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Different Schemes




Derivative Cosine law
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Derivative Cosine law
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Derivative Cosine law

2=r?+ rj2 + 2rirjl;

lij inversive distance.
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Cosine law

__dé dl dr
Let u; = logr;, then ¢ du =S dra
dby 1 L 0 O —1 cosfl3 cosb;
db> = 0 L O cosfl3z —1 cosbq
dos 0 0 A cosfhh cosf; —1
/12—|—r22—r32 /2—‘,-r3 —r22
, 0 , 2hn ,2hs n 0 O duy
bri=ud 2tnt 0 CRa sy 0 rn O dup
1 13
—|—r212—r2 132—i—r22—r12 0 0 0 r3 dU3
2/3!‘1 2/3/’2
v
David Gu (Stony Brook University) Computational Conformal Geometry

September 6, 2020 8/58



David Gu (Stony Brook University)

Power

Suppose a point p is not coincident
of the center of a circle c = (¢, r) on
the plane, the line through p
intersects the circle at g; and g, T
is the tangent point, then the power
of p with respect to the circle is

pow(p,€) = |pqil|pqz|
= |pTP
= |pc|® —r2
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Equi-Power line

Suppose there are two circles

c1 = (c1,n), €2 = (2, ), the
equi-power line is the locus

pOW(p7c1) = pOW(p’ c2)'
The equation of p is
lp—alf-rif=lp-af-r

If two circles intersect at p; and

2

P2,

pow(p; c1) = |pp1llpp2| = pow(p, €2) then the line through them is the
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Power

Suppose there are two circles

ck = (ck, rx), the line through ¢; and
cp intersects the equi-power line at
the point p. Assume the length
between ¢; and ¢ is /. The distance

s from p to ¢ is denoted as db1, then
2422
d _ 1 2
12 R VR
24+ r2 — r?
d — 2 1
21 o

pow(p,c1) = pow(p, c2)

d122 _ r12 — d221 _ r22 obviously, dip 4+ doy = 1.
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compute the power of p with respect
to two circles

pow(p.cr) = dip—rf
' pow(p.c2) = d5 —1r3

diy — d3; = (di2+ do1)(di2 — da1)
pow(p,c1) = —|pp1||ppz| _ A B_ .
= =nh—-n.
pow(p, c2) = —|pp1|pp2| /

pow(p,c1) = pow(p, c2)
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The equi-power line is orthogonal to the line connecting the centers.

Proof.
Define a function ¢(p) = pow(p,c1) — pow(p, c2),
¢(p) = (p-—a,p-a)—rn—(p-c,p-a)+n
dé¢(p) = (dp,c2—c1)

so V¢ = ¢ — c1, orthogonal to the level sets of ¢. The equi-power line is the O-level set

af A
L]
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Power

Given three circles ¢, k = 1,2, 3,
then three equi-power lines intersect
at one point o, which is called the
power center,

The equi-power lines of c¢1, ¢ and
C1,C3 intersects at the point 0. Then

pow(o,c1) = pow(o,c) = pow(o, c3)

so o is also on the equi-power line of
C2,C3.
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There are 3 circles cx = (¢, rk), the
power center o is also the center of
the unique circle (p, r), which is
orthogonal to all 3 circles.

pow(o, c) = (0—cx, 0—ck)—rg = r°,

so the power center is the center of
the circle which is orthogonal to the
3 circles.
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Derivative Cosine law

jovil® — loy* = rf — 1}
dlk
2Ikd_rj = 2r; + 2ril;
dle 27 + 2rirjl;
Y T 20
B rj2 - Piikly - r,-2 — r,-2 aF rJ-2
B 21k
far=r?
P 2k
2= — (r? + r? + 2lrr;
or; arj(’ 7 2hr) _ et loylP = Jowil® _ .
= - s
pow(o, ¢;) = pow(o, c;j) 2l
lovi2 — 12 = ’0‘0’2 _ rJ_2 Therefore in Av;vjo, g—lu"j = dj.
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Derivative Cosine law

Theorem (Symmetry)

do;  do; kg
dup — dup ke
do;  dOx b
dux — du
dox  do; b
dui — duc

The distance from o to edge [v;, vj]
is hk.
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Derivative Cosine law

(Proof

00;  00; 0, ~ 00; Ol
du 0k 0w Ol b
_ 00; (8/ Al cosﬁ)
al; ou; au,
= Ij(djk — dji cos0;)
B dl;
= liksinG;
. hk sin Gj
- /k sin 9J'
_ he
do; . hye I
duj O
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Inversive Distance CP Metric - Local Rigidity

The Discrete Ricci energy of Inversive distance CP metric is convex, but
the conformal factor space is non-convex. Therefore it has local rigidity,
not global rigidity.
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Yamabe Flow

Shrink three circles to vertices, then

00;
8UJ'

Ik — el Ike“f
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the power center o becomes the
circum-center.
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Discrete Yamabe flow - Local Rigidity

The Discrete Ricci energy of discrete Yamabe flow is convex, but the

conformal factor space is non-convex. Therefore it has local rigidity, not
global rigidity.
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Extremal Length

Figure: The conformal module of a topological quadrilateral.
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Topological Annulus

Figure: The conformal module of a topological annulus.
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Costa Minimal Surface

Figure: Costa minimal surface.
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Circle Packing and Square Packing
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Figure: Circle packing and square packing.
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Circle Packing A

Figure: Girl with a Pearl Earring. (by Mario-Klingemann)
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Circle Packing A

Figure: Mona Lisa. (by Mario Klingemann)
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Circle Packing Art
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Hyperbolic Surface Ricci Flow )
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Polyhedral Surface

Figure: Polyhedral surface.
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E? S? a?
Figure: Constant curvature triangle.
We can glue hyperbolic or spherical triangles isometrically along the

common edges to construct the triangle mesh. Then we say the surface is
with hyperbolic or spherical background geometry.
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Hyperbolic Triangle

Cosine law:
coshljcoshl — coshl/;
cost; = . -
sinh/;sinh/
Sine law:

sinh/; _ sinh/;  sinh/y

Sine,' Sinej a Sin@k

Figure: Hyperbolic triangle. 1
'8t yp i trang A= Esinh/jsinh/ksinﬁ,-
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Hyperbolic Derivative Cosine Law

The hyperbolic derivative cosine law is represented as:

(99,' Sinh/,' 89,’ o _sinh/;

3_/,'_ Ao 7 cost)

Compared with Euclidean cosine law, we replace the edge lengths /; by
sinh ;.

David Gu (Stony Brook University) Computational Conformal Geometry September 6, 2020 33/58



Curvature

Definition (Discrete Curvature)

Given a discrete surface with hyperbolic background geometry (S, V., T, /),
every triangle is a hyperbolic geodesic triangle, the vertex discrete
curvature is defined as the angle deficit

om0k veas
K(V)_{ ﬂ—ZJkG{k, veas

Theorem (Gauss-Bonnet)

The discrete Gauss-Bonnet theorem is represented as:

> KW+ Y K(v) - Area(S) = 2mx(S)

veds veas
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Discrete Conformal Metric Deformation

Definition (Conformal Deformation)

Given discrete conformal factor function v : V(T) — R, hyperbolic vertex
scaling is defined as y := u * /,

7% ui k Y
sinh~—~ = e2sinh—e?
2 2

Lemma (Symmetry)

The symmetric relations holds:

%_%_Ci-i-(:j—(:k—l
8UJ' B ou; N A(Ck+1)

where Sy = sinhyy, C, = coshyy.
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Discrete Hyperbolic Entropy Energy

Definition (Hyperbolic Entropy Energy)

(U,’,U‘,Uk)
Ef(u,'7 uj, uk) = / ' 0;du; + 9dej + O duy.

The Hessian matrix of the entropy energy is:

do, 1 S 0 0 —1 cosfs cosbo 0 C15-1¢—1 C;}rl
db- = 0 S O cosf3 —1  cosb C;il 0 szr T
dos 0 0 S; costr cost —1 3 S3

G+l G+l 0

which is strictly convex.
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Discrete Entropy Energy on a Mesh

Definition (Entropy Energy)

The entropy energy on a triangle mesh with hyperbolic background
geometry equals to

E(u) = / Z(K,- — K;)du;

Definition (Hyperbolic Ricci Flow)

Hence the discrete hyperbolic surface Ricci flow is defined as:

C/U,‘(t) >
K.
dt

which is the gradient flow of the discrete hyperbolic entropy energy. The
strict concavity of the discrete entropy ensures the uniqueness of the
solution to the flow. The existence is given by Gu-Luo-Sun using

Teichmuller theory and hyperbolic geometry.
David Gu (Stony Brook University) Computational Conformal Geometry September 6, 2020 37/58




Uniformizaton of High Genus Surface
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Figure: Uniformization of a genus two surface.
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Uniformization
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Uniformization
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Unified Discrete Surface Ricci Flow J
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Unified Ricci Flow

(a)Tangential CP (b) Generalized Hyperbolic
Tetrahedron, (n,¢) = (1,1)

Figure: Tangential circle packing.
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Thurston's Circle Packing

(a)Thurston’s Circle packing (b)Generalized Hyperbolic
Tetrahedron, 0 <n < lje=1

Figure: Thurston's circle packing.
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Inversive Distance Circle Packing

el
A *dA WA
(c)Inversive distance CP (d)Generalized Hyperbolic
Tetrahedron, n > 1,e =1

Figure: Inversive distance circle packing.
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Yamabe Flow

(d)Yamabe flow (e)Generalized Hyperbolic
Tetrahedron, n > 0,e =0

Figure: Yamabe flow.
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Virtual Radius Circle Packing

— -

(e)Virtual radius CP (f)Generalized Hyperbolic
Tetrahedron, n > 0,e = —1

Figure: virtual radius circle packing.

2 2
k= —ri = 2.
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Mixed Type

(f)mixed type
Figure: Mixed typed circle packing.
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Conformal Factor

Definition (Discrete Conformal Factor)

The discrete conformal factor is defined as v : V — R,

log i I
ui =< logtanh 3 H?
logtany  §?

David Gu (Stony Brook University) Computational Conformal Geometry September 6, 2020 50/58



Edge Length

Definition (Edge Length)
The edge lengths are given by

/5 = 2n ettt + gje®i + e K2

ame"i T +(1+eie2)(1+e;e®) H2
(1—5,-62”1’)(1—6]-62"1)

— 4" 4 (1—e;e2u) (1—¢;e° %) g2
2u: 2u;
(1+eje i) (14¢je)

coshfjj =

coslj =
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Edge Length

Scheme £j €] njj

Tangential Circle Packing +1 +1 +1
Thurston's Circle Packing +1 +1 [0,1]
Inversive Distance Circle Packing +1 +1 (0,0)
Yamabe Flow 0 0 (0,00)
Virtual Distance Circle Packing -1 -1 (0,0)
Mixed Type {-1,0,+1} {-1,0,+1} (0,00)

Table: Parameters for schemes.
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Entropy Energy

Definition (Entroy on a Face)

A discrete surface with S?,[E2, H? background geometry, and a circle
packing metric (X,v,7,¢). For each triangle [v;, vj, vi] with inner angle
(0i,6;,6k), the entropy energy for the face is given by

(U,’,U‘,Uk)
Ef(u,'7 uj, uk) = / ' 0;du; + 9dej + O duy.
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Entropy Energy

Definition (Entroy on a mesh)

A discrete surface with S, E2, H? background geometry, and a circle

packing metric (X,v,n, ). The discrete entropy energy for the whole
mesh is defined as

(ur,uz,-,up) M
E:/ > (Ki — Ki)du;.

i=1

The mesh entropy can be represented as the face energies

E, = zn:(R,- —omu; + > Er.
i=1

feF
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Suppose a triangle [v;, vj, vk] is with background geometry S2,E2, H?2,
conformal factor (uj, uj, uy), edge length (/;, [;, I), inner angles (6;,6;,6y),
entropy energy is

(Ll,‘,LI',Uk)
E(u,-,uj,uk) = / ' 0,-du,-+9jduj+9kduk. (1)
Then the Hessian matrix is given by

d(0;,0;,0k) 1 1
S~ —jeL7iD 2
8(U,‘, uj, uk) 2A © ’ ( )

where, A is the triangle area

A= %sin Bis(1)s(h), (3)
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The matrix L is

s(h) 0 0
L={ o () o (4)
0 0 s(lk)
©
-1 cosfy cos0);
©=| cosfp -1 cos 0; (5)
cosflj cosf; —1
matrix D is

0 7(i,j, k) 7(i k,J)
D=1 7(,i k) 0 T(j, k, i) (6)
T(k,iyj) 7(k,j, i) 0
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where
X E?
s(x) ={ sinhx H?
sinx S?
and
317 +e77 — en) E?
7(i,j, k) = { cosh [; cosh% ~; — cosh H?
cos I; cos yj — cos S?
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Geometric Interpretation

For each triangle, there is a power circle, orthogonal to three vertex circles.
The distance from the power center to each edge is h;, h;, h. Then we
have the geometric interpretation to the Hessian matrix: with E2, H? and

S? background geometry,
oy _ 00: _hs
du, Ok

0 0 tanh h
@ = @ = Lf‘\/2 cosh ry cosh® ry cosh /5 — cosh?! r; — cosh?®2 r,
Oup  Oui  sinh“

004 06, tan hs
== —— \/—2 COS®1 1y COSC2 Iy COS l3 + C0S2°1 ry + COS2€2 ry
aUQ 8U1 sin /3
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