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Uniformization

Figure: Closed surface uniformization.
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Hyperbolic Structure

Fundamental Group

Suppose (S , g) is a closed high genus surface g > 1. The fundamental
group is π1(S , q), represented as

π1(S , q) = 〈a1, b1, a2, b2, · · · , ag , bg |a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g 〉.

Universal Covering Space

universal covering space of S is S̃ , the projection map is p : S̃ → S . A
deck transformation is an automorphism of S̃ , ϕ : S̃ → S̃ , p ◦ ϕ = ϕ. All
the deck transformations form the Deck transformation group DeckS̃ .

ϕ ∈ Deck(S̃), choose a point q̃ ∈ S̃ , and γ̃ ⊂ S̃ connects q̃ and ϕ(q̃). The
projection γ = p(γ̃) is a loop on S , then we obtain an isomorphism:

Deck(S̃)→ π1(S , q), ϕ 7→ [γ]
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Hyperbolic Structure

Uniformization

The uniformization metric is ḡ = e2ug, such that the K̄ ≡ −1 everywhere.
Then (S̃ , ḡ) can be isometrically embedded on the hyperbolic plane H2.
The On the hyperbolic plane, all the Deck transformations are isometric
transformations, Deck(S̃) becomes the so-called Fuchsian group,

Fuchs(S) = 〈α1, β1, α2, β2, · · · , αg , βg |α1β1α
−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g 〉.

The Fuchsian group generators are global conformal invariants, and form
the coordinates in Teichmüller space.
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Hyperbolic Plane

Definition (Poincaré Model)

The upper half complex plane H2 = {z ∈ C|z = x + iy , y > 0} equipped
with the hyperbolic metric

h =
dx2 + dy2

y2
=
|dz |2
y2

,

is the Poincaré model of hyperbolic plane. We can see the hyperbolic
metric is conformal to the Euclidean metric, hence the model is angle
preserving.

e2λ =
1

y2
, K = −∆g

1

2
log

1

y2
= y2

(
∂2

∂x2
+

∂2

∂y2

)
log y = −1.
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Hyperbolic Geometrics

Consider γ(t) = (x(t), y(t))t ∈ [a, b] the hyperbolic length of the curve is

L(γ) =

∫ b

a
|γ̇(t)|hdt =

∫ b

a

√
ẋ2(t) + ẏ2(t)

y(t)
dt,

where γ̇(t) = (ẋ(t), ẏ(t)).

γ(t)

ia

ib

Figure: Vertical axis is a geodesic.
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Hyperbolic Geodesics

Lemma

The positive imaginary axis is a geodesic

d(ia, ib) =

∣∣∣∣ln b

a

∣∣∣∣ .
Proof.

Construct a smooth curve γ(a) = ia, γ(b) = ib, real number a < b,
y(t) > 0

L(γ) ≥
∫ b

a

|ẏ(t)|
y(t)

dt ≥
∣∣∣∣∫ b

a

ẏ(t)

y(t)
dt

∣∣∣∣ = ln
b

a
,

Equality holds, if and only if ẋ(t) ≡ 0, ẏ(t) ≥ 0, equivalently γ([a, b]) is
the imaginary axis, and y(t) is monotonously increasing.
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Isometric Transformation

Lemma

Möbius transformation f : H2 → H2

f (z) =
az + b

cz + d
,

[
a b
c d

]
∈ SL(2,R),

is hyperbolic isometric, where SL(2,R) is the special linear transformation
group, ad − bc = 1.

Proof.

f is the composition of the following maps

z 7→ z + b, b ∈ R; z 7→ λz , λ ∈ R; z 7→ −1

z
.

it is obvious that f (z) = z + b ∈ Iso(H2).
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Isometric Transformation

Proof.

Now, let w = λz ,

w∗(h) =
|dw |2
=(w)2

=
λ2|dz |2
λ2=(z)2

=
|dz |2
=(z)2

.

hence f (z) = λz ∈ Iso(H2). Let w = −1
z ,dw = 1

z2 dz ,=(w) = 1
2i (

1
z̄ − 1

z ),

w∗(h) =
|dw |2
=(w)2

=

1
|z|4 |dz |2

−1
4 ( 1

z̄ − 1
z )2

=

1
|z|4 |dz |2

−1
4

1
(z̄z)2 (z − z̄)2

=
|dz |2
=(z)2

.

hence f (z) = −1
z ∈ Iso(H2).
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Hyperbolic Geodesics

Figure: All hyperbolic geodesics are lines or circular arcs orthogonal to the real
axis.
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Hyperbolic Geodesics

Corollary

All hyperbolic geodesics are lines <(z) = c or circular arcs
|z − a| = ra ∈ R orthogonal to the real axis.

Proof.

imaginary axis is a geodesic, f (z) = z + b ∈ Iso(H2), hence all vertical
lines <(z) = c are geodesics.
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Hyperbolic Geodesics

z 7→ −1
z

Figure: Reflection transforms vertical lines to circular arcs orthogonal to the real
axis.

Isometry z 7→ −1
z maps a vertical line <(z) = c to a circular arc

|w + 1/(2c)| = 1/(2|c |),∣∣∣∣ −1

c + iy
+

1

2c

∣∣∣∣ =

∣∣∣∣ iy − c

iy + c

1

2c

∣∣∣∣ =
1

2|c | .

composed with isometry z 7→ z + b, we obtain circular arc |z − a| = r ,
a ∈ R. Hence all |z − a| = r are hyperbolic geodesics.
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Hyperbolic Geodesic

p

v

p

v

Figure: Unique geodesic through p and with tangent direction v .

We show all geodesics are vertical lines or circular arcs. Through any point
p on H2 and with tangent direction v , there is a unique geodesic. We can
construct a circular arc or vertical line τ through p with tangent direction
v . By the uniqueness of geodesics, τ coincides with γ, γ = τ . Hence all
geodesics are vertical lines or circular arcs orthogonal to the real axis.
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Hyperbolic Isometric Transformation Group

Lemma

Isometric transformation group on the hyperbolic plane is isomorphic to
the Möbius transformation group:

PSL(2,R) = SL(2,R)/± Id ∼= Iso(H2).

Proof.

We define Möbius transformation

ϕθ(z) =
cos θz + sin θ

− sin θz + cos θ
,

(
cos θ sin θ
− sin θ cos θ

)
∈ SL(2,R),

We have

ϕθ(i) = i , ϕ′θ(z) =
1

(cos θ − sin θz)2
, ϕ′θ(i) = e i2θ.
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Hyperbolic Transformation Group

Choose arbitrarily a τ ∈ Iso(H2), assume τ(i) = ai + b. Construct
f ∈ PSL(2,R), f (z) = az + b, then f (i) = τ(i). Since both τ(z) and f (z)
are isometric transformations, hence

|τ ′(i)| = =(τ(i)) = |f ′(i)|.

Construct a composition map g = f ◦ ϕθ, satisfying

g ′(i) = f ′(i)ϕ′θ(i) = e i2θf ′(i).

Let θ = 1
2 (arg τ ′(i)− arg f ′(i)), then we get g(i) = τ(i) and g ′(i) = τ ′(i).

Then we show g(z) = τ(z).

David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 15 / 65



Hyperbolic Isometric Transformation Group

Construct an isometric transformation η = τ ◦ g−1, then η(i) = i , and
η′(i) = 1. Given a pont z ∈ H2, z 6= i , there is a unique geodesic γ
connecting i and z , γ(0) = i , γ(s) = z , where the arc length parameter s
equals to the hyperbolic distance between i and z . Isometric map η maps
the geodesic γ to geodesic γ̃ = η(γ), preserving the arc length s, hence

η(z) = η(γ(s)) = γ̃(s). (1)

By construction

γ̃(0) = η(γ(0)) = η(i) = i = γ(0),

furthermore

γ̃′(0) = η′(γ(0))γ′(0) = η′(i)γ′(0) = γ′(0).

hence geodesics γ and γ̃ coincide, γ(s) = γ̃(s), combining Eqn.(1), we
have

η(z) = γ̃(s) = γ(s) = z .

hence η = τ ◦ g−1 = id , τ = g , τ ∈ SL(R, 2).
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Hyperbolic Isometric Transformation Group

By the definition of Möbius transformation, we have

f (z) =
az + b

cz + d
, corresponds to

(
a b
c d

)
and

(
−a −b
−c −d

)
,

Hence Möbius transformation group is isomorphic to PSL(R, 2). �
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Cross Ration

Definition (Cross Ratio)

Suppose a, b, c , d ∈ Ĉ are distinct points on the extended complex plane,
the cross ratio is defined as

(a, b, c , d) =
a− c

a− d
:
b − c

b − d
.

c

d

a

b

θ1
θ2

Figure: Four points are co-circular if and only if their cross ration is real.
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Cross Ratio

Lemma

Assume a, b, c, d ∈ Ĉ, the four points are co-circular, if and only if their
cross ratio is real, (a, b, c , d) ∈ R.

Proof.

As shown in figure (6), the surficient and necessary condition for the four
ponts to be co-circular is θ1 equals to θ2, this is equivalent to
(a, b, c, d) ∈ R.
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Cross Ratio

Lemma (Möbius Transformation Preserving Cross Ratio)

Suppose f ∈ PSL(2,C), namely Möbius transformation

f (z) =
αz + β

γz + δ
,

[
α β
γ δ

]
∈ SL(2,C)

then
(f (a), f (b), f (c), f (d)) = (a, b, c , d). (2)

Proof.

Consider the generators of Möbius transformation group. f (z) = z + b
and f (z) = az preserve cross ratios. Let f (z) = −1

z , we have(
−1

a
,−1

b
,−1

c
,− 1

d

)
=

a−1 − c−1

a−1 − d−1
:
b−1 − c−1

b−1 − d−1
=

a− c

a− d

ad

ac
:
b − c

b − d

bd

bc
= (a, b, c , d).

hence all generators preserve cross ratios.
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Möbius Transformation

Corollary

Möbius transformations f ∈ PSL(2,C) preserve circles.

Proof.

Möbius tranformations preserve cross ratio. Four points are co-circular if
and only if the cross ratio is real.

Corollary

Suppose z ,w ∈ H2the hyperbolic geodesic through z ,w intersects the real
axis at infinity z ′,w ′, then the hyperbolic distance between z and w is the
logarithm of the cross ratio,

d(z ,w) = ln(z ,w ,w ′, z ′).
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Cross Ratio

z
w

z′ w′

f

ia

ib

Figure: Cross ratio and the hyperbolic distance.

We choose a Möbius transformation fk ∈ PSL(2,R) as follows,

f (z) =
z − z ′

z − w ′

then f (z ′) = 0, and f (w ′) =∞, the geodesic is mapped to the positive imaginary axis.
Assume f (z) = ia, f (w) = ib, a < b. Since f is hyperbolic isometry, we have

d(z ,w) = d(ia, ib) = ln
b

a
= ln(ia, ib,∞, 0) = ln(z ,w ,w ′, z ′).
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Hyperbolic Triangle

αγ

β

a

b

c

Figure: Hyperbolic triangle.

Given three distinct points a, b, c on the hyperbolic plane H2 their
hyperbolic convex hull is a hyperbolic triangle, all three edges are
hyperbolic lines. Assume the inner angles are α, β, γ, by Gauss-Bonnet,∫

∆
KdAh +

∫
∂

∆kgds + (π − α) + (π − β) + (π − γ) = 2πχ(∆),

χ(∆) = 1, then we have the area of the hyperbolic triangle,

A(∆) = π − α− β − γ.
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Hyperbolic Triangle

Definition (Hyperbolic Ideal Triangle)

If all the vertices of the triangle are infinity, then the triangle is called an
ideal hyperbolic triangle, three inner angles are 0’s, the area is π.

0 1a b c

f

∞

Figure: All hyperbolic ideal triangles are isometric.
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Hyperbolic Ideal Triangle

For any hyperbolic ideal triangle with vertices (a, b, c), we construct a
Möbius transformation

f (z) =
z − a

z − c

b − c

b − a
,

which maps {a, b, c} to {0, 1,∞}. All hyperbolic ideal triangles are
isometric to the canonical ideal triangle (0, 1,∞), therefore all hyperbolic
ideal triangles are isometric.
The three heights of an ideal triangle intersect at a single point, which is
also the center of the inner circle of the triangle. The inner circle
intersects the three edges at the perpendicular feet, which are called the
middle points of the edges.
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Poincaré Disk

Möbius transformation ϕ : H→ D, D = {z ∈ C||z | < 1},

ϕ(z) =
z − i

z + i
,

ϕ maps {0, 1,∞} to {−1,−i , 1}, and the upper half plane to the unit
disk. The hyperbolic metric on D is:

4(dx2 + dy2)

(1− x2 − y2)2
=

4|dz |2
(1− |z |2)2

.

The isometric transformations on Poincaré disk are Möbius
transforamtions:

z 7→ e iθ
z − a

1− āz
.

The geodesics are diameters or circular arcs perpendicular to the unit
circle.
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Hyperbolic Geodesics on Poincaré’s Disk

Figure: Hyperbolic geodesics on Poincaré disk.

David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 27 / 65



Hyperbolic Geodesics on Poincaré’s Disk

Lemma (Geodesic Circle)

The geodesic circles on Poincare’s disk model or upper half plane model
coincide with Euclidean circles.

Proof.

Given a hyperbolic circle d(z , a) = r in D, we use Möbius transformation

f (z) =
z − a

1− āz
,

maps the circle center to the origin, and obtain a hyperbolic circle
d(z , 0) = r . By symmetry, the hyperbolic circle centered at the origin is
also a Euclidean circle,

|z | =
er − 1

er + 1
= tanh

r

2
.
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Hyperbolic Geodesics on Poincaré’s Disk

Proof.

We use f −1 map the Euclidean circle back to the original position. Since
Möbius transformation preserves circles, hence d(z , a) = r is a Euclidean
circle. Since the upper half plane model and the unit disk model differ by
a Möbius transformation, hence hyperbolic circle in upper half plane model
is also a Euclidean model.
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Hyperbolic Horocircle

Definition (Horocircle)

A horocircle on the hyperbolic plane is a curve γ, such that all the
hyperbolic geodesics orthogonal to γ converge to the same direction
asymptotically.
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Hyperbolic Sine Law and Cosine Law

Theorem

Given a hyperbolic triangle, the cosine law is given by:

cosh(a) = cosh(b) cosh(c)− sinh(b) sinh(c) cos(A).

and
cos(B) = − cos(C ) + sin(A) sin(C ) cosh(b).

the sine law is
sin(A)

sinh(a)
=

sin(B)

sinh(b)
=

sin(C )

sinh(c)
.
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Hyperbolic Structure

ϕi
ϕj

ϕij

Uj

Ui

Figure: Surface hyperbolic structure.
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Hyperbolic Structure

Definition (Hyperbolic Structure)

A hyperbolic structure of a surface is an atlas, {(Ui , ϕi )|i ∈ I}, such that

1 Σ =
⋃

i Ui

2 ϕi : Ui → H2 is a local chart,

3 local coordinate transformation is ϕij = ϕi ◦ ϕ−1
j = g

∣∣∣ϕj (Ui∩Uj ) ,

g ∈ Iso(H2).

The hyperbolic structure is complete, if any geodesic can be extended
infinitely. The geodesic and angle on (Σ, ϕ) can be defined using the local
coordinates.
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Hyperbolic Structure

0 1 2 3

z 7→ z + 1
π

Σ

Ui

Uj

V1 V2

ϕj

ϕi

ϕij

V0
∂H

∂H

Figure: Cusps on a hyperbolic surface.
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Cusp on Hyperbolic Surface

Let γ(z) = z + 1,γ generates the transformation group Γ = 〈γn〉,
Γ ⊂ Iso(H2). The quotient space Σ = H2/Γ has a hyperbolic cusp,
π : H2 → Σ is the projection map, local chart (ϕi ,H2),
ϕi = (π

∣∣
Vi

)−1ϕj = (π
∣∣
Vj

)−1 , local coordinates transformation ϕij ∈ 〈γ〉.
We place a horocircle at the cusp H, the horocircle includes a
neighborhood of the cusp, the intersection between the horocircle and Σ is
∂H. Suppose ∂H is represented as =(z) = y in H2, then the length of the
intersection is

L(∂H) =

∫ 1

0

dx

y
=

1

y
.

the area of the neighborhood is

Area(H) =

∫ 1

0

∫ ∞
y

dxdy

y2
=

1

y
.
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Ideal Quadrilateral

Definition (Ideal Quadrilateral)

Given 4 infinite point v1, v2, v3, v4 ∈ ∂H2, its convex hull is called a
hyperbolic ideal quadrilateral.

Different ideal quadrilaterals are not isometric.

B L̃ A R̃

L

R

δ

B L̃ A R̃

R

L
δ
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Ideal Quadrilateral

Definition (marked ideal quadrilateral)

A marked ideal quadrilateral is the union of two oriented ideal quadrilateral
glued isometrically along the common edge.

Every ideal triangle has an inner circle, which intersects the triangle at
three perpendicular feet. The oriented distance between the two
perpendicular feet on the diagonal of the ideal quadrilateral is called the
shear coordinate of the quadrilateral.

Definition (Shear Coordinate)

Given a marked ideal quadrilateral δ, Thurston’s Shear Coordinates d(δ)
equals to the oriented distance along the diagonal from L to R.
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Ideal Quadrilateral

Lemma

Suppose δ = [A, R̃,B, L̃], then

d(δ) = ln−(A,B, R̃, L̃).

Proof.

By a Möbius transformation, {A,B, L̃, R̃} are mapped to
{0,∞,−1, t > 0},

(A,B, R̃, L̃) = (0,∞, t,−1) =
0− t

0 + 1
:
∞− t

∞+ 1
= −t.

then L = i , R = it, hence d(δ) = ln(t).
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Thurston’s Shear Coordinates

0−1 t

∞

L

R

Figure: Thurston’s shear coordinates of an ideal quadrilateral.

David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 39 / 65



Thurston’s Shear Coordinates

Assume a genus g surface with n punctures, Σ = Σg − {v1, v2, . . . , vn},
n ≥ 1, χ(Σ) < 0, (Σ, T ) is an ideal triangulation,

v1

(Σ, T )

Figure: Ideal triangulation of a torus with one puncture.
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Hyperbolic Structure

∆1
∆2

e

∆∗
1

∆∗
2

x(e)

∆∗
1

∆∗
2

Figure: Glue ideal triangles, with shear coordinates x(e).

Given any function x : E (T )→ R, denoted as x ∈ RE(T ), we can
construct a hyperbolic structure π(X ) of Σ by the following construction,

1 For every triangle ∆ ∈ T , construct an ideal hyperbolic triangle,
∆→ ∆∗:

2 For each edge e ∈ E (T ), isometrically glue two ideal triangles ∆∗1 and
∆∗2 along e, such that the shear coordinates on e equals to x(e).

David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 41 / 65



Glue Pattern

0 1 ex(e)

x(e)

Figure: Gluing ideal triangles with shear coordinates x(e).

Lemma

π(x) is a complete hyperbolic metric with finite area, if and only if for any
vertex v ∈ {v1, v2, · · · , vn}, ∑

e∼v
x(e) = 0. (3)
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Complete Metric Condition

e1 e2 e3 e1

x2
x3

x1
z z′

0 1

v

e1
e2

e3

Figure: Condition for complete metric with finite area.

Proof.

Assume v is ∞, then z is equivalent to z ′, z ∼ z ′. By construction,

=(z ′)/=(z) = ex1+x2+x3 .

v is a cusp, if and only if the line connecting z and z ′ is a horocircle.
Hence x1 + x2 + x3 = 0.
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Teichmüller Space of Complete Hyperbolic Metrics

Definition (Teichmüller Space of Complete Hyperbolic Metrics)

The Teichmüller space of complete hyperbolic metrics with finite areas on
(Σ,V ) is defined as

T (Σ) =
{complete hyperbolic metrics with finite area on (Σ,V )}
{isometric transformations ∼ identity, preserving cusps} .

We have the structural decomposition:

TD(Σ) = T (Σ)× Rn
>0 (4)

where T (Σ) is the Teichmüller space of complete hyperbolic metrics with
finite area, Rn

>0 representing the lengths of ∂Hi (decorations).
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Teichmüller Space of Complete Hyperbolic Metric

Theorem (Thurston)

Define linear subspace:

RE
P =

{
x ∈ RE

∣∣∣∀v ∈ V ,
∑
v∼e

x(e) = 0

}

The mapping
ΦT : RE

P → T (Σ), x 7→ [π(x)]

is a bijection. The hyperbolic metric ΦT (x) has the Thurston’s shear
coordinates x(e) under the triangulation T . T (Σ) is the Teichmüller space
of all complete hyperboic metrics with finite area on (Σ,V ).
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Teichmüller Space of Hyperbolic Metrics

Theorem

Suppose ideal triangulations T and T ′ differ by an edge swap, then
coordinates transformation

Φ−1
T ′ ◦ ΦT : RE(T ) → RE(T ′)

has the following formulation:

a

b

c

d

x −x

d+ ln(1 + e−x)

b+ ln(1 + e−x)

c− ln(1 + e−x)

a− ln(1 + e−x)

Figure: Edge swap induces coordinates transformation.
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Teichmüller Space of Hyperbolic Metric

Corollary

Teichmüller space T (Σ) is a real analytic manifold, which is diffeomorphic
to R6g−6+2n.

Proof.

The dimension of T (Σ) equals to the number of edges minus the number
of vertices. Given a closed surface Σ with genus g ,
V (T ) + F (T )− E (T ) = 2− 2g and 3F (T ) = 2E (T ), we obtain
E (T ) = 6g − 6 + 3n. Hence the dimension of T (Σ) equals to
6g − 6 + 2n, where V (T ) = n.
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Penner’s λ-length

Given a surface with punctures (Σ,d), where d is a complete hyperbolic
metric with finite area. A horoball is a sub-surface, isometric to the
quotient space {=(z) > c}/(z ∼ z + 1), which is a neighborhood of the
cusp of Σ, denoted as H. Then we have

area(H) = length(∂H).

Let H1,H2, . . . ,Hn be the horoballs at the vertices (cusps),

Σ−
n⋃

i=1

Hi

is a compact surface, every boundary ∂Hi is a horocircle.
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Penner’s λ-length

c

H

∂H

Figure: Horoball {=(z) > c}/(z ∼ z + 1)
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Decorated Ideal Triangle

A decorated ideal triangle τ is an ideal triangle, with infinite vertices
v1, v2, v3 ∈ ∂H2. Every vertex vi is associated with a horoball Hi ;

the angle αi at the vertex vi is the length of the intersection between
the boundary of horoball ∂Hi and τ ;

each infinite edges ei is against vi , i = 1, 2, 3, the oriented hyperbolic
length of ei is li . If Hj ∩ Hk = ∅ then li is positive, otherwise, if
Hj ∩ Hj 6= ∅, then li is negative.

Penner’s λ-length Li is defined as:

Li := e
1
2
li . (5)
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Decorated Ideal Triangle

li

ljlk

αi

αj
αk

li

ljlk αi

αj αk

Figure: Decorated ideal hyperbolic triangle, left frame li > 0, right frame li < 0.
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Cosine Law of Decorated Ideal Triangle

Theorem (Cosine Law for Decorated Ideal Hyperbolic Triangle)

Given a decorated hyperbolic ideal triangle,

1 cosine law:

αi = e
1
2

(li−lj−lk ) =
Li

LjLk
.

2 the distance from the horocircle ∂Hi to the perpendicular foot pj (or
pk) equals to − lnαi .

3 Given arbitrary l1, l2, l3 ∈ R, there exists a unique decorated
hyperbolic triangle τ with oriented hyperbolic lengths {l1, l2, l3}.
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Cosine Law of Decorated Ideal Triangle

0 1

pi 1 +
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vi vj
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−1 1 +

√
−1

Hi

Hk

Hj

yk

yi

yj

dk dk

dj
di

di dj

pj pi

pk

Figure: Decorated ideal hyperbolic triangle Cosine law.
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Cosine Law of Decorated Ideal Triangle

Proof.

Given any Penner’s λ-lengths {Li , Lj , Lk}, the oriented hyperbolic lengths
are

{li , lj , lk} = {2 ln Li , 2 ln Lj , 2 ln Lk},
compute {di , dj , dk},

di = (lj + lk − li )/2

dj = (lk + li − lj)/2

dk = (li + lj − lk)/2

then compute
{yi , yj , yk} = {e−di , e−dj , e+dk}.
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Decorated Hyperbolic Metric

vi

vj

vi

vj

Hi

Hj

∂Hi

∂Hj

Ui

Uj

(a) complete metric with finite area (b) decorated hyperbolic metric

Figure: Hyperbolic metrics
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Decorated Hyperbolic Metric

Definition (Decorated Hyperbolic Metric)

A decorated hyperbolic metric on a surface Σ is a tuple (d,w)

1 d is a complete hyperbolic with finite area;

2 Every cusp vi is associated with a horoball Hicentered at vi , the
length of the boundary ∂Hi is wi , w = (w1,w2, . . . ,wn) ∈ Rn

>0.
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Teichmüller Space of Decorated Hyperbolic Metrics

Definition (Teichmüller Space of Decorated Hyperbolic Metrics)

The Teichmüller space of decorated hyperbolic metrics on Σ is defined as

TD =
{[(d,w)]|(d,w) Σ decorated hyperbolic metric}

{isometric transformations ∼ identity, preserving horoballs} .

We have the structural decomposition:

TD(Σ) = T (Σ)× Rn
>0 (6)

where T (Σ) is the Teichmüller space of complete hyperbolic metrics with
finite area, Rn

>0 representing the lengths of ∂Hi (decorations).

David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 57 / 65



Euclidean Metric to Decorated Hyperbolic Metric

2 lnx(e)x(e)

iso

ϕ

Figure: Conversion from a Euclidean metric to a decorated hyperbolic metric.
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Euclidean Metric to Decorated Hyperbolic Metric

Suppose Σ is a surface with polyhedral metric and a triangulation T , the

Euclidean edge length function is x ∈ RE(T )
>0 . Construct a decorated

hyperbolic metric ϕ(x) ∈ TD(Σ):

1 convert each Euclidean face ∆ ∈ F (T ) to a decorated hyperbolic
triangle. In each triangle {ei , ej , ek}, treat Euclidean edge lengths
{x(ei ), x(ej), x(ek)} as Penner’s λ-lengths to obtain hyperbolic edge
lengths

ΦT : {x(ei ), x(ej), x(ek)} 7→ {2 ln x(ei ), 2 ln x(ej), 2 ln x(ek)}.

2 isometrically glue the decorated hyperbolic triangles along the
common edges, preserving the decorations.

Theorem

Fix a triangulation T of Σ, ΦT : RE(T ) → TD(Σ) is a topological
homeomorphism.
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Cross Ratio

B
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a′b
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Definition (Length Cross Ratio)

Given a triangulation for a closed polyhedral surface (Σ,d, T ), for each
pair of adjacent faces {A,C ,B} and {A,B,D}, the common edge is
{A,B}, then the length cross ratio is defined as:

Cr({A,B}) :=
aa′

bb′
,

where a, a′, b, b′ are the lengths of edges {A,C}, {B,D}, {B,C}, {A,D}
under the polyhedral metric.
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Shear Coordinates
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Figure: Conversion from Euclidean metric to decorated hyperbolic metric, shear
coordinates.
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Shear Coordinates

Theorem (Pennerλ-length to Shear Coordinates)

Given a triangulated, closed polyhedral surface (Σ,d, T ), with Euclidean
metric d, is converted to a decorated hyperbolic metric (Σ, ρ, T ) by ΦT ,
the shear coordinates of each edge under the hyperbolic metric ρ equals to
the logarithm of the length cross ratio − ln Cr(e) under the Euclidean
metric d.
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Ptolemy Equation

A
B

A′B′

C

C ′

α

β

Figure: Penner Ptolemy equation.

Corollary (Penner Ptolemy)

Let A,A′,B,B ′,C ,C ′ be the λ-lengths of a decorated ideal quadrilateral,
then

CC ′ = AA′ + BB ′.
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Decorated Hyperbolic Delaunay Triangulation

x2
x4
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Definition (Decorated Hyperbolic Delaunay Triangulation)

Suppose (S ,V , T ,d,w) is a triangulated surface with a decorated
hyperbolic metric. Suppose each e ∈ E (T ) satisfies

α + α′ ≤ β + β′ + γ + γ′, (7)

then we say T is Penn Delaunay.
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Euclidean Delaunay vs. Euclidean Delaunay

Lemma

A triangulation T is Delaunay under a decorated hyperbolic, if and only if
for every edge e ∈ E (T ) satisfies

x2
1 + x2

2 − x2
0

2x1x2
+

x2
3 + x2

4 − x2
0

2x3x4
≥ 0. (8)

Corollary

Given a triangulated marked surface (S ,V , T ), with a polyhedral metric
x : E (T )→ R+, the decorated hyperbolic metric is ΦT (x). Then T is
Delaunay under the polyhedral metric x, if and only if T is Delaunay under
the decorated hyperbolic metric ΦT (x).
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