Discrete Euclidean Curvature Flow

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

September 5, 2020

Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface Σ with a Riemannian metric \mathbf{g} , a local coordinate system (u, v) is an isothermal coordinate system, if

$$\mathbf{g}=e^{2\lambda(u,v)}(du^2+dv^2).$$

Gaussian Curvature

Gaussian Curvature

Under the isothermal coordinates, the Riemannian metric is $\mathbf{g} = e^{2\lambda(u,v)}(du^2 + dv^2)$, then the Gaussian curvature on interior points are

$$K = -\Delta_{\mathbf{g}}\lambda = -\frac{1}{e^{2\lambda}}\Delta\lambda,$$

where

$$\Delta = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$$

Conformal Metric Deformation

Definition

Suppose Σ is a surface with a Riemannian metric,

$$\mathbf{g} = \left(\begin{array}{cc} g_{11} & g_{12} \\ g_{21} & g_{22} \end{array}\right)$$

Suppose $\lambda: \Sigma \to \mathbb{R}$ is a function defined on the surface, then $e^{2\lambda}\mathbf{g}$ is also a Riemannian metric on Σ and called a conformal metric. λ is called the conformal factor.

$$\mathbf{g}
ightarrow e^{2\lambda} \mathbf{g}$$

Conformal metric deformation.

Angles are invariant measured by conformal metrics.

Curvature and Metric Relations

Yamabi Equation

Suppose $\bar{\bf g}=e^{2\lambda}{\bf g}$ is a conformal metric on the surface, then the Gaussian curvature on interior points are

$$\bar{K} = e^{-2\lambda}(-\Delta_{\mathbf{g}}\lambda + K),$$

geodesic curvature on the boundary

$$\bar{k_g} = e^{-\lambda}(-\partial_n \lambda + k_g).$$

Uniformization

Theorem (Poincaré Uniformization Theorem)

Let (Σ, \mathbf{g}) be a compact 2-dimensional Riemannian manifold. Then there is a metric $\tilde{\mathbf{g}} = e^{2\lambda}\mathbf{g}$ conformal to \mathbf{g} which has constant Gauss curvature.

Surface Uniformization

Figure: Closed surface uniformization.

Surface Uniformization

Figure: Open surface uniformization.

Surface Ricci Flow

Proposition

During the curvature flow $\frac{d\lambda}{dt} = -K$, then

$$\frac{d}{dt}K = 2K^2 + \Delta_{\mathbf{g}}K.$$

$$\begin{split} \frac{d}{dt}K &= \frac{d}{dt}(-e^{-2\lambda}\Delta\lambda) \\ &= -\left(-2\frac{d\lambda}{dt}\right)e^{-2\lambda}\Delta\lambda - e^{-2\lambda}\Delta\frac{d\lambda}{dt} \\ &= \left(-2\frac{d\lambda}{dt}\right)\left[-e^{-2\lambda}\Delta\lambda\right] - \left[e^{-2\lambda}\Delta\right]\frac{d\lambda}{dt} \\ &= \left(-2\frac{d\lambda}{dt}\right)K - \Delta_{\mathbf{g}}\frac{d\lambda}{dt} \\ &= 2K^2 + \Delta_{\mathbf{g}}K \end{split}$$

Surface Ricci Flow

Key Idea

$$K = -\Delta_{\mathbf{g}}\lambda,$$

Roughly speaking,

$$\frac{dK}{dt} = \frac{d}{dt}\Delta_{\mathbf{g}}\lambda$$

Let $\frac{d\lambda}{dt} = -K$,

$$\frac{dK}{dt} = \Delta_{\mathbf{g}}K + 2K^2$$

Diffusion and reaction equation!

Surface Ricci Flow

Definition (Hamilton's Surface Ricci Flow)

A closed surface with a Riemannian metric \mathbf{g} , the Ricci flow on it is defined as

$$\frac{dg_{ij}}{dt} = -2Kg_{ij}.$$

The normalized surface Ricci flow,

$$\frac{dg_{ij}}{dt} = \frac{2\pi\chi(S)}{A(0)} - 2Kg_{ij},$$

where A(0) is the initial surface area.

The normalized surface Ricci flow is area-preserving, the Ricci flow will converge to a metric such that the Gaussian curvature is constant $\frac{2\pi\chi(S)}{A(0)}$ every where.

Ricci Flow

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant (equals to \bar{K}) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total area of the surface is preserved during the flow, the Ricci flow will converge to a metric such that the Gaussian curvature is constant (equals to \bar{K}) every where.

Summary

Surface Ricci Flow

Conformal metric deformation

$$\mathbf{g}
ightarrow e^{2u} \mathbf{g}$$

Curvature Change - heat diffusion

$$\frac{\textit{dK}}{\textit{dt}} = \Delta_{\textbf{g}} \textit{K} + 2\textit{K}^2$$

Ricci flow

$$\frac{du}{dt} = \bar{K} - K.$$

Generic Surface Model - Triangular Mesh

• Surfaces are represented as polyhedron triangular meshes.

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .

Generic Surface Model - Triangular Mesh

- Surfaces are represented as polyhedron triangular meshes.
- Isometric gluing of triangles in \mathbb{E}^2 .
- Isometric gluing of triangles in $\mathbb{H}^2, \mathbb{S}^2$.

Discrete Generalization

Concepts

- Discrete Riemannian Metric
- ② Discrete Curvature
- 3 Discrete Conformal Metric Deformation

Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on the vertices, $I: E = \{all\ edges\} \rightarrow \mathbb{R}^+$, satisfies triangular inequality.

A mesh has infinite metrics.

Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: $K: V = \{vertices\} \rightarrow \mathbb{R}^1$.

$$K(v_i) = 2\pi - \sum_{jk} \theta_i^{jk}, v_i \notin \partial M; K(v_i) = \pi - \sum_{jk} \theta_{jk}, v_i \in \partial M$$

Theorem (Discrete Gauss-Bonnet theorem)

$$\sum_{v \notin \partial M} K(v) + \sum_{v \in \partial M} K(v) = 2\pi \chi(M).$$

Discrete Metrics Determines the Curvatures

cosine laws

$$\begin{array}{rcl} \cos I_{i} & = & \frac{\cos \theta_{i} + \cos \theta_{j} \cos \theta_{k}}{\sin \theta_{j} \sin \theta_{k}} & \mathbb{S}^{2} \\ \cosh I_{i} & = & \frac{\cosh \theta_{i} + \cosh \theta_{j} \cosh \theta_{k}}{\sinh \theta_{j} \sinh \theta_{k}} & \mathbb{H}^{2} \\ 1 & = & \frac{\cos \theta_{i} + \cos \theta_{j} \cos \theta_{k}}{\sin \theta_{j} \sin \theta_{k}} & \mathbb{E}^{2} \end{array}$$

Discrete Conformal Metric Deformation

Conformal maps Properties

- transform infinitesimal circles to infinitesimal circles.
- preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.

Discrete Conformal Metric Deformation vs CP

Circle Packing Metric

CP Metric

We associate each vertex v_i with a circle with radius γ_i . On edge e_{ij} , the two circles intersect at the angle of Φ_{ij} . The edge lengths are

$$I_{ij}^2 = \gamma_i^2 + \gamma_j^2 + 2\gamma_i \gamma_j \cos \varphi_{ij}$$

CP Metric (Σ, Γ, Φ), Σ triangulation,

$$\Gamma = \{\gamma_i | \forall v_i\}, \Phi = \{\varphi_{ij} | \forall e_{ij}\}$$

Discrete Conformal Factor

Conformal Factor

Defined on each vertex $\mathbf{u}:V\to\mathbb{R}$,

$$u_i = \begin{cases} \log \gamma_i & \mathbb{R}^2 \\ \log \tanh \frac{\gamma_i}{2} & \mathbb{H}^2 \\ \log \tan \frac{\gamma_i}{2} & \mathbb{S}^2 \end{cases}$$

Properties

Symmetry

$$\frac{\partial K_i}{\partial u_i} = \frac{\partial K_j}{\partial u_i}$$

Discrete Laplace Equation

$$d\mathbf{K} = \Delta d\mathbf{u}$$
,

 Δ is a discrete Lapalce-Beltrami operator.

Unified Framework of Discrete Curvature Flow

Analogy

Curvature flow

$$\frac{du}{dt} = \bar{K} - K,$$

Energy

$$E(\mathbf{u}) = \int \sum_{i} (\bar{K}_{i} - K_{i}) du_{i},$$

• Hessian of E denoted as Δ ,

$$d\mathbf{K} = \Delta d\mathbf{u}$$
.

Criteria for Discretization

Key Points

- Convexity of the energy $E(\mathbf{u})$
- Convexity of the metric space (u-space)
- Admissible curvature space (K-space)
- Preserving or reflecting richer structures
- Conformality

$$\frac{\partial}{\partial l_i} (2l_j l_k \cos \theta_i) = \frac{\partial}{\partial l_i} (l_j^2 + l_k^2 - l_i^2)$$

$$-2l_j l_k \sin \theta_i \frac{d\theta_i}{dl_i} = -2l_i$$

$$\frac{d\theta_i}{dl_i} = \frac{l_i}{A}$$

$$I_j = I_i \cos \theta_k + I_k \cos \theta_i$$

$$\frac{\partial}{\partial I_{j}} (2I_{j}I_{k}\cos\theta_{i}) = \frac{\partial}{\partial I_{j}} (I_{j}^{2} + I_{k}^{2} - I_{i}^{2})$$

$$2I_{j} = 2I_{k}\cos\theta_{i} - 2I_{j}I_{k}\sin\theta_{i}\frac{d\theta_{i}}{dI_{j}}$$

$$\frac{d\theta_{i}}{dI_{j}} = \frac{I_{k}\cos\theta_{i} - I_{j}}{A}$$

$$= -\frac{I_{i}\cos\theta_{k}}{A}$$

$$= -\frac{d\theta_{i}}{dI_{i}}\cos\theta_{k}$$

$$I_k^2 = r_i^2 + r_j^2 + 2\cos\tau_{ij}r_ir_j$$

$$\frac{\partial}{\partial r_{j}} I_{i}^{2} = \frac{\partial}{\partial r_{j}} \left(r_{j}^{2} + r_{k}^{2} + 2r_{j}r_{k}\cos\tau_{jk} \right)$$

$$2I_{i} \frac{dI_{i}}{dr_{j}} = 2r_{j} + 2r_{k}\cos\tau_{jk}$$

$$\frac{dI_{i}}{dr_{j}} = \frac{2r_{j}^{2} + 2r_{j}r_{k}\cos\tau_{jk}}{2I_{i}r_{j}}$$

$$= \frac{r_{j}^{2} + r_{k}^{2} + 2r_{j}r_{k}\cos\tau_{jk} + r_{j}^{2} - r_{k}^{2}}{2I_{i}r_{j}}$$

$$= \frac{I_{i}^{2} + r_{j}^{2} - r_{k}^{2}}{2I_{i}r_{i}}$$

Let $u_i = \log r_i$, then $\frac{d\theta}{du} = \frac{d\theta}{dl} \frac{dl}{dr} \frac{dr}{du}$

$$\begin{pmatrix} d\theta_1 \\ d\theta_2 \\ d\theta_3 \end{pmatrix} = \frac{-1}{A} \begin{pmatrix} l_1 & 0 & 0 \\ 0 & l_2 & 0 \\ 0 & 0 & l_3 \end{pmatrix} \begin{pmatrix} -1 & \cos\theta_3 & \cos\theta_2 \\ \cos\theta_3 & -1 & \cos\theta_1 \\ \cos\theta_2 & \cos\theta_1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{l_1^2 + r_2^2 - r_3^2}{2l_1 r_2} & \frac{l_1^2 + r_3^2 - r_2^2}{2l_2 r_3} \\ \frac{l_2^2 + r_1^2 - r_2^2}{2l_3 r_1} & 0 & \frac{l_2^2 + r_3^2 - r_1^2}{2l_2 r_3} \\ \frac{l_3^2 + r_1^2 - r_2^2}{2l_3 r_1} & \frac{l_3^2 + r_2^2 - r_1^2}{2l_3 r_2} & 0 \end{pmatrix} \begin{pmatrix} r_1 & 0 & 0 \\ 0 & r_2 & 0 \\ 0 & 0 & r_3 \end{pmatrix} \begin{pmatrix} du_1 \\ du_2 \\ du_3 \end{pmatrix}$$

$$I_k^2 = r_i^2 + r_j^2 + 2\cos\tau_{ij}r_ir_j$$

$$2I_{k} \frac{dI_{k}}{dr_{j}} = 2r_{j} + 2r_{i} \cos \tau_{ij}$$

$$r_{j} \frac{dI_{k}}{dr_{j}} = \frac{2r_{j}^{2} + 2r_{i}r_{j} \cos \tau_{ij}}{2I_{k}}$$

$$= \frac{r_{j}^{2} + r_{i}^{2} + 2r_{i}r_{j} \cos \tau_{ij} + r_{j}^{2} - r_{i}^{2}}{2I_{k}}$$

$$= \frac{I_{k}^{2} + r_{j}^{2} - r_{i}^{2}}{2I_{k}}$$

In triangle $[v_i, v_j, w_k]$,

$$\frac{dI_k}{du_j} = 2\frac{I_k r_j \cos \phi_{ji}}{2I_k} = r_j \cos \phi_{ji} = d_{ji}$$

There is a unique circle orthogonal to three circles (v_i, r_i) , the center is o, the distance from o to edge $[v_i, v_j]$ is h_k .

Theorem (Derivative Cosine Law)

$$\frac{d\theta_i}{du_j} = \frac{d\theta_j}{du_i} = \frac{h_k}{l_k}$$

$$\frac{d\theta_j}{du_k} = \frac{d\theta_k}{du_j} = \frac{h_i}{l_i}$$

$$\frac{d\theta_k}{du_i} = \frac{d\theta_i}{du_k} = \frac{h_j}{l_i}$$

Proof.

$$\frac{\partial \theta_{i}}{\partial u_{j}} = \frac{\partial \theta_{i}}{\partial I_{i}} \frac{\partial I_{i}}{\partial u_{j}} + \frac{\partial \theta_{i}}{\partial I_{k}} \frac{\partial I_{k}}{\partial u_{j}}$$

$$= \frac{\partial \theta_{i}}{\partial I_{i}} \left(\frac{\partial I_{i}}{\partial u_{j}} - \frac{\partial I_{k}}{\partial u_{j}} \cos \theta \right)$$

$$= \frac{I_{i}}{A} (d_{jk} - d_{ji} \cos \theta_{j})$$

$$= \frac{dI_{i}}{I_{i}I_{k} \sin \theta_{j}}$$

$$= \frac{h_{k} \sin \theta_{j}}{I_{k} \sin \theta_{j}}$$

$$= \frac{h_{k}}{I_{k}}$$

$$\frac{\partial v_j}{\partial u_j} = v_j - o$$

$$\frac{\partial \langle v_j - v_i, v_j - v_i \rangle}{\partial u_j} = 2\langle \frac{\partial v_j}{\partial u_j}, v_j - v_i \rangle
\frac{\partial I_k^2}{\partial u_j} = 2\langle \frac{\partial v_j}{\partial u_j}, v_j - v_i \rangle
\frac{\partial I_k}{\partial u_j} = \langle \frac{\partial v_j}{\partial u_j}, \frac{v_j - v_i}{I_k} \rangle
d_{ji} = \langle \frac{\partial v_j}{\partial u_j}, \frac{v_j - v_i}{I_k} \rangle$$

Similarly

$$d_{jk} = \langle \frac{\partial v_j}{\partial u_j}, \frac{v_j - v_k}{I_i} \rangle$$

So
$$\frac{\partial v_j}{\partial u_i} = v_j - 0$$
.

Metric Space

Lemma

For any three non-obtuse angles $\tau_{ij}, \tau_{jk}, \tau_{ki} \in [0, \frac{\pi}{2})$ and any three positive numbers r_1, r_2 and r_3 , there is a configuration of 3 circles in Euclidean geometry, unique upto isometry, having radii r_i and meeting in angles τ_{ij} .

Proof.

$$\max\{r_i^2, r_j^2\} < r_i^2 + r_j^2 + 2r_i r_j \cos \tau_{ij} \le (r_i + r_j)^2$$

$$\max\{r_i^2, r_j^2\} < l_k \le r_i + r_j$$

SO

$$I_k \le r_i + r_i < I_i + I_j.$$

Lemma

 ω is closed 1-form in $\Omega := \{(u_1, u_2, u_3) \in \mathbb{R}^3\}.$

Because
$$\frac{\partial \theta_i}{\partial u_j} = \frac{\partial \theta_j}{\partial u_i}$$
, so

$$d\omega = \left(\frac{\partial \theta_i}{\partial u_j} - \frac{\partial \theta_j}{\partial u_i}\right) du_j \wedge du_i + \left(\frac{\partial \theta_j}{\partial u_k} - \frac{\partial \theta_k}{\partial u_j}\right) du_k \wedge du_j + \left(\frac{\partial \theta_k}{\partial u_i} - \frac{\partial \theta_i}{\partial u_k}\right) du_i \wedge du_k$$

$$= 0$$

$$\omega = \theta_i du_i + \theta_j du_j + \theta_k du_j$$

Lemma

The Ricci energy $E(u_1, u_2, u_3)$ is well defined.

Because $\Omega = \mathbb{R}^3$ is convex, closed 1-form is exact, therefore $E(u_1, u_2, u_3)$ is well defined,

$$E(u_1, u_2, u_3) = \int_{(0,0,0)}^{(u_1, u_2, u_3)} \omega.$$

Lemma

The Ricci energy $E(u_1, u_2, u_3)$ is strictly concave on the subspace $u_1 + u_2 + u_3 = 0$.

The gradient $\nabla E = (\theta_1, \theta_2, \theta_3)$, the Hessian matrix is

$$H = \begin{pmatrix} \frac{\partial \theta_1}{\partial u_1} & \frac{\partial \theta_1}{\partial u_2} & \frac{\partial \theta_1}{\partial u_3} \\ \frac{\partial \theta_2}{\partial u_1} & \frac{\partial \theta_2}{\partial u_2} & \frac{\partial \theta_2}{\partial u_3} \\ \frac{\partial \theta_3}{\partial u_1} & \frac{\partial \theta_3}{\partial u_2} & \frac{\partial \theta_3}{\partial u_3} \end{pmatrix}$$

$$E(u_1, u_2, u_3) = \int_{(0,0,0)}^{(u_1, u_2, u_3)}$$

because of
$$\theta_1+\theta_2+\theta_3=\pi$$
,

$$\begin{split} \textit{E(u_1, u_2, u_3)} &= \int_{(0,0,0)}^{(u_1,u_2,u_3)} \omega^{\text{because of } \theta_1 + \theta_2 + \theta_3 = \pi,} \\ &\frac{\partial \theta_i}{\partial u_i} = -\frac{\partial \theta_i}{\partial u_j} - \frac{\partial \theta_i}{\partial u_k} = -\frac{\partial \theta_j}{\partial u_i} - \frac{\partial \theta_k}{\partial u_i} \end{split}$$

Ricci energy

Proof.

$$H = -\begin{pmatrix} \frac{h_3}{l_3} + \frac{h_2}{l_2} & -\frac{h_3}{l_3} & -\frac{h_2}{l_2} \\ -\frac{h_3}{l_3} & \frac{h_3}{l_3} + \frac{h_1}{l_1} & -\frac{h_1}{l_1} \\ -\frac{h_2}{l_2} & -\frac{h_1}{l_1} & \frac{h_2}{l_2} + \frac{h_1}{l_1} \end{pmatrix}$$

-H is diagonal dominant, it has null space (1,1,1), on the subspace $u_1+u_2+u_3=0$, it is strictly negative definite. Therefore the discrete Ricci energy $E(u_1,u_2,u_3)$ is strictly concave.

$$\omega = \sum_{v_i \in M} K_i du_i$$

$$E(\mathbf{u}) = \int_{\mathbf{0}}^{\mathbf{u}} \omega.$$

Lemma

The Ricci energy $E(\mathbf{u})$ is strictly convex on the subspace $\sum_{v_i \in M} u_i = 0$.

The gradient $\nabla E = (K_1, K_2, \dots, K_n)$. The Ricci energy

$$E(\mathbf{u}) = 2\pi \sum_{v_i \in M} u_i - \sum_{[v_i, v_j, v_k] \in M} E_{ijk}(u_i, u_j, u_k)$$

where E_{ijk} is the ricci energy defined on the face $[v_i,v_j,v_k]$. The linear term won't affect the convexity of the energy. The null space of the Hessian is $(1,1,\cdots,1)$. In the subspace $\sum u_i=0$, the energy is strictly convex.

Uniqueness

Lemma

Suppose $\Omega \subset \mathbb{R}^n$ is a convex domain, $f:\Omega \to \mathbb{R}$ is a strictly convex function, then the map

$$\mathbf{x} o
abla f(\mathbf{x})$$

is one-to-one.

Proof.

Suppose $x_1 \neq x_2$, $\nabla f(x_1) = \nabla f(x_2)$. Because Ω is convex, the line segment $(1-t)x_1 + tx_2$ is contained in Ω . construct a convex function $g(t) = f((1-t)x_1 + tx_2)$, then g'(t) is monotonous. But

$$g'(0) = \langle \nabla f(x_1), x_2 - x_1 \rangle = \langle \nabla f(x_2), x_2 - x_1 \rangle = g'(1),$$

contradiction.

Uniqueness

<u>Lemma</u>

Suppose $\Omega \subset \mathbb{R}^n$ is a convex domain, $f:\Omega \to \mathbb{R}$ is a strictly convex function, then the map

$$\mathbf{x} \to \nabla f(\mathbf{x})$$

is one-to-one.

Uniqueness

Theorem (Global Rigidity)

Suppose M is a mesh, with circle packing metric, all edge intersection angles are non-obtuse. Given the target curvature (K_1, K_2, \cdots, K_n) , $\sum_i K_i = 2\pi \chi(M)$. If the solution $(u_1, u_2, \cdots, u_n) \in \Omega(M), \sum_i u_i = 0$ exists, then it is unique.

Proof.

The discrete Ricci energy E on $\Omega \cap \{\sum_i u_i = 0\}$ is convex,

$$\nabla E(u_1, u_2, \cdots, u_n) = (K_1, K_2, \cdots K_n).$$

Use previous lemma.

Existence

Theorem (Thurston)

Suppose (T,Φ) is a weighted generalized triangulation of a closed surface M and I is a proper subset of vertices of V, here the weight is a map $\Phi: E \to [0,\frac{\pi}{2})$. Then for any circle packing metric based on (T,Φ) , we have

$$\sum_{i\in I} K_i(u) > -\sum_{(e,v)\in Lk(I)} (\pi - \Phi(e)) + 2\pi\chi(F_I),$$

where F_I is the CW-subcomplex of cells whose vertices are in I and

$$Lk(I) = \{(e, v) | v \in I, e \cap I = \emptyset, (e, v) \text{ form a triangle}\}$$