
Combinatorial Maps for Cell Complex Representation

David Gu

Yau Mathematics Science Center
Tsinghua University

Computer Science Department
Stony Brook University

gu@cs.stonybrook.edu

August 28, 2020

David Gu (Stony Brook University) Computational Conformal Geometry August 28, 2020 1 / 31



Combinatorial Maps
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Meshes

Definition (Mesh)

A mesh is a cellular decomposition of geometric objects such as curves,
surfaces or volumes.

Definition (Topological Models)

Topological models provide neighborhood relations between the cells of
the decomposition (vertices, edges, faces, volumes).

The data structure provide ways to:

traverse the cells

traverse local neighborhoods

store data with the cells

modify the connectivity
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Combinatorial Maps

Combinatorial maps are dimension-independent and rely on a single
element along with a simple set of relations. All the information about the
cells and their incidence and adjacency relations is contained within this
model. All the neighborhood queries are resolved in optimal time (linear in
the number of traversed cells) without having to maintain any additional
information.
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Incidence Graph
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Figure: Cell decomposition and its incidence graph.
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Cell-tuples

Definition (cell-tuple)

In a n-dimensional cellular decomposition, a cell-tuple is an ordered
sequence of cells

(Cn,Cn1, . . . ,C1,C0)

of decreasing dimensions such that ∀i , 0 < i ≤ n, Ci is incident to Ci1.

In other words, a cell-tuple corresponds to a path in the incidence graph
from a n-cell to a 0-cell, i.e. a vertex.
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Construction of Cell-tuples

F1, ∗, ∗ F2, ∗, ∗ F2, e6, ∗F1, e1, ∗

F1, e2, ∗

F2, e3, ∗

F2, e4, ∗

F1, e5, ∗

F1, e6, ∗
F1, e1, v1

F1, e1, v5

F1, e5, v5 F1, e5, v4

F1, e2, v1 F1, e2, v2

F1, e6, v2

F1, e6, v4
F2, e6, v4

F2, e6, v2

F2, e3, v2

F2, e4, v4

F2, e4, v3

F2, e3, v3

Iterative construction of all the cell-tuples generated by the cellular
decomposition, a cell-tuple is called a dart, (face, edge, vertex).
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i -adjacentcy

Definition (i -adjacency)

Adjacency relations are defined on the cell-tuples: two cell-tuples are said
to be i-adjacent if their path in the incidence graph share all but the
i-dimensional cell.

In the context of the cellular decomposition of a quasi-manifold, it can be
shown that these n + 1 adjacency relations put the cell-tuples in a
one-to-one relation (except for the n-adjacency at the boundary of the
object where cell-tuples do not have any mate).
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Generalized Map

Generalized maps encode a cellular decomposition with a set D of darts (
cell-tuples). A set of n + 1 functions

αi : D → D, 0 ≤ i ≤ n

are defined based on the i-adjacency relations of the cell-tuples.
αi functions are involutions, i.e. functions such that

∀d ∈ D, αi (αi (d)) = d .
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α-functions
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Figure: α0, α1, α2, α3 for a dart (V ,F ,E ,V ).
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α-functions
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Figure: α0, α1, α2 for a dart (F ,E ,V ).
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α-functions

Consistency Condition

Combinatorial constraints express the correct assembly of cells along their
boundary. For αi functions, these constraints are expressed as follows:

∀i , j , 0 ≤ i < i + 2 ≤ j ≤ n, αi ◦ αj

is an involution.
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Dart - Cell

1 each dart identifies a set of n cells of each dimension, i.e. those
contained in the corresponding cell-tuple;

2 each k-cell is represented by a set of darts, i.e. all the darts whose
corresponding cell-tuple contains this cell;
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F2, e4, v4

F2, e4, v3

F2, e3, v3

Figure: 〈α1, α2〉(d).
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Orbit

1 αi (d) is the dart that represents the same cells as d except from the
i-dimensional cell;

2 All the other αj , j 6= i functions will lead to darts that share the same
i-cell as d ;

3 The set of darts representing the same i-cell can be obtained by
applying successively all the functions that maintain the i-dimensional
cell unchanged, i.e.

{αj , j ∈ {0, 1, . . . , i − 1, i + 1, . . . , n}}.

Such sets of darts are formally defined as orbits, noted:

〈α0, . . . , αi−1, αi+1, . . . , αn〉.
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Dart - Cell
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Figure: 〈α0, α2〉(d).
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Dart - Cell
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Figure: 〈α0, α1〉(d).
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Oriented Combinatorial Maps

A Generalized map is able to represent orientable or non-orientable
quasi-manifolds.

The orientability of a given G-map can be determined with a binary
coloring process of its darts following this rule: a dart of a given color can
only be linked to darts of the other color.

Figure: Orientable manifold.
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Oriented Combinatorial Maps

For orientable manifold, the darts of the G-map are partitionned in two
sets D-black and D-white of equal cardinality, each one representing one of
the two orientations of the object. For any dart d ∈ D,

〈ϕ1, . . . , ϕn〉(d)

with ϕi = αi ◦ α0 is the set of darts corresponding to the orientation
yielded by d .

Figure: Orientable manifold.David Gu (Stony Brook University) Computational Conformal Geometry August 28, 2020 18 / 31



Oriented Combinatorial Maps

Figure: The oriented combinatorial map yielded by dart d , ϕ1 = α1 ◦ α0 and
ϕ2 = α2 ◦ α0.
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Oriented Combinatorial Maps

Definition (Oriented Combinatorial Maps)

One orientation of an orientable G-map is actually a combinatorial map,
defined as a set of darts D along with n functions

ϕi : D → D, 1 ≤ i ≤ D,

with ϕi = αi ◦ α0.

ϕ1

ϕ2

ϕ1

ϕ2
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Oriented Combinatorial Maps

The ϕ1 function is a permutation that links the ordered vertices
around oriented faces;

The ϕi , i ≤ 2 ≤ n functions are involutions, as stated by the
constraint expressed above on the αi involutions;

Each of these involutions allows to glue pairs of i-dimensional cells
along their common (i − 1)-dimensional boundary cell.

ϕ1

ϕ2

ϕ1

ϕ2
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Oriented Combinatorial Maps

α0 α1

Figure: ϕ1, similar to halfedge → next().

ϕ1 ϕ1 ϕ1

Figure: ϕn
1.

David Gu (Stony Brook University) Computational Conformal Geometry August 28, 2020 22 / 31



Oriented Combinatorial Maps

α0 α2

α0

α2

Figure: ϕ2, similar to halfedge → sym(), ϕ2
2 = id .

David Gu (Stony Brook University) Computational Conformal Geometry August 28, 2020 23 / 31



Oriented Combinatorial Maps

α0 α3

α0

α3

Figure: ϕ3, similar to halfface → sym(), ϕ2
3 = id .
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Orbits

1 For cells of dimension i ≥ 1, the sets of darts that represent the cells
are defined by the orbit

〈ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn〉.

starting from any dart, all the functions that maintain the
i-dimensional cell unchanged are applied.

2 For vertices, the orbit is 〈ϕ1 ◦ ϕ2, . . . , ϕ1 ◦ ϕn〉.

ϕ1

ϕ2

ϕ1

ϕ2
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Oriented Combinatorial Maps

ϕ2 ϕ1

ϕ1 ◦ ϕ2ϕ1 ◦ ϕ2

Figure: ϕ1 ◦ ϕ2, (ϕ1 ◦ ϕ2)3 = id .
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Oriented Combinatorial Maps

ϕ3

ϕ3

ϕ1

ϕ1

Figure: ϕ1 ◦ ϕ3, (ϕ1 ◦ ϕ3)2 = id .
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Oriented Combinatorial Maps
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Figure: ϕ2, ϕ3.David Gu (Stony Brook University) Computational Conformal Geometry August 28, 2020 28 / 31



Volumetric Mesh

Mesh

A volumetric mesh data structure includes

1 a lits of darts;

2 a list of vertices;

3 a list of edges;

4 a list of faces;

5 a list of volumetric cells;

Dart

A dart d = (v , e, f , c) includes

1 pointers to (vertex,edge,face,cell)

2 pointers to ϕ1(d), ϕ2(d) and ϕ3(d)
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Volumetric Mesh

Vertex

A vertex v data structure includes

1 a pointer to one dart d , with the form d = (v , e, f , c)

2 attributes of the vertex

3 the neighboring darts 〈ϕ1 ◦ ϕ2, ϕ1 ◦ ϕ3〉(d)

Edge

A edge e data structure includes

1 a pointer to one dart d , with the form d = (v , e, f , c)

2 attributes of the edge

3 the neighboring darts 〈ϕ2, ϕ3〉(d)
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Volumetric Mesh

Face

A face f data structure includes

1 a pointer to one dart f , with the form d = (v , e, f , c)

2 attributes of the face

3 the neighboring darts 〈ϕ1, ϕ3〉(d)

Cell

A cell c data structure includes

1 a pointer to one dart d , with the form d = (v , e, f , c)

2 attributes of the cell

3 the neighboring darts 〈ϕ1, ϕ2〉(d)
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