy e2udx A dy 7
w12 = —uydx + uxdy.
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Gaussian Curvature

K=— Au.

wiNoo e2udx A dy T e
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Gaussian Curvature

The unit disk |z| < 1 equipped with the following metric

4dzdz

ds’ = ———
S T -2

the Gaussian curvature is —1 everywhere.

Proof.

el — #_yz, then u = log2 — log(1 — x2 — y?).

—2x _ 2x
1-x2_ )2 1-x2_ 2

Uy =

Ol

v
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Gaussian Curvature

then
e 2(1 — x2 — y?) — 2x(—2x) _ 2+ 2x2 — 2y?
x (1—x2—y2)2 (1—x2—y2)2
similarly
_242y2 —2x2
SO
4 5 1
Uxx 4= Uyy = (1 X2—y2) =et K _@(UXX—FUYY) =-1
D)
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Yamabe Equation

Lemma (Yamabe Equation)

Conformal metric deformation g — e g = g, then

1

Use isothermal parameters, g = e?“(dx? 4 dy?), K = —e?“Au, similarly

g = e2(dx? + dy?), K = —e?iAd, i = u+ )\,

1
1 1 1

1

]
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Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet)

Suppose M is a closed orientable C? surface, then

/ KdA = 2mx(M),
M

where dA is the area element of hte surface, x(M) is the Euler
characteristic number of M.

Construct a smooth vector field v, with isolated zeros {p1, p2, -, Pn}-
Choose a small disk D(pj,e). On the surface

M =M\ D(pi,e)

i=1

Ol
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Gauss-Bonnet Theorem

construct orthonormal frame {p, e, e2, €3}, where

_ v(p) e(p) — n
ei(p) = Vo)’ 3(p) = n(p).

The integration

/_ KdA:/_ Kwi Awy = —/_ dwio
M M M

by Stokes theorem and Poincarére-Hopf theorem, we obtain

n n
— Z/ w12 = 27rz Index(pj, v) = 2mx(M).
i—1 J9D(pi€)

i=1

Here by w1z = (dei, €), w1z is the rotation speed of e;. Let € — 0, the
equation holds. []
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Computing Geodesics

Figure: Geodesics.
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Covariant Differential

Definition (Covariant Differentiation)

Covariant differentiation is the generalization of directional derivatives,

satisfies the following properties: assume v and w are tangent vector fields

on a surface, f : S — R is a C! function, then
@ D(v+w)=D(v)+ D(w),
@ D(fv) = df v+ Dy,
© D(v,w) = (Dv,w) + (v, Dw).

By movable framework, the motion equation of the surface is

de; = wizey +wize3, dex = wriey + wrzes,

We only keep tangential component, and delete the normal part to obtain

covariant differential
De; = wize;, Dez = wore;.

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020
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Covariant Differential

Definition (Parallel transport)

Suppose S is a metric surface, v : [0,1] — S is a smooth curve, v(t) is a

vector field along v, if

Dv
— =0
dt ’

then we say the vector field v(t) is parallel transportation along ~.

Given a tangent vector field v = fie; + ez, then

Dv = dfie1 + fiDe;1 + dhes + HhDey
= (df — hwiz)e1 + (df + fiwiz)es.

Dv df w12 df w12
Dv_(dh _pwi 2 g¥2)
dt <dt 2dt>e1+<dt+1dt>e2

where “2 = (w12,7). If wio = adx + Bdy, then <2 = ax + fy.

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 38/67
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Parallel Transport

Parallel Transport Equation

Therefore parallel vector field satisfies the ODE

dfi _ fwip  _
{8 8% =
dfy w2 _
dt+f1dt =0

Given an intial condition v(0), the solution uniquely exists.

Suppose the geodesic has local representation v(t) = (x(t), y(t)), then
dvy = X0y + yay = exe; + eyey, wlg/dt = —qu + uyy,

e'(x+d—y(—ux+uy))=0

e'(y + 0+ x(—uyx + uy)) =0
X4 0+ uyxy — uy? =0
Y+ 0+ uexy — uyx® =0
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Levy-Civita Connection

Definition (Levy-Civita Connection)

The connection D is the Levy-Civita connection with respect to the
Riemannianmetic g, it it satisfies:

© compatible with the metric

X<Y7 Z)g = <ny7 Z>g + <y7 sz>g

@ free of torsion
Dyw — Dyv = [v,w]

Suppose v and w are two vector fields parallel along v, then

d i
E<V7W>g = 'Y<V7W>g = <D’YV7W> + <V’ D’YW> = 0

Namely, parallel transportation preserves inner product.
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Geodesic Curvature

Definition (Geodesic Curvature)

Assume «y : [0,1] — S is a C? curve on a surface S, s is the arc length
parameter. Construct orthonormal frame field along the curve {e1, ez, es3},
where ej is the tangent vector field of 7, ez is the normal field of the
surface,

is called geodesic curvature.
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Geodesic Curvature

Geodesic curvature, normal curvature

Given a spacial curve, its curvature vector satisfies

2
@ = kgez aF k,,e3,

where k, is the normal curvature of the curve. The curvature of the curve,
geodesic curvature and normal curvature satisfy

K = k2 + k.

Geodesic curvature kg only depends on the Riemannian metric of the
surface, is independent of the 2nd fundamental form. Therefore kg is
intrinsic, k, is extrinsic.
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Gauss-Bonnet

Suppose (S, g) is an oriented metric surface with boundaries, then

/KdA—i—/ kgds = 2mx(S).
S oS

Proof.

Construct a vector field with isolated zeros {p;}, e; is tangent to 05,
small disks D(pj, ). Define S := S\ |U; D(pi, ),

d
/KdA:—/ A2 dA:—/dw12:—/ Wi
5 5 w1 Awr 5 a5
w12
wip=— [ —-ds+ /
/as—u,ao(p,-,s) as ds Z p)
0

= —/ kgds + 27?2 Index(p;i) = —/ kgds + 2mx(S).
S : aS
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Geodesic Curvature

We use isothermal parameter (u, v) of (S,g), given a curve ~(s) with arc
length parameter s. Construct orthonormal frame {p; e1, e, e3}, where e3
is the normal field of S. The tangent vector of «y is @1, € is orthogonal to
€; everywhere. The angle between €; and ey is 6(s),

e = cos fej + sin ey
€ = —sinfle; + cosbe;

Direct computation
De; = D(cosfej + sinfey) = d cosfey + cos1Dey + d'sinfez + sin §De;

—sinfd6fe; + cosBwires + cosfdfes — sin wiseq
= —sinf(d0 + wiz)ey + cos(wiz + db)es

Dé] _ do w12
= & =G %
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Geodesic Curvature

Under the isothermal coordinates, we have wi» = —uy,dx + u,dy. Suppose
on the parameter domain, the planar curve arc length is dt, then
ds = e"dt. The parameterization preserves angle, therefore

ke do . —uydx + uydy

T ds ds
dfdt  —u,dx+ ucdy dt
dt ds dt ds
=e “(k—(Vu,n))
= e Y(k — Onu)

where k is the curvature of the planar curve, n is the normal to the planar
curve.

David Gu (Stony Brook University)
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Geodesic Curvature

Lemma

Given a metric surface (S, g), under conformal deformation, g = e**g, the
geodesic curvature satisfies

kg = € MNkg — Ong)).

Proof.

kg = e () (k — du(u + N))
— e e U(k — Dqu) — e UOpN)
= e (kg — Ong))
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Geodesics

Definition (geodesic)

Given a metric surface (S, g), a curve v : [0,1] — S is a geodesic if kg is
zero everywhere.

Y Y

Figure: Stable and unstable geodesics.
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Geodesics

Lemma (geodesic)
If v is the shortest curve connecting p and q, then vy is a geodesic.

Proof.
Consider a family of curves, ' : (—¢,¢) — S, such that I'(0, t) = (t), and

al (s, t)
0s

where ¢ : [0,1] = R, ¢(0) = ¢(1) = 0. Fix parameter s, curve
vs :=TI(s,-), {s} for a variation. Define an energy,

L(s) = /01 st(t)‘ dt, OL(s) _ /01 kg (T)dT.

M(s,0)=p,T(s,1) =g, = p(t)ex(2),

dt s
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First Variation of arc length

a u b

Let 7, : [a,b] = M, where v € (—¢,¢) € R be a 1-parameter family of
paths. We define the map I : [a, b] x [0,1] — M by

M(u,v) =y (u).

Define the vector fields u and v along 7, by

_or
u'_8u_

We call u the tangent vector field and v the variation vector field.

or

M«(0y), and wv:= Evin r(0y),
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First Variation of arc length

Lemma (First variation of arc length)

If The length of ~y, is given by

b
) o= / (o (1))l

Yo is parameterized by arc length, that is,

u(vo(u))| =1, then

4| )= [ (Duv)d b
v lv=ot(0) = = | (Duuv)du+ (u,v)|,.

a

v

If we choose u = e, the tangent vector of v, v = e orthogonal to e, and
fix the starting and ending points of paths, then

d b
—L(y) = — kyds.
dv () /a gds
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First variation of arc length

Fixing u € [a, b], we may consider u and v as vector fields along the path
v = vy (u). Then

()] = 5o/l ()
RS S R
- 2|U(’YV(U))’ aV’ (’YV( ))|

1
2|u|v|u|2 = |u|” 1( Wu,u)g = (Dyu, u)g
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First variation of arc length

b b
o= [ SO @)ida = [ (D u)gd

Since Dyu — Dyv = [v,u], and [v,u] = ".([0y,du]) = 0,

d b
EL(%):/a (Duv, u)gdu

_ /ab (%@,v)g _ (v, Duu>g> du

b
= (u’v>g}:—/a (v, Dyu)gdu.
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Geodesics

The second derivative of the length variation L(s) depends on the
Gaussian curvature of the underlying surface. If K < 0, then the second
derivative is positive, the geodesic is stable; if K > 0, then the secondary
derivative is negative, the geodesic is unstable.
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Geodesics

Lemma (Uniqueness of geodesics)

Suppose (S,g) is a closed oriented metric surface, g induces negative
Gaussian curvature everywhere, then each homotopy class has a unique
geodesic.

Proof . |

The existence can be obtained by variational method. The uniqueness is
by Gauss-Bonnet theorem. Assume two geodesics 1 ~ 72, then they
bound a topological annulus ¥, by Gauss-Bonnet,

/KdA+/ e o))
N ox

The first term is negative, the second is along the geodesics, hence 0,
x(X) = 0. Contradiction. O

v
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Algorithm: Homotopy Detection

Input: A high genus closed mesh M, two loops 1 and ~o;
Output: Whether v; ~ ~2;

@ Compute a hyperbolic metric of M, using Ricci flow;
@ Homotopically deform v, to geodesics, k = 1,2;

© if two geodesics coincide, return true; otherwise, return false;

71

X

Figure: Geodesics uniqueness.
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Algorithm: Shortest Word

Input: A high genus closed mesh M, one loop

Compute a hyperbolic metric of M, using Ricci flow;

Homotopically deform « to a geodesic;

Compute a set of canonical fundamental group basis;

Embed a finite portion of the universal covering space onto the
Poincaré disk;

Lift v to the universal covering space 4. If 5 crosses b?[, append a?t;
crosses a, append by .

© ©0600COC

71
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Compute Minimal Surface
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Figure: Minimal surface.

Smooth minimal surface satisfies Agr = 0, equivalently H(p) =0. A
discrete minimal surface satisfies >, ., w;i(r(v;) —r(v;)) =0, Vv; ¢ OM.
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Minimal Surface

Given a metric surface (S,g) embedded in R3, then Agr = 2H(p)n, where
r, n are the position and normal vectors.

Proof.
We choose isothermal coordinates (x, y). Then g =2,
w12 = —Aydx + Ady, w1z = h1iwi + hppw, w23z = hipwy + howo,
w1 = eldx, wp = e’\dy,
9 9 A A 20
—ry = —e’'e; = e \ce —e
T gceTe x1+eax1

0
= e*\ce; + e (dey, a) = e*\ceq + eMwies + wizes, D)

=e*\e; + e)‘(—)\y)ez + e)‘e3<h11w1, Ox)

= e)‘)\xel = e>‘)\ye2 + e2/\h11e3
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Minimal Surface

Similarly,
0 0 N \ 0
@ry = 8—ye ey =e'\e+e 8_ye2
0
= e’\)\yez + e’\<de2, 8_y> = e’\)\yez + e>‘<w21e1 + wp3es, 8y>
= e’\)\yez + e’\(—)\y)ez + e*e3(hxpws, dy)
= eA)\yEQ = e’\AXel -+ ez’\h22e3
Therefore
1
Agr =] ej(rxx aF I’yy) — (h11 aF h22)e3 = 2Hejs.
L]

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 59 /67



Surface Area Variation

r(z,y) +en(z, y)

Lemma

Given a surface S with position vector r(x,y), perturb the surface along
the normal direction

reo (X, ¥) = r(x,y) +ep(x, y)n(x, y),

the area variation is given by

d
d—‘E_OArea(re’sp):/2¢(X,y)He2u(X7y)dXdy:/2(,0HdA.
8 S S

David Gu (Stony Brook University) Computational Conformal Geometry July 19, 2020 60 /67

v




Surface Area Variation

We use isothermal coordinate, the first fundamental form:

E = (ry+eng,re+eny) = eV + 2e(ry, ny) + 52|nx|2
G =(r, +en,,r,+en,) = e +2:(r,n,) +%n,|?

F = (re +eny,ry, +en,) = e(r,,n,) +e(r,,ne) +&%(ny,ny)
EG — F? = " + 2ce®((re,ny) + (ry,n,)) + O(?)
d

E‘E:Om = <r><a nx> + <ry7 ny> = 2He2”

where we use the mean curvature formula

I

2H = Tr( ;

) = —e ({1, ) + (ry,m)) = e ((re, m) + {1y, )

de dseo

iArea / V EG — F2dxdy = / 2He?“ dxdy.
S
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Minimal Surface

A surface M, x(u, v) = (x1(u, v), x2(u, v), x3(u, v)), with isothermal
coordinates is minimal if and only if x1, x>, and x3 are all harmonic.

If M is minimal, then H = 0, Ax = (2H)e**n = 0, therefore x1, X2, x3 are
harmonic.

If X1, 2, x3 are harmonic, then Ax = 0, (2H)
normal vector, so n # 0 and e** = {(Xus Xu) = |xu|? # 0. So H=0, M is
minimal. []

e?*n = 0. Now n is the unit
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Weierstrass-Ennerper Representation

Lemma

Let z=u-++—1v, %—’;j = %(x{, — \/—1x{;), define

9z
(¥)? = (2)? + () + ()

if x is isothermal, then ()% = 0.

(#)7 = (x2)* = §((4)* = () = 2ixdxl), 5o
(¢)? = 2(|xu|® — |xv|? = 2ix, - x,). If x is isothermal, then (p)? =0. [
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Weierstrass-Ennerper Representation

Suppose M is a surface with position x. Let ¢ = ax and suppose
(p)?2 = 0. Then M is minimal if and only if ¢/ is holomorph/c.

Proof.

M is minimal, then x/ is harmonic, therefore Ax = 0, therefore

9 (xY _de

0z \0z) 0z
If ¢/ is holomorphic, then % =0, then Ax =0, X/ is harmonic, hence M
is minimal. )
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Weierstrass-Ennerper Representation

Lemma

x(z,2) = q/+-$E(;/n¢sz>
Pdz + FdZ = X{,du + X{;dv = dx/.

%:q+/ﬂ%:q+%</¢w>.

Proof.

hence
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Weierstrass-Ennerper Representation

Let f be a holomorphic function and g be a meromorphic function, such
that fg? is holomorphic,

1 i
Pl = 5f —g%),¢% = >f +g%),¢° = fg,

then 1 1
(¢) =4 (1—g*) = ;7 (1+g%)* +g" =0
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Weierstrass-Ennerper Representation

Theorem (Weierstrass-Ennerper)

If f is holomorphic on a domain Q, g is meromorphic in Q, and fg? is
holomorphic on Q, then a minimal surface is defined by
x(z,2) = (x!(z, 2), x*(z, ), x3(z, 2)), where

K(z,2) = R (/ F(1— g2)dz>

x*(z,2) =R (/ V—1f(1+ gz)dz>

x3(z,2) =R </2fgdz)
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