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Introduction

This chapter introduces the most fundamental geometric structures – Delaunay tri-
angulation as well as its dual Voronoi diagram. We will start with their definitions and
properties. Then we introduce simple and efficient algorithms to construct them in the
plane. We first learn a useful and straightforward algorithm – Lawson’s edge flip algo-
rithm – which transforms any triangulation into the Delaunay triangulation. We will
prove its termination and correctness. From this algorithm, we will show many optimal
properties of Delaunay triangulations. We then introduce a randomized incremental
flip algorithm to construct Delaunay triangulations and prove its expected runtime is
optimal.

1. Definitions and properties

This section introduces the Delaunay triangulation of a finite point set in the plane.
It is introduced by the Russian mathematician Boris Nikolaevich Delone (1890–1980)
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in 1934 [4]. It is a triangulation with many optimal properties. There are many ways
to define Delaunay triangulation, which also shows different properties of it. This sec-
tion will introduce the dual definition via the Voronoi diagram, the empty circumcircle
definition, and the lifting transformation definition via convex hull.

1.1. Voronoi diagrams. Given a finite point set in the plane, the Voronoi diagram of
this point set divides the plane according to the nearest-neighbor rule: Each point of
this point set is associated with a region of the plane.

1.1.1. Definitions. Let S be a finite set of n points in a plane. The Voronoi region of a
point p ∈ S is the set of points in the plane that are as close to p as to any other point
in S, that is

Vp = {x ∈ R2 | ‖x− p‖ ≤ ‖x− q‖,∀q ∈ S},
Consider the simplest case of two points p and q in the plane. The set of points that

are at least as close to p as to q is the half-space:

Hpq = {x ∈ R2 : ‖x− p‖ ≤ ‖x− q‖}.
In general, when S has n ≥ 3 points. The Voronoi region of a point in S is a convex
polygonal region, possibly unbounded, with at most n − 1 edges, see Figure 1 Left for
an example.

Figure 1. A Voronoi region (left) and the Voronoi diagram (right) of a
two-dimensional point set.

Each point in the plane has at least one nearest point in S, so it belongs to at least
one Voronoi region. It follows that the Voronoi regions cover the entire plane. Any two
Voronoi regions must not overlap each other, i.e., they are either disjoint or share at
their common face. The Voronoi regions together with their edges and vertices form
the Voronoi diagram of S [15], see Figure 1 Right. Voronoi diagram is named after the
Russian and Ukrainian mathematician Georgy Feodosevich Voronoy (1868–1908) [15].
It is also known as Dirichlet tessellations (after German mathematician Peter Gustav
Lejeune Dirichlet (1805 – 1859)).

The Voronoi diagram of a set of n two-dimensional points is a planar graph with n
regions and minimum vertex degree 3. Each of the e edges has two vertices, and each of
the v vertices belongs to at least three edges. Hence 2e ≥ 3v. Euler formula n+v−e = 2
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implies e ≤ 3n − 6 and v ≤ 2n − 4. In average, the number of edges of each Voronoi
regions is less than 6.

Voronoi diagram arises in nature in various situations. It is one of the most funda-
mental data structures in computational geometry. For example, a point location data
structure can be built on top of the Voronoi diagram to answer nearest neighbor queries,
where one wants to find the object that is closest to a given query point. Aurenham-
mer [1] gives an excellent survey of Voronoi diagrams.

There are many algorithms for computing the Voronoi diagram of a set of n points
in the plane. A naive algorithm is for each point pi, compute its Voronoi region V (pi)
by interesting the n− 1 half-spaces Hpqpj , pj 6= pi. This algorithm takes at least O(n2)
time. There are efficient algorithms that run in O(n log n) time. The first such algorithm
is based on divide-and-conquer being Shamos and Hoey [14]. However, this algorithm
is a bit complicated (in the merge step) to be implemented. A plane sweep algorithm
developed by Fortune [7] is based on incremental construction. It is efficient and runs in
O(n log n). It is also simple to implement. Later in this section, we will discuss another
incremental algorithm that constructs the Voronoi diagram’s dual structure.

1.1.2. The dual diagram. We get a dual diagram if we draw a straight line connecting
p and q in S if their Voronoi regions share a common edge, see Figure 2. If no four or
more points share a common circle, this dual diagram is a two-dimensional simplicial
complex that decomposes the convex hull of S. It is called the Delaunay triangulation
of S, see Figure 2 Right.

Figure 2. Three dual edges of the Voronoi edges (Left) and the dual
diagram (Right). If no four or more points of the point set share a
common circle, then this dual diagram is the Delaunay triangulation of
this point set.

1.1.3. Degeneracies and general position. There is an ambiguity in the definition of De-
launay triangulation if four or more Voronoi regions meet at a common point. This case
implies that there are four or more points of S lie on a common circle. Probabilistically,
the chance of picking arbitrary four points on the circle is zero because the circle defined
by the first three points has zero measure in R2. A common way to say the same thing
is that four points lie on a common circle form a special case, or they are degenerate, see
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Figure 3 Left. An arbitrary small perturbation suffices to remove the degeneracy and
reduce the special to the general case, see Figure 3 Right.

Figure 3. To the left, four dotted Voronoi edges meet at a common
vertex, and the dual Delaunay edges bound a quadrilateral. To the right,
in the general case, only three Voronoi edges meet at a vertex, and the
Delaunay edges bound a triangle (Figure from [6]).

Since the Voronoi diagram of S is unique, if S is in general position, the Delaunay
triangulation of S is also unique.

1.2. The empty circumcircle property. We now introduce another definition of De-
launay triangulation through the empty circumcircle property.

1.2.1. Delaunay simplices. Let S be a finite set of n vertices in the plane. Let σ be a
simplex whose vertices are from S. The circumcircle, or circumscribing circle of σ is the
circle that passes through all vertices of σ. A triangle has a unique circumcircle in the
plane, while an edge can have infinitely many circumcircles, see Figure 4 Left. We say
that a simplex σ has an empty circumcircle in S if it has a circumcircle that encloses
no vertex of S, see Figure 4 Right. A simplex is Delaunay if it has an empty circumcircle.

a Delaunay triangle

a Delaunay edge

circumcircle

circumcircle

circumcircle

circumcircle

circumcircles

Figure 4. Empty circumcircles and Delaunay simplices.
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1.2.2. Growing empty circles. Given a finite point set S, how can we find all Delaunay
simplics of a point set in the plane?

A simple way is to test every three points, whether they have an empty circumcircle
or not. With n points, there are

(
n
3

)
triangles. For every triangle in this set, it needs

to test n − 3 points to determine whether it is a Delaunay triangle. Therefore, it will
take O(n4) time to find all Delaunay triangles. Moreover, it is unclear whether the set
of Delaunay triangles belongs to a triangulation of this point set.

We describe an approach that was used by Delaunay himself. It is a process of
“growing empty balls” within a set of points. It starts with an empty ball at any point
p ∈ S, see Figure 5 (1). Let this circle grow as long as it does not touch any other points
of S. This process stops once it touches a point q ∈ S, we get a Delaunay edge pq of S,
see Figure 5 (3). Now we grow an empty circumcircle of pq by choosing one of the two
possible directions along the bisector line of pq, see Figure 5 (4). The growing of this
circumcircle (of edge pq) will stop either:

(i) it touches a third point r ∈ S, or
(ii) it never touches any point of S.

In case (i), we find a Delaunay triangle pqr. While in case (ii), the edge pq must be a
convex hull edge of S, and we switch the search direction to the opposite. This process
will continue as long as there are vertices of S which do not belong to any Delaunay
triangle.

(1) (2) (3)

(4) (5) (6)

Figure 5. Growing empty circles to get Delaunay simplices.

This process will terminate, and we get a set of Delaunay triangles of S. Moreover,
we know the following facts:
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(1) at every Delaunay edge, there is either only one Delaunay triangle (it must be a
convex hull edge) or there are two Delaunay triangles, and

(2) this set of Delaunay triangles must cover the convex hull of S.

If S is in general position, i.e., no four points of S lie on a common circle, then every
triangle we found in the above process is unique. Therefore, we can claim that the
set of Delaunay triangles and their edges and vertices form a S triangulation. It is
called the Delaunay triangulation of S [4]. Figure 6 shows an example of the Delaunay
triangulation of a set of points in the plane.

Delaunay triangulation is unique when S is in a general position. If S contains 4
or more points that lie on a common circle, all simplices formed by these vertices are
Delaunay, and they overlap each other. Therefore, the set of all Delaunay simplices of
S is not a simplical complex. In this case, one could still obtain a Delaunay subdivision
by deleting all Delaunay simplifies overlapping each other.

Figure 6. The empty circumcircle property of the Delaunay triangulation.

The above process indeed gives an algorithm to compute the Delaunay triangulation.

• Starting from any arbitrary point p ∈ S. It takes O(n) time to search the nearest
point to find the first Delaunay edge pq.
• From each Delaunay edge pq, with a search direction (a normal of pq), it searches

a point which forms a Delaunay triangle with this edge. There are total n − 2
points to be checked. If a point lies in the other halfspace opposite the search
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direction, one can ignore it. If all points are ignored, we find it is a convex hull
edge. Hence to find a convex hull edge takes O(n) time. Otherwise, there are
n − 2 possible triangles to be checked. For each candidate triangle, we need to
test at most n−3 points to check whether its circumcircle is empty or not. Hence,
finding a Delaunay triangle from a given Delaunay edge takes O(n2) time.

There are at most 3n−6 edges (by Euler’s formula) in a n vertices triangulation. Hence
in the worst case, this algorithm runs in O(n3) time.

Delaunay triangulation tends to connect points by their nearest neighbors. One of the
properties of Delaunay triangulation is its relation to the Euclidean minimum spanning
tree. Given a set of n points in the plane, consider a weighted graph whose edges are
all
(
n
2

)
(undirected) pairs of distinct points, and edge (pi, pj) has weight equal to the

Euclidean distance from pi to pj . A minimum spanning tree is a set of n− 1 edges that
connect the n points (into a tree) such that the total weight of edges is minimized.

Theorem 1.1. The Euclidean minimum spanning tree of a set of points S is a subgraph
of the Delaunay triangulation of S.

The proof of this theorem is leaved as an exercise.

1.2.3. The in circle predicate. Given three non-collinear points a = (ax, ay),b =
(bx, by), c = (cx, cy) in the plane, the geometric predicate to test whether a point
d = (dx, dy) lies inside, on, or outside the circumcircle of the triangle abc is:

in circle(a,b, c,d) = sign(det(A)),

where

A =




ax ay a2
x + a2

y 1
bx by b2x + b2y 1
cx cy c2

x + c2
y 1

dx dy d2
x + d2

y 1




Note there are exactly two orientations of three non-collinear points in the plane: coun-
terclockwise or clockwise. Assume that the three points a,b, c are in counterclockwise
order in the plane. By our choice of the matrix A, then we have

in circle(a,b, c,d) > 0 −→ d lies inside ,
in circle(a,b, c,d) = 0 −→ d is co-circular,
in circle(a,b, c,d) < 0 −→ d lies outside

of the circle passing through a,b, c, see Figure 7.
Remark. If a,b, c are in clockwise order in above, then the result sign must be

reversed. On the other hand, if we swap two columns in matrix A, all the signs above
must be reversed.

1.3. The lifting transformation. There is a fascinating relation between Delaunay
triangulation in Rd and convex hull in Rd+1. These two structures appear from quite
different concepts. In this section, we will establish their relation through a lifting and
projecting process.
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The algorithm is remarkably similar in spirit to the randomized algorithm for trapezoidal map algorithm in
that not only builds the triangulation but also provides a point-location data structure as well. We will not
discuss the point-location data structure in detail, but the details are easy to fill in. The input consists of a set
P = {p1, . . . , pn} of points in the plane. As with any randomized incremental algorithm, the idea is to insert
sites in random order, one at a time, and update the triangulation with each new addition. The issues involved
with the analysis will be showing that after each insertion the expected number of structural changes in the
diagram is O(1).

As with incremental algorithm for trapezoidal maps, we need some way of keeping track of where newly inserted
sites are to be placed in the diagram. Rather than building a separate point-location data structure, we will adopt
a slightly simpler solution. We will store each of the uninserted sites in a bucket according to the triangle in the
current triangulation that contains it. We will show that the expected number of times that a site is rebucketed is
O(log n).

Incircle Test: The basic issue in the design of the algorithm is how to update the triangulation when a new site is
added. In order to do this, we first investigate the basic properties of a Delaunay triangulation. Recall that a
triangle 4abc is in the Delaunay triangulation, if and only if the circumcircle of this triangle contains no other
site in its interior. (Recall that we make the general position assumption that no four sites are cocircular.) How
do we test whether a site d lies within the interior of the circumcircle of 4abc? It turns out that this can be
reduced to a determinant computation.

First off, we can test whether d lies within 4abc using three orientation tests. If so, we are done. Otherwise,
we may assume (by relabeling) that the sequence habcdi defines a counterclockwise convex polygon. Under
this assumption, we claim that d lies in the circumcircle determined by the 4abc if and only if the following
determinant is positive (see Fig. 63). This is called the incircle test. We will assume that this primitive is
available to us.

inCircle(a, b, c, d) = det

0
BB@

ax ay a2
x + a2

y 1
bx by b2

x + b2
y 1

cx cy c2
x + c2

y 1
dx dy d2

x + d2
y 1

1
CCA > 0.

a

b

c

a

d
b

c

a

d
b

c

d

inCircle(a, b, c, d) < 0 inCircle(a, b, c, d) = 0 inCircle(a, b, c, d) > 0

Fig. 63: Incircle test.

We will not prove the correctness of this test, but we will show a somewhat simpler assertion, namely that if the
four points are cocircular then the above determinant is equal to zero. If the four points are cocircular then there
exists a center point q = (qx, qy) and a radius r such that

(ax � qx)2 + (ay � qy)2 = r2,

and similarly for the other three points. (We won’t compute q and r, but merely assume their existence for now.)
Expanding this and collecting common terms we have

0 = (a2
x + a2

y)� 2qxax � 2qyay + (q2
x + q2

y � r2)

= (�2qx)ax + (�2qy)ay + 1 · (a2
x + a2

y) + (q2
x + q2

y � r2) · 1.
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in circle(a, b, c, d) > 0 in circle(a, b, c, d) = 0 in circle(a, b, c, d) < 0

Figure 7. The in circle test (Figure from Mount’s CMSC754).

Let S be a finite set of n points in R2. We now consider, for each point p = (px, py) ∈
S, a point p′ = (px, py, pz) ∈ R3, where

pz := p2
x + p2

y,

i.e., p′ is a point on the paraboloid z = x2 + y2 in R3, and p is the projection of p′ onto
the plane by removing its z-coordinate. We call this map f : p ∈ R2 → p′ ∈ R3 the
lifting map. The lifting map that takes a point in the plane to a paraboloid in R3, see
Figure 8.

Lifting and Projection

Delaunay triangulation of S ⇢ Rd can be obtained by first lifting every vertex
x = (x1, x2, · · · , xd) in S into a vertex x0 = (x1, x2, · · · , xd , xd+1) in Rd+1 by letting
the last coordinates (its ”height”) be

xd+1 := kxk2 = x2
1 + x2

2 + · · · + x2
d ,

then taking the orthogonal projection of the convex hull of new point set S 0 ⇢ Rd+1.

P’

P

z

x/1.0e-01

This fact shows that the Delaunay triangulation is one of special subdivisions of
convex polytopes, which have a rich theory in discrete and combinatorial geometry
[Grünbaum 1967, 2003, Ziegler 1997, De Loera, Rambau & Santos 2010] .
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p

p0

q0

q

r

r0

s

s0

z = x2 + y2

Figure 8. The lifting map: circles map to planes.

1.3.1. Circles and Planes. The following fact gives a relation between circles in R2 and
planes in R3, see Figure 8.

Lemma 1.1. Consider 4 distinct points p,q, r, s in the plane in R2, and let p′,q′, r′, s′

be their respective projections onto the paraboloid, z = x2 + y2. The point s lies within
the circumcircle of p,q, r if and only if s′ lies vertically below the plane in R3 passing
through p′,q′, r′.

Proof. Let H be the plane passing through the lifted points p′,q′, r′. H cuts the parab-
oloid into three parts, a patch below H, an ellipse in H, and a patch above H. We show
that the projection of the ellipse in H is just the circumcircle of p,q, r.
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We find the equation of H as follows. Let Ht be the plane which is parallel to H and
is tangent to the paraboloid. Let the tangent point be c = (cx, cy, c

2
x + c2

y). Using the
fact, “the slope (normal) of a tangent plane is the gradient of the function at its tangent
point”. Let f = x2 + y2 − z, the gradient of f at c is: ∇f |c = (2cx, 2cy,−1). Then the
equation of Ht is:

2cx(x− cx) + 2cy(y − cy)− (z − (c2
x + c2

y)) = 0,

which is

z = 2cxx+ 2cyy − (c2
x + c2

y).

We shift Ht upwards a positive amount r2 we get H,

z = 2cxx+ 2cyy − (c2
x + c2

y) + r2.

Since z = x2 + y2, we can eliminate z, giving

x2 + y2 = 2cxx+ 2cyy − (c2
x + c2

y) + r2.

This is equivalent to

(x− cx)2 + (y − cy)2 = r2.

This is a circle centered at (cx, cy) with a radius r. It is the circumcircle of p,q, r.
Thus, we see that the intersection of an arbitrary lower halfspace with the paraboloid,

when projected onto the (x, y) plane, is the circle’s interior. The point s lies within this
circumcircle, if and only if its lifting s′ onto the patch of paraboloid which lies below the
plane H passing through p′,q′, r′.

�

1.3.2. Delaunay triangulation and Convex hull. Due to the above fact, we can show the
nice relation between Delaunay triangulation and convex hull.

Let S′ be the set of all sites resulting from the lifting map on S. The convex hull of
S′ is a 3d convex polytope, denoted as conv(S′). A lower face of conv(S′) is a face such
that it is contained in a non-vertical plane in R3 and the whole polytope lies vertically
above this plane. (In other words, this plane separates the conv(S′) and the viewpoint at
(0, 0,−∞).) The projection of the set of lower faces of conv(S′) into the xy-plane gives
a subdivision of the convex hull of S. If S is in general position, then this subdivision is
a simplicial complex T which is the Delaunay triangulation of S, see Figure 9.

1.3.3. Voronoi diagram and convex hull. Given a point p = (a, b), the hyperplane H(p)
that is tangent to p’s lifting, namely, (a, b, a2 + b2), has the equation

z = 2ax+ 2by − (a2 + b2).

Now, consider an arbitrary point q = (α, β) in the plane, the vertical distance from q to
the paraboloid is α2 +β2. What is the vertical distance from q to H(p)? By substituting
(α, β) into the equation of H(p), we get 2aα + 2bβ − (a2 + b2). Let ∆(p,q) denote the
difference between these two vertical distances at point q,

∆(p,q) = α2 + β2 − (2aα+ 2bβ − (a2 + b2)) = (a− α)2 + (b− β)2.

This shows that ∆(p,q) equals precisely the power of the two-dimensional Euclidean
distance between p and q.
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z = 0

z = x2 + y2
a lower face

Figure 9. The projection of the lower faces of the convex hull is the
Delaunay triangulation.

Consider two points p1 and p2 in the plane z = 0. We claim that q is closer to
p1 if and only if at the position q = (α, β) , the plane H(p1) lies above (closer to the
paraboloid) than H(p2). It simply follows from the above vertical distance formula.

Lemma 1.2. Let p1,p2, . . . ,pn be a set of points in the plane z = 0. A point q belongs
to the Voronoi cell of the point pi, if and only if and only if H(pi) is the highest plane
(seen from z = +∞) at q.

Therefore, the Voronoi diagram of p1,p2, . . . ,pn is simply the vertical projection,
down to z = 0, of the point-wise maxima of the downward-facing half spaces H(pi). Or
equivalent is the uppermost face of the arrangement defined by these planes.

2. Lawson’s flip algorithm

This section introduces the locally Delaunay condition for edges and proves the De-
launay lemma, which shows a crucial local property of Delaunay triangulations. This
Lemma suggests that one can construct Delaunay triangulation from any triangulation
by a sequence of edge flips. A classical Lawson’s flipping algorithm is introduced. This al-
gorithm’s correctness implies two fundamental results of planar triangulations, (1) among
all triangulations of the same point set, and the Delaunay triangulation maximizes the
minimum angle; and (2) the set of all triangulations of the point set is connected by
edge flips.

2.1. The Delaunay lemma. This section introduces a local condition for edges, shows
it implies a triangulation is Delaunay.

Let K be a triangulation of a point set S in R2. An edge eab ∈ K is locally Delaunay
if either

(i) it is on the convex hull, or
(ii) it belongs two triangles, tabc, tabd ∈ K, and c lies outside the circumcircle of

tabd. (It is equivalent to say that d lies outside the circumcircle of tabc.)
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b
a

c

d

b

a

c

d

Figure 10. Locally Delaunay edges. In the left, the edge eab is locally
Delaunay. In the right, the edge eab is not locally Delaunay.

This definition is illustrated in Figure 10. A locally Delaunay edge is not necessary a
Delaunay edge. For an example, the edge eab in Figure 10 left is locally Delaunay but
it is not Delaunay. The Delaunay lemma shows that if every edge is locally Delaunay,
then the triangulation must be Delaunay.

Theorem 2.1 (Delaunay Lemma). If every edge of K is locally Delaunay, then K is the
Delaunay triangulation of S.

Proof. Consider any triangle tabc ∈ K and another vertex p ∈ K. We will show that if
all edges of K are locally Delaunay, then p must lie outside (or on) the circumcircle of
tabc.

a

b

c

p
d0

d1

d2

d3

d4

d5

p

d6

Figure 11. Proof of Delaunay lemma. Left: The circumcircle of a tri-
angle tabc ∈ K contains a vertex p ∈ K. Right: The sequence of adjacent
triangles.
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Assume p lies in the inside of the circumcircle of tabc, see Figure 11 Left. Choose a
point x in tabc. The line segment lxp intersects a sequence of triangles in K, which are:

tabc = td0d1d2 , td1d2d3 , . . . , tdm−2dm−1p,

such that every two adjacent triangles in this sequence shares a common edge. By
assumption, all common edges in this sequence are locally Delaunay, see Figure 11
Right.

A key observation is the following fact. Since the circumcircle of tabc = td0d1d2

encloses p, and since the edge ed1d2 is locally Delaunay, then the circumcircle of its
adjacent triangle td1d2d3 must also encloses p, see Figure 12.

d1

d2

d0

d3

p

Figure 12. Proof of Delaunay lemma. The circumcircle of td0d1d2 en-
closes p implies that the circumcircle of its adjacent triangle, which is
td1d2d3 , in this sequence also encloses p.

This can be proven using the circle and plane relation. p lies in the circumcircle of
td0d1d2 implies that the lifted point p′ ∈ R3 lies below the plane h passing through
d′0,d

′
1,d
′
2. The edge ed1d2 is locally Delaunay implies that the lifted point d′3 lies above

the plane h. Moreover, both d3 and p lie on the same side of the edge ed1d2 . Therefore
p′ must lie below the plane passing through the lifted points d′1,d

′
2,d
′
3. This shows that

p must lie inside the circumcircle of td1,d2,d3 .
By this fact, we will find that the circumcircle of the second last triangle, i.e.,

tdm−3dm−2dm−1 , in this sequence must contain p. Therefore, the edge edm−2dm−1 is not
locally Delaunay, it contradicts to our assumption.

Since we can chose any vertex p ∈ K. Hence we have shown that the triangle tabc
is indeed Delaunay in K. Since we have chosen tabc arbitrarily in K, this means, all
triangles in K must be Delaunay. �

2.2. Edge flips and Lawson’s algorithm.

2.2.1. Edge flips. Let K be a triangulation of a point set S in the plane. Given an
interior edge eab ∈ K, let the two triangles sharing at this edge are tabc and tabd. If the
union of these two triangles is a convex quadrangle, we can flip this edge eab to another
edge ecd within this the convex hull of {a,b, c,d}. Formally, this means we remove the
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simplices eab, tabc, and tabd from K, and add the simplices ecd, tcda, and tcdb to the
triangulation, see Figure 13.

b

a

c

d

b

a

c

d

Figure 13. The edge flips between eab and ecd. Moreover, if eab is not
locally Delaunay, then ecd must be locally Delaunay.

It is easy to show the following fact: If the edge eab ∈ K is not locally Delaunay, then
the sum of angles at its two opposite vertices c and d, ∠acb + ∠adb > 180o. (If this
sum equals to 180o, this means they are cocircluar). Then the angle sum at vertices c
and d, ∠cad + ∠cbd < 180o. This implies that after the edge flip, the new edge cd is
locally Delaunay.

2.2.2. Description of the algorithm. We can use edge flips as elementary operations to
convert an arbitrary triangulation K to the Delaunay triangulation. This algorithm was
first developed by C. Lawson [9, 10] 1.

Algorithm: LawsonFlip(L)
Input: a stack L of edges of a triangulation K;
Output: the Delaunay triangulation;
1 while L 6= ∅ do
2 pop an edge eab from L;
3 if eab is not locally Delaunay then;
4 flip eab to ecd;
5 push edges eac, ecb, edb, eda on L;
6 endif
7 endwhile

Figure 14. The Lawson edge-flip algorithm.

The algorithm is described in Figure 14. It uses a stack to maintains edges of the
triangulation, which need to be checked whether they are locally Delaunay or not. Ini-
tially, all edges of K are pushed on the stack. It then runs in a loop to process these

1The edge flip algorithm was proposed by Lawson in 1972 to prove a theorem that states that any
two triangulations of a point set are connected by a sequence of edge flips. A later paper in 1977, he
proved that the Delaunay triangulation could be obtained in this way.



14 HANG SI

edges in the stack. Each time, an edge eab is pop up from the stack. This edge may
have already been flipped; then, it simply goes to the next edge. Otherwise, if this edge
is not locally Delaunay, then apply an edge flip to remove this edge and create a new
edge ecd, which is locally Delaunay. After this flip, the four edges at the boundary of
the quadrilateral {a,b, c,d} might become not locally Delaunay. They are pushed into
the stack. The algorithm stops when the stack is empty.

Figure 15 shows an example of an input triangulation and an output (which is the
Delaunay triangulation) of this algorithm.

Figure 15. Lawson’s flip algorithm takes an arbitrary triangulation
(left) as input and returns the Delaunay triangulation (right).

2.2.3. Correctness and termination. The algorithm can be understood as gluing a se-
quence of tetrahedra. Flipping eab to ecd is likely gluing a tetrahedron ta′b′c′d′ from
below to the faces ta′b′c′ and ta′b′d′ , see Figure 16.

Chapter 6. Delaunay Triangulations CG 2013

the lifted picture. The flip involves four points in convex position in R2, and their lifted
images form a tetrahedron in R3 (think about why this tetrahedron cannot be “flat”).

The tetrahedron is made up of four triangles; when you look at it from the top, you
see two of the triangles, and when you look from the bottom, you see the other two. In
fact, what you see from the top and the bottom are the lifted images of the two possible
triangulations of the four-point set in R2 that is involved in the flip.

Here is the crucial fact that follows from Lemma 6.11: The two top triangles come
from the non-Delaunay triangulation before the flip, see Figure 6.9a. The reason is that
both top triangles have the respective fourth point below them, meaning that in R2,
the circumcircles of these triangles contain the respective fourth point—the empty circle
property is violated. In contrast, the bottom two triangles come from the Delaunay
triangulation of the four points: they both have the respective fourth point above them,
meaning that in R2, the circumcircles of the triangles do not contain the respective fourth
point, see Figure 6.9b.

(a) Before the flip: the top two triangles of
the tetrahedron and the corresponding non-
Delaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the
tetrahedron and the corresponding Delaunay
triangulation in the plane.

Figure 6.9: Lawson flip: the height of the surface of lifted triangles decreases.

In the lifted picture, a Lawson flip can therefore be interpreted as an operation that
replaces the top two triangles of a tetrahedron by the bottom two ones. If we consider
the lifted image of the current triangulation, we therefore have a surface in R3 whose
pointwise height can only decrease through Lawson flips. In particular, once an edge
has been flipped, this edge will be strictly above the resulting surface and can therefore
never be flipped a second time. Since n points can span at most

�
n
2

�
edges, the bound

on the number of flips follows.

6.4 Correctness of the Lawson Flip Algorithm

It remains to show that the triangulation of P that we get upon termination of the
Lawson flip algorithm is indeed a Delaunay triangulation. Here is a first observation
telling us that the triangulation is “locally Delaunay”.

72

a
b

c

d

d0
a0 b0

c0

a
b

c

d

d0
a0 b0

c0

Figure 16. Left: a locally non-Delaunay edge corresponds to a non-
convex edge in the lifted point set. Right: a locally Delaunay edge lies
on the convex hull of the lifted point set. (Figures by B. Gärtner ETHZ)

Once we glue ta′b′c′d′ we cannot glue another tetrahedron right below the lifted edge
ea′b′ . In other words, once we flip eab, we cannot introduce eab again by some other
flip. This fact implies that this algorithm will eventually terminate when all locally
non-Delaunay edges are flipped. By the Delaunay lemma, the triangulation is Delaunay.

The above fact also implies there are at most as many flips as edges are connecting
n points, namely

(
n
2

)
. Each flip takes constant time. Hence the total running time is

O(n2).
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z = 0 z = 0

z = x2 + y2

Figure 17. Top: Bottom: The lifted view of the Lawson’s flip algorithm
which transforms a non-convex surface (left) in 3d into a convex one
(right).

This algorithm is indeed a convex optimization algorithm. It transforms a lifted
surface triangulation, which is not convex, into a convex surface in R3 whose projection
into the plane is the Delaunay triangulation of this point set. Figure 17 shows both the
lifted and projected triangulations.

2.3. Optimal properties of Delaunay triangulations. The correctness of Lawson’s
flip algorithm implies several optimal properties of the Delaunay triangulation.

2.3.1. The MaxMin angle property.

Theorem 2.2. Among all triangulation of a finite point set S ⊂ R2, the Delaunay
triangulation maximizes the minimum angle.

Proof. Each flip substitutes two new triangles for two old triangles. It, therefore, changes
six of the angles, see Figure 18 Left. The six old angles are:

a1, b1, a2, b2, a1 + a2, b1 + b2

and the six new angles are

c1, d1, c2, d2, c1 + c2, d1 + d2

We show that an old angle is at least as small for each of the six new angles.
Both c1 and a2 are opposite the same edge ebd. The locally Delaunay property of the

edge ecd implies that a lies outside the circumcircle of tcdb. Therefore, the new angle
c1 must larger than the old angle a2, see Figure 18 Right. By the same reason, we have
d1 ≥ a1, c2 ≥ b2, and d2 ≥ b1.

It follows that an edge flip in Lawson’s algorithm does not decrease the smallest angle
in a triangulation. Since we can transform any triangulation K of S into the Delaunay
triangulation by a sequence of the same kind of flips, this implies that the smallest angle
in K is no larger than the smallest angle in the Delaunay triangulation. �
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a

b

c d

a

b

c d

a

b

c d

a1a2

b1 b2

c1
c2

d1

d2

c1

a2

c1 � a2

Figure 18. Flipping edge eab to ecd improves the minimum angle.

2.3.2. Dirichlet energy of piecewise linear interpolating functions. Consider the problem
of interpolating a two-dimensional function using a triangulation. Given a triangulation
of this function’s domain, one can construct the piecewise linear interpolating function
to the given function values. The geometry of this interpolating function is a piece-
wise linear surface with triangles whose vertices are the vertices of the planar triangles.
Figure 17 shows two piecewise linear interpolating functions for the quadratic function
f = x2 + y2.

A point set has many different triangulations. A natural question is: which triangu-
lation is the best for the piecewise linear interpolating of a given function?

The Dirichlet energy of a function g : Ω→ R is the L2 norm squared of the gradient
of the function, i.e.,

E(g) =
1

2

∫

Ω
‖∇g(x)‖2dx.

It is a measure of how variable a function is. More abstractly, it is a quadratic func-
tional on the Sobolev space H1. It is named after the German mathematician Peter
Gustav Lejeune Dirichlet (1805 – 1859). The Dirichlet energy is intimately connected
to Laplace’s equation. Solving Laplace’s equation −∆u(x) = 0 for all x ∈ Ω, subject to
appropriate boundary conditions, is equivalent to solving the variational problem of find-
ing a function u that satisfies the boundary conditions and has minimal Dirichlet energy.

This energy depends on the triangulation (which is used to form the piecewise linear
interpolating function). Rippa [12] proves the following theorem.

Theorem 2.3 (Rippa, 1990). The Delaunay triangulation minimizes Dirichlet energy
of a piecewise linear interpolating function, for any fixed set of function values.

The key to proving the above theorem is a geometry condition given by the following
Lemma proven by Rippa [12]. It shows that within a convex quadrilateral, the Delaunay
triangulation’s local Dirichlet energy must smaller than the non-Delaunay triangula-
tion. Therefore, by the termination of Lawson’s algorithm, the Delaunay triangulation
minimizes the global Dirichlet energy.
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2.4. The (undirected) flip graph. One can use flips to traverse the set of all triangu-
lations of a point set S. We can form a flip-graph G of S. Each triangulation is a node
of G, and each edge of G between two nodes u and v means there is a flip that changes
the triangulation u to v. Figure 19 shows an example. The termination of Lawson’s flip
algorithm implies that the flip-graph for any point set in the plane is connected, i.e., one
can go from any triangulation of S to any other triangulation.

28 - August - 2006 ICM 2006 - Madrid 22

The graph of triangulations of an n-gon

The graph of

flips berween

triangulations of

a hexagon

Figure 19. The flip graph of a set of the vertex set of a convex 6-gon.

Since this flip graph contains all triangulations of a point set, there are many interest-
ing properties of this graph to be studied; refer to the work of Hurtado et al [8]. Here we
show an example that needs O(n2) edge flips. This is a special construction (by P. Bose
and F. Hurtado [2]) of a non-convex polygon shown in Figure 20. We have a sequence
of n − 1 ones and n − 1 zeros. A flip is possible between a 1 triangle and a 0 triangle.
The two adjacent numbers are switched.

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0

``

11000101 11001001

• We have a sequence of n � 1 ones and n � 1 zeros.
• A flip is possible between a 1 triangle and a 0 triangle.
• The two adjacent numbers are switched.

26

Institute of Software Technology

Alexander Pilz 14.10.2015 Triangulations

A Lower Bound

00000 ...11111 11111 ...00000

• “All zeros have to be moved to the right.”
• There are n � 1 zeros and n � 1 ones.
• Therefore we need at least (n � 1)2 flips.
• The flip graph has quadratic diameter.

27

Figure 20. A lower bound example (Figures from A. Pilz (IST TU-Graz)).
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Let the starting triangulation be the one on the bottom left, and the final triangulation
is on the bottom right. There are n− 1 zeros and n− 1 ones. Therefore we need at least
(n− 1)2 flips.

3. Randomized incremental flip algorithm

This section introduces an algorithm that constructs Delaunay triangulations incre-
mentally, using edge flips and randomization. This algorithm is simple and easy to
implement. Moreover, it is also efficient. The expected runtime is O(n log n). After
explaining the algorithm, we present a detailed analysis of the expected running time.

3.1. Inserting a vertex. Let T be the Delaunay triangulation of a point set S in
the plane. Let p be the new vertex to be inserted. Assume that p lies inside this
triangulation. Then there exists a triangle tabc ∈ T which contains p. We further
assume that p lies strictly in the interior of this triangle. The simplest vertex insertion
is just an elementary flip, 1-to-3 flip, which deletes the triangle tabc and creates three
new triangles: tabp, tbcp, and tcap in T , see Figure 21. The reverse of 1-to-3 flip is
another elementary flip, the 3-to-1 flip, which delete a vertex.

p p

a 1-to-3 flip

a 3-to-1 flip

a

b

c

a

b

c

Figure 21. Two elementary flips in the plane. From left to right is a
1-to-3 flip which inserts a vertex. The reverse is a 3-to-1 flip which deletes
a vertex.

A special (degenerate) case is when p lies on an edge of the triangle tabc. Then the
above 1-to-3 flip will create a degenerate triangle (with a zero area). In this case, one can
immediately perform a 2-to-2 edge flip to remove the degenerate triangle. This process
replaces two triangles by four, i.e., it is a 2-to-4 flip. However, it is not elementary. It is
a combination of a 1-to-3 flip (vertex insertion) and a 2-to-2 flip (edge swap).

3.2. Description of the algorithm. The primary step of this algorithm is to interleave
flipping edges and adding points. Denote the points in S ⊂ R2 as p1,p2, . . . ,pn, and
assume general position. For simplicity, we start with a triangulation D0 that consists of
a single and sufficiently large triangle txyz. This triangle must enclose all vertices in its
interior. The algorithm is a for-loop, adding the points in sequence. At the moment,
we will assume the general position, i.e., each vertex pi lies precisely in the interior of
a triangle. After adding a vertex, the algorithm uses edge flips to satisfy the Delaunay
lemma before the next point is added. The algorithm is given in Figure 22.

After the insertion of the new vertex pi into Di−1, Lawson’s flip algorithm is used to
transform Di−1 into the Delaunay triangulation of Si. Recall that this algorithm flips all
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Algorithm: IncrementalFlip(S = {p1, . . . ,pn})
Input: a sequence S of n points in R2;
Output: the Delaunay triangulation D of S;
1 initialize D0 with only one larger triangle txyz;
2 for i = 1 to n do
3 find the triangle τ ∈ Di−1 containing pi;
4 insert pi by a 1-3 flip;
5 initial the stack L with link edges of pi;
6 LawsonFlip(L);
7 endfor
8 remove all triangles containing x, y, and z from Dn;

Figure 22. The incremental-flip algorithm.

edges which are not locally Delaunay in current triangulation. We will take advantage
of the following facts after the insertion of pi:

• Any edge in Di−1, which is not a link edge of pi remains locally Delaunay. The
edges inside the star of pi are locally Delaunay as well.
• Only link edges of pi in Di−1 might not be locally Delaunay.

By these facts, the initial stack L only contains the link edges of pi. Lawson’s flip algo-
rithm guarantees that the termination of the flip process and the result is the Delaunay
triangulation Di of Si. Figure 23 shows an example of this algorithm.

p

a

b

c c

b

a

p

Figure 23. Recovery Delaunay property by the Lawson’s flip algorithm.

3.3. Worst-case running time. The running time of this algorithm consists of two
parts:

(1) the time to locate the triangle τ containing the vertex pi; and
(2) the time to perform flips.

This section focuses on (2) and considers the worst case. It estimates the maximum
number of flips that may be performed within this algorithm.

Any triangle in Di−1 whose circumcircle does not contain the new vertex pi remains
a Delaunay triangle in Di−1. This fact shows that every new triangle in Di must have
pi as a vertex. This implies that all flips occur right around pi. Each edge flip increases
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the degree of p by 1. Hence the total number of edge flips for the insertion of pi is
proportional to the degree of pi, deg(pi).

It is possible that deg(pi) = Θ(i). Figure 3.3 shows an example. Assuming the
sequence of vertices is ordered first from left to right, then from bottom to top. The
degree of each successive vertices can be Θ(i), hence the total number of flips is

Θ(3 + 4 + · · ·+ n) = Θ(n2).

This shows that if the vertices’ insertion order is “poorly” chosen, the incremental flip
algorithm can take Θ(n2) time.

The Running Time of Vertex Insertion 51

Figure 3.8: Enclosing the vertices in a large triangular bounding box.

Figure 3.9: Each vertex insertion can delete Θ(n) triangles and create Θ(n) others.

Figure 3.9 illustrates the worst case. A single vertex insertion can delete Θ(n) triangles and create Θ(n)
others, taking Θ(n) time. Moreover, this dismal performance can be repeated for Θ(n) successive vertex
insertions. Therefore, the incremental insertion algorithm for constructing a Delaunay triangulation takes
Θ(n2) time if the vertices and their insertion order are chosen badly. The grid arrangement and vertex
ordering in the figure are common in practice.

Fortunately, there are better ways to order the vertex insertion operations. The randomized incremental
insertion algorithm inserts the vertices in random order, with each permutation of the vertices being equally
likely. Surprisingly, the expected number of triangles created by each successive vertex insertion operation
is less than six, as Theorem 21 below shows. The catch is that all the vertices must be known in advance, so
that a random permutation can be computed. The randomized algorithm is excellent for creating an initial
triangulation of the vertices of a domain, but its analysis does not apply to the vertices that are subsequently
generated during mesh generation, because their order cannot be randomized. Nevertheless, the theorem
provides intuition for why constant-time vertex insertion is so commonly observed in mesh generation.

Theorem 21. Let V be a set of n vertices in the plane. Let ⟨v1, v2, . . . , vn⟩ be a permutation of V chosen
uniformly at random from the set of all such permutations. For i ∈ [0, n], letTi be the Delaunay triangulation
constructed by inserting the first i vertices in order. When vi is inserted into Ti−1 to create Ti, the expected
number of new triangles (including ghost triangles) created is less than six. An expected total of O(n)
triangles are created and deleted during the n vertex insertions that construct Tn.

This theorem is most easily proved with backward analysis, a remarkable analysis technique that Sei-
del [110] summarizes thus: “Analyze an algorithm as if it was running backwards in time, from output to
input.” Imagine that instead of inserting a randomly chosen vertex into Ti−1, you are deleting a randomly
chosen vertex from Ti. Because a random permutation written backward is still a random permutation, each
vertex in Ti is deleted with equal probability.

Figure 24. Each vertex insertion can cause Θ(n) flips (example from [?]).

3.4. The expected number of flips. This section shows that if the vertices are in-
serted in a random order, the expected total number of flips is only O(n).

Random does not mean arbitrary but rather that every permutation of the n points
is equally likely. Let S1, . . . , Sm be the m = n! permutations of n points of S. We
assume that the probability of every permutation is equally likely to be chosen by the
incremental flip algorithm. Then each Si has probability 1

n! . The sample space is a set

of discrete outcomes S := {Si | i = 1, · · · , n!}. We want to know what is the expected
total number of flips of this algorithm. Let fi be the number of total flips produced by
the algorithm using Si as the input sequence. Define the random variable F : S → R
such that F (Si) = fi. The expectation (the average value) of the random variable F is:

E[F ] :=

m∑

i=1

fi
1

n!
=

1

n!

m∑

i=1

fi.

The expected total number of flips of this algorithm is all the individual total number
of flips f1 + f2 + · · ·+ fm divided by n!.

3.4.1. Backward analysis. It is, in general, not possible to know the total number of flips
produced by each input sequence fi. The technique we use to analyze the algorithm is
called the backward analysis developed by Seidel [13].
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Consider inserting the last point pn. The sum of all possible last points’ degrees is
the same as the sum of the degrees of all points in Dn (due to the uniqueness of the
Delaunay triangulation). The latter is equal to twice the number of edges, which is

n∑

i=1

deg(pi) ≤ 2(3n− 6) ≤ 6n.

Note that each of the last point appears (n − 1)! times in all the n! permutations.
Therefore the number of flips for adding all last points is at most:

Fn ≤ (6n− 3n)(n− 1)! = 3n(n− 1)!,

where the −3n is due to the number of edges created by the point insertion is not counted
as the number of edge flips.

Then the total number of flips is:
∑m

i=1 fi = fm + fm−1 + · · ·+ f1, (m = n! terms)
= Fn + Fn−1 + · · ·+ F1, (n terms)
≤ 3n · (n− 1)! + 3(n− 1)(n− 1)! + · · ·+ 0, (n terms)
≤ 3n · n · (n− 1)!
= 3n · n!

The expected number of edge flips for adding n points is

E[F ] :=
1

n!

m∑

i=1

fi ≤
1

n!
3n · n! = 3n.

There is a simple way to say the same thing. If points are inserted in a random order,
the expected number of flips for the last point is at most 3. Hence the total number of
edge flips for adding n points is O(n).

3.5. Point location. Point location is needed before we can insert a point into a trian-
gulation. It is an essential fact for determining the total running time of this incremental
algorithm.

3.5.1. Straight line searching. A simple point location scheme is “straight-line walk”.
More precisely, the algorithm is starting from an arbitrary triangle σ ∈ Di−1, and search
the triangle τ that containing pi by walking along the ray starting from an interior point
of σ toward to pi, see Fig 25.
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Figure 25. Search a point p by a line search starting from an arbitrary
triangle. Here the starting triangle is tabc.
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How much time will this searching algorithm use? We assume that each triangle is
visited only once. Each point location will visit at most the number of triangles of the
triangulation, which is less than 2n. In the worst case, a single point location may visit
O(n) triangles. An example is shown by Devillers et al. [5, Fig. 1]. Hence the location
of n points this algorithm may take O(n2) time. With this point location algorithm, the
randomized incremental flip algorithm still has the expected O(n2) runtime.

3.5.2. Using a history graph. Most theoretical algorithms build additional data structure
for point location. A way to improve the point location is to build a history graph point-
location data structure (as a helper). A simple approach is based on maintaining the
uninsured points in a set of buckets. Think of each triangle of the current triangulation
as a bucket that holds all the uninsured points that lie inside this triangle. Whenever a
triangle is split, or an edge is flipped, some old triangles are destroyed and replaced by
new triangles. When this happens, lump together all the deleted triangles’ points and
re-distribute them into the new triangles. The number of new triangles is O(1) (3 for
split and 2 for a flip). This process requires O(1) time for each point that is re-bucketed.
The expected runtime of point location using “bucketing” is O(n log n), see [?].

Despite the optimal runtime guarantee of using a history graph, it needs to main-
tain an additional data structure within the algorithm. It requires some extra work to
implement.

3.5.3. Biased randomised insertion order (BRIO). Amenta, et al [?] proposed the Baised
randomized insertion order (BRIO). The main idea of BRIO is to remove enough ran-
domness to improve performance significantly but leaves enough randomness so that the
algorithms remain theoretically optimal.

Let P be a set of n points. The BRIO first sorts the points into lg n rounds and inserts
rounds of points one after one. For simplicity, we assume n is a power of 2.

We choose each point independently with probability 1/2 to be inserted in the final
round to allocate points to rounds. We choose each of the remaining points independently
with probability 1/2 to be inserted in the next-to-last round, and so on. When we get to
the first round, we choose any remaining points with probability one. The probability
that a point is chosen in round i > 0 is 2i−1/n, and the remaining probability 1/n goes
to the event that the point is chosen in round zero.

Now consider all points within each round. The simplest way is to insert them in an
arbitrary order. For example, we can order the points randomly. It is possible to further
improve the locality by organizing the points into blocks, which respect locality in space,
such that near points are in the same block, then insert points block by block. There are
many ways to order points in block, such as quad-tree or kd-tree. In the next section,
we introduce an ordering of points based on the Hilbert curve.

The intuition of BRIO is that in the early rounds (with few points), the insertions
tend to be sprinkled nearly randomly across all the data, producing a nicely balanced
data structure. In contrast, the later rounds (with many points) are grouped by blocks,
accessing local regions of the data structure mostly independently.

Notice that this ordering only indirectly attacks locality in the virtual memory struc-
ture layout, which is a fundamental problem. The hope is that inserting points with
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the locality in virtual memory. However, this depends on the specific program’s storage
management scheme, which may be hard to predicate.

3.5.4. The expected running time. The expected running time of the randomized incre-
mental flip algorithm using bucketing for point sorting is determined by (1) O(n log n)
time for total point location together with (2) O(n) time for flips. Hence its expected
running time is O(n log n).

Exercises

1. Draw the Voronoi diagram and Delaunay triangulation for a set of 10 randomly
distributed points in the plane.

2. Proposition: Every finite set of points in the plane has a Delaunay triangulation.
(2.1) Prove this proposition.
(2.2) Show an example that a point set in the plane has more than one Delaunay

triangulation.
3. An acute triangle has all three angles less than π/2.

(3.1) Prove that a triangulation K all of whose triangles are acute is the Delaunay
triangulation of its vertex set.

4. Prove Theorem 1.1, which states that all edges of every Euclidean-distance
weighted minimum spanning tree belong to the Delaunay triangulation of the
same point set.

5. Given a Delaunay triangulation K and a point p inside one of the triangles of K.
A simple way to locate p is to start an arbitrary point q ∈ K, and search p by
performing a line search, see Fig 25.

If K is not a Delaunay triangulation, this algorithm may not find the point p.
An example of such triangulation and such a sequence are given in Fig. 26.
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Figure 26. A cyclic configuration. Starting from the triangle tabc to
line search the point p. The sequence of triangles t1, . . . , t6 form a loop.

Question: How to overcome this situation and make this algorithm work cor-
rectly? (Hint: Read the reference by Devillers, O., Pion, S., and Teillaud, M.
Walking in triangulation.)
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6. The Bowyer-Watson algorithm [3, 16] is also an incremental algorithm to con-
struct Delaunay triangulations. It is different from the incremental flip algorithm
in the vertex insertion step after the point location of pi, see Figure 27:
(1) it finds all triangles in the current triangulation whose circumcircles contain

pi in their interiors.
(2) remove all these triangles, which creates an empty region, called cavity, in
Di−1; and

(3) Di is created by filling the cavity with new triangles that contain the new
vertex.

p

p p

p

(1)

(2)

(3)

Figure 27. The vertex insertion steps of the Bowyer-Watson algo-
rithm [3, 16].

(6.1) Prove the correctness of the Bowyer-Watson algorithm for incremental con-
structing Delaunay triangulations in the 2d case. [Hint: use the idea of
lifting map to show it].

(6.2) What is the total cost (running time) for the vertex insertion steps for
inserting all vertices.

(6.3) Compare the efficiency of Bowyer-Watson algorithm and the incremental
flip algorithm.

7. Let D(c, r) be a two dimensional disk with center c ∈ R2 and radius r ≥ 0. Let
D = {D1, D2, · · · , Dn} be a set of n disk in R2. Define the Voronoi cell VD(Di)
of the disk Di(ci, ri) ∈ D as:

VD(Di) = {p | ‖p− ci‖ − ri ≤ ‖p− cj‖ − rj , ∀Dj ∈ D},
where ‖x − y‖ means the Euclidean distance between xandy. The Voronoi
diagram of a set of disks D is then defined by collecting Voronoi cells of disks
together with their edges vertices.



(7.1) Show the bisector between two disks: D1 = (p, 0.2) and D1 = (q, 0.5),
where p = (1.0, 0) and q = (2.0, 0).

(7.2) Randomly generates 5 points in the plane and assign each point randomly
a radius. Hint, you could use Detri2 to generate this. Draw the Voronoi
diagram for this set of disks.

8. Let S be a set of n points in R2. The furthest-point Voronoi cell, denoted as
Vf (p), of a point p ∈ S consists of all points at least as far from p as from any
other point in S, i.e.,

Vf (p) = {p | ‖x− p‖ ≥ ‖x− q‖, ∀q ∈ S}.
(8.1) Show that Vf (p) is not empty only if p is a vertex of the convex hull of S.
(8.2) Draw the furthest Voronoi diagram for a set S of 10 points randomly dis-

tributed in the plane, and draw the dual, which is the furthest-point Delau-
nay triangulation of S.
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