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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface X~ with a Riemannian

metric g, a local coordinate system \ =
(u, v) is an isothermal coordinate
system, if 331

g = 2V (du? + dv?).
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Gaussian Curvature

Gaussian Curvature

Under the isothermal coordinates, the Riemannian metric is
g = 2 (du? + dv?), then the Gaussian curvature on interior points are
K=—-A,)\= L A
= —QAg) = 2 A,

where ) )

0 0

A= —+—
ou?  Ov2

David Gu (Stony Brook University) Computational Conformal Geometry September 5, 2020 3/42



Conformal Metric Deformation

Definition
Suppose X is a surface with a
Riemannian metric,

g = ( 811 812 )
821 822
Suppose A : ¥ — R is a function
defined on the surface, then e**g is
also a Riemannian metric on ¥ and

called a conformal metric. A is called
the conformal factor.

Angles are invariant measured by

g —eg .
conformal metrics.

Conformal metric deformation.
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Curvature and Metric Relations

Yamabi Equation

Suppose g = e?*g is a conformal metric on the surface, then the Gaussian
curvature on interior points are

K = e 2 (—Ag) + K),

geodesic curvature on the boundary

ke = €M —=0n) + kg).
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Theorem (Poincaré Uniformization Theorem)

Let (X,8) be a compact 2-dimensional Riemannian manifold. Then there
is a metric § = e*g conformal to g which has constant Gauss curvature.
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Surface Uniformization

Figure: Closed surface uniformization.
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Surface Uniformization

Figure: Open surface uniformization.

David Gu (Stony Brook University) Computational Conformal Geometry September 5, 2020



Surface Ricci Flow

Proposition

During the curvature flow < dt = —K, then

d
— K =2K? + A.K.
dt t 0

( 72)\A)\)

( ) e—2>\A)\ —2>\A dA
dt

= (-2‘2)\—e—2*AA\ | _”A‘Z;\

, A dA
- (o) Koy
=2K? + AgK
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Surface Ricci Flow

Key Idea
K = —Ag),
Roughly speaking, K J
P EAgA
Let % =—K, »
= DeK+ 2K?2

Diffusion and reaction equation!
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Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)

A closed surface with a Riemannian metric g, the Ricci flow on it is

defined as
9gij

= —2Kg;j:.
dt Ei
The normalized surface Ricci flow,
dgij _ 2mx(S)
LX) oK,
dt — A0) &y

where A(0) is the initial surface area.

The normalized surface Ricci flow is area-preserving, the Ricci flow will
converge to a metric such that the Gaussian curvature is constant 272(((()5)
every where.
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the total area of
the surface is preserved during the flow, the Ricci flow will converge to a
metric such that the Gaussian curvature is constant (equals to K) every
where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total area of the
surface is preserved during the flow, the Ricci flow will converge to a metric
such that the Gaussian curvature is constant (equals to K) every where.
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Summary

Surface Ricci Flow

@ Conformal metric deformation

g — g

@ Curvature Change - heat diffusion

dK
— = A K +2K?
dt gt F
@ Ricci flow d
u —_
——K-K
dt
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.

o Isometric gluing of triangles in 2.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular meshes.

o Isometric gluing of triangles in 2.
o Isometric gluing of triangles in H?, S.

ARG
R
OLh

o
oS
Do

KX
KX
"

ORI
e
o
it
5
R
S
&k

X

50
0%
Vel

=
KoK
S
S
RPOK
R
BOESE
R

KR
7

5
i
S
e
A
S0

September 5, 2020 14 /42

Computational Conformal Geometry

(Stony Brook University)

David G



Discrete Generalization

@ Discrete Riemannian Metric
@ Discrete Curvature

© Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)
A Discrete Metric on a triangular mesh is a function defined on the
vertices, | : E = {all edges} — R™, satisfies triangular inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R

K(vi)=2m =Y 0% vi @ OM; K(vi) =7 = Y Oy, vi € OM
jk Jk

Theorem (Discrete Gauss-Bonnet theorem)

Y KW+ D K(v) =2mx(M).

vgoM veoM
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Discrete Metrics Determines the Curvatures

~__ cosbi+cos0;cos b 2
cosli = —ggams, S
~__ cosh@j+cosh §; cosh 0 2
coshl; = sinh 6 sinh 0, 1l
1 — Cosfitcosficosty o

- sin 6; sin
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Discrete Conformal Metric Deformation

Conformal maps Properties

@ transform infinitesimal circles to infinitesimal circles.

@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP
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Circle Packing Metric

We associate each vertex v; with a
circle with radius ;. On edge ej, the
two circles intersect at the angle of
®;;. The edge lengths are

[ =7 + 7} + 277 cos vy

CP Metric (X,I,®), X triangulation,

M= {7ilVvi}, ® = {pj|Ve;}
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Discrete Conformal Factor

Conformal Factor
Defined on each vertex u: V — R,

log i R?
ui=1 logtanhy  H?
logtan % S?
@ Symmetry
0K;  OK;
8Uj - 8u,~
@ Discrete Laplace Equation
dK = Adu,
A is a discrete Lapalce-Beltrami operator.

v
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Unified Framework of Discrete Curvature Flow

Analogy
@ Curvature flow

o Energy

E(u) = /Z(R,- — Ki)du;,

@ Hessian of E denoted as A,

dK = Adu.
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Criteria for Discretization

o Convexity of the energy E(u)

Convexity of the metric space (u-space)
Admissible curvature space (K-space)
Preserving or reflecting richer structures
Conformality
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Derivative Cosine law

B 9 9 2,2 p
, /o ) BT (2[ilccosb;) = o (F+ 17 =1
., do;
A 0; 0; ’U —2I_//k Sin e,d—ll = —2/,
AT a _
A= il sin0; el A
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Derivative Cosine law

o% (2ljlcosb;) = (% (P+1E=17)
2l; = 2l cost; — 2l sin 0;@
di
do;  Ixcost; — I
d A
. I; cos 0
li = I; cos O + I cos 0; - A
do;
= _d_/,' cos 0
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Derivative Cosine law

0 0
—I? = — (r? + r} + 2rjr, cos Tjx)
o' 0r MY
dl;
2Iid_rl' = 2I’j ar 2rk COS Tjk
i
dl; 2rJ-2 + 2rjr cos Tjk
drj 2l;rj
_ rj2 + r,% + 2rjri cos Tjx + rj2 — rf
2/,'I’J'
e iR — r,f
2 =r?+r? +2cosTyrir =
k — i J Tijity 2/[,«1
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Derivative Cosine law

— dodl dr
Let u; = log r;, then 92 = dh.dl.or
do, 4 (h 00 —1  cosfs cost
do, | = 7 0 L O cosf3 —1 cosf;
dos 0 0 &K cos@r cosf; —1
RHri—r; R4ri-n
i 0 . 2hn2hm n 0 0 duy
Br2—r2 0 ’2;;4’1 0 n O dup
—r1 hrs
-|-r212—r2 B+r5—rf 0 0 0 r dus
2l 2k, y
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Derivative Cosine law

dlk
2/kd_rj = 2rj+ 2rjcosTj
dly 2rj2 + 2r;irj cos T
Yo 20
A 2nncosTy 4P — 17
2l

_ 12+ rj2 —r?
; 21

In triangle [v;, vj, w],

dly Iy r; cos @ji
d_uj = 2# = I:,‘COSQSji = dji
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Derivative Cosine law

Theorem (Derivative Cosine Law)

do;  do; by

dui — du

do;  dOx _ h;

T

do,  dbo; b

o du  due |
There is a unique circle orthogonal to )

three circles (vj, r;), the center is o,
the distance from o to edge [v;, vj] is
Ay
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Derivative Cosine law

o0 _ 00,01 00,0l
Jdu; Oli Ou; ~ Ol Ouj
00; (ol Ol
- 51 (0 a2
= Ij(djk—djicosej)
. dl;
= liksing;
. hksin0j
N /ksinej
e
do;  hg
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Derivative Cosine law

o(vj — Vi, vj — V) ovj
= 22T vy,
o0, <auj’ Vi = Vi)
8/,3 av;
k= o ;
o, <auj’ Vi = Vi)
Ol _ (% Vi ~ V">
Ouj ouj” I
ov; vi—v;
d: o Vi~ Vv
J 6UJ’ Ik >
Similarly
v v; — vk
d, = (=—L X
v, Ik <6uj-’ I; )
o W ° oy
uj So g =V~ 0
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Lemma

For any three non-obtuse angles

Tij, Tjk, Tki € [0, %) and any three positive
numbers i, r» and r3, there is a configuration of
3 circles in Euclidean geometry, unique upto
isometry, having radii rj and meeting in angles

max{r?, rjz} <r?+ rJ-2 + 2rirjcos T < (i + r7)?

max{r?, rJ-2} <k <ri+r

SO

I <rid+r <li+1.

David Gu (Stony Brook University) Computational Conformal Geometry September 5, 2020 33 /42



Discrete Ricci Energy

w is closed 1-form in Q = {(uy, up, u3) € R3}.

80,— _ 89]
Because u = o °

00;  00;
dv = <8uj- — 8Ui> duj N\ du; +

00, 96y
(8[/,( — auj> dUk A dUJ +
0 0;
w = 0;du; + 9dej + deuj- <guk — gu > duj A duy
i k
= 0.
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Discrete Ricci Energy

The Ricci energy E(u1, ua, u3) is well defined.

Because © = R3 is convex, closed 1-form is
exact, therefore E(u1, ua, u3) is well defined,

(u1,u2,u3)

E(ul,u2,U3):/ w.

(0,0,0)
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Discrete Ricci Energy

The Ricci energy E(u1, ua, u3) is strictly concave
on the subspace u; + up + uz = 0.

The gradient VE = (61, 62,03), the Hessian

matrix is

001 001 061
OJu;  Oux  Jdus
g | 92 o062 a6
- 8U1 8U2 8U3
063 063 003
Ou;  Oup Ous

E(ul, i, u3) _ /(u1,uz,u3) wbecause of Oy + 0p + 03 = 1,
(0,0,0) 00; 08, 06, 90, 9y

ou; _Guj- - due _Gu,' B ou;

David Gu (Stony Brook University) Computational Conformal Geometry September 5, 2020



—H is diagonal dominant, it has null space (1,1,1), on the subspace
uy + up + uz = 0, it is strictly negative definite. Therefore the discrete
Ricci energy E(us, ua, u3) is strictly concave.

O]
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Discrete Ricci Energy

The Ricci energy E(u) is strictly convex on the
subspace ). Ui = 0.

The gradient VE = (K1, K2, - -+ , K,). The Ricci
energy

E(u) =2r Z uj — Z Ejjic (i, uj, u)

v,ieEM [V,',\/J',Vk]EM

where Ejj is the ricci energy defined on the face
[vi, vj, vi]. The linear term won't affect the
convexity of the energy. The null space of the
Hessian is (1,1,---,1). In the subspace

> uj =0, the energy is strictly convex.
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Uniqueness

Lemma

Suppose Q2 C R" is a convex domain, f : Q — R is a strictly convex

function, then the map
x — V£(x)

is one-to-one.

Proof.

Suppose x1 # xp, Vf(x1) = Vf(x2). Because Q is convex, the line
segment (1 — t)x; + txp is contained in §. construct a convex function
g(t) =f((1 — t)x1 + tx2), then g’(t) is monotonous. But

g'(0) = (Vf(x1),x2 — x1) = (VFf(x),x —x1) = g'(1),

contradiction. ]

v
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Uniqueness

x— Vf(x) @)

Suppose Q2 C R" is a convex domain, f : Q — R is a strictly convex
function, then the map
x — Vf(x)

is one-to-one.
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Uniqueness

Theorem (Global Rigidity)

Suppose M is a mesh, with circle packing metric, all edge intersection
angles are non-obtuse. Given the target curvature (K1, Kz, -+, Ky),
> Ki = 2nx(M). If the solution (uy, uo,--- ,u,) € Q(M),> ;ui =0
exists, then it is unique.

Proof.
The discrete Ricci energy E on QN {>; uj = 0} is convex,

VE(U]_, up, .- 7un) = (Kla K27' o Kn)

Use previous lemma. ]
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Existence

Theorem (Thurston)

Suppose (T, ®) is a weighted generalized triangulation of a closed surface
M and | is a proper subset of vertices of V/, here the weight is a map
®: E —[0,7). Then for any circle packing metric based on (T, ®), we

have
S Ki(u)>— Y (7 —d(e)) + 2mx(F),

i€l (e,v)eLk(I)

where F; is the CW-subcomplex of cells whose vertices are in | and

Lk(l) ={(e,v)lve l,enl =10,(e,v) form a triangle}
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