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Overview

There are three views of optimal transportation theory:

1 Duality view

2 Fluid dynamics view

3 Differential geometric view

Different views give different insights and induce different computational
methods; but all three theories are coherent and consistent.
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Optimal Transportation Map

Figure: Buddha surface.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Euler Equation
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The incompressible Euler Equation

We shall now study the dynamics of fluid flows and consider changes in
motion due to forces acting on a fluid. We derive an evolution equation for
the fluid momentum by considering forces acting on a small domain of
fluid, of volume V and surface S , containing many fluid particles.

V

S

n

Figure: Forces acting on fluid volume.
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Material Derivative

Consider a scalar quantity ϕ = ϕ(x, t), where t is time and x is position.
Here ϕ may be some physical variable such as temperature or chemical
concentration. The physical quantity, whose scalar quantity is ϕ, exists in
a continuum, and whose macroscopic velocity is represented by the vector
field u(x, t).
The (total) derivative with respect to time of ϕ is expanded using the
multivariate chain rule:

d

dt
ϕ(x, t) =

∂ϕ

∂t
+ ẋ · ∇ϕ.

It is apparent that this derivative is dependent on the vector ẋ = dx/dt,
which describes a chosen path x(t) in space.
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Material Derivative

The material derivative finally is obtained when the path x(t) is chosen to
have a velocity equal to the fluid velocity ẋ = u. That is, the path follows
the fluid current described by the fluid’s velocity field u. So, the material
derivative of the scalar ϕ is

Dϕ

Dt
=
∂ϕ

∂t
+ u · ∇ϕ.

Similarly, the material derivative of u is

Du

Dt
=
∂u

∂t
+ u · ∇u
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Forces acting on a fluid

The forces acting on the fluid can be divided into two types. Body forces,
such as gravity, act on all the particles throughout V ,

FV =

∫
V
ρgdV .

Surface forces are caused by interactions at the surface S , such as fluid
pressure. Collisions between fluid molecules on either sides of the surface
S produce a flux of momentum across the boundary, in the direction of the
normal n. The force exerted on the fluid into V by the fluid on the other
side of S , by convention, written as

Fs =

∫
S
−pndS .
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Euler’s Equation

Newton’s second law of motion tells that the sum of the forces acting on
the volume of fluid V is equal to the rate of change of its momentum.
Since Dv/Dt is the acceleration of the fluid particles, or fluid elements,
within V , one has ∫

V
ρ
Dv

dt
dV =

∫
S
−pndS +

∫
V
ρgdV .

We now apply the divergence theorem,∫
V
ρ
Dv

Dt
dV =

∫
V

(−∇p + ρg)dV ,

and notice that both integrands must be identical, since V is arbitrary. So
the eveloution of fluid momentum is governed by Euler’s equation

ρ
Dv

Dt
= ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + ρg. (1)
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Euler Equation

The Euler equation is one of the most basic equations in fluid mechanics.
In its simplest version it models an incompressible, inviscid fluid in a
bounded, smooth open set Ω ⊂ Rn. The unknown is the velocity field of
the fluid,

v(t, x) : R+ × Ω→ Rn

and the incompressible Euler equation is obtained by Newton’s law, the
material derivative of v is given by the gradient of the pressure,
Dv/Dt = −∇p, from (1), we obtain{

∂v
∂t + v · ∇v = −∇p
∇ · v = 0.

(2)

Because v(t, x) is divergence free, ρ is constant.
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Energy Conservation

Lemma (Energy conservation)

Let v be a smooth solution of (2). Then, the total kinetic energy∫
Ω
|v(t, x)|2dx = ‖v(t, ·)‖2

L2(Ω;Rn)

is constant.

Proof.

Here, we give a sketch of proof.

1

2

d

dt

∫
Ω
|v |2 =

∫
Ω
v · ∂v

∂t
= −

∫
Ω
v · (v · ∇v)−

∫
Ω
v · ∇p

But on one hand, because v is tangent to the boundary of Ω, we have∫
Ω
v · ∇p = −

∫
Ω

(∇ · v)p,
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Energy Conservation

continued.

since ∇ · v = 0, the above equals to 0. And on the other hand,∫
Ω
v · (v · ∇v) =

∑
1≤i ,j≤n

∫
Ω
vivj∂jvi =

1

2

∑
ij

∫
Ω
vj∂j(vi )

2 =
1

2

∫
Ω
v · ∇|v |2

= −1

2

∫
Ω

(∇ · v)|v |2 = 0.
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Lagrange Formulation

x0

v(x, t)

m(t, x0)

Figure: Lagrangian formulation.
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Lagrangian Formulation

The point of view used in the last subsection, in which the unknown was a
time-dependent velocity field, is called the Eulerian formulation. There is
an alternative way of looking at fluid mechanics: the Lagrangian point of
view, which focuses on the trajectories of particles.

In an Eulerian description, one stares at a given, fixed point of space
x , and measure the velocity v(t, x) of fluid particles going through
this point at time t.

In a Lagrangian description, one puts a label on each particle, and
then studies the trajectory of each labelled particle. For instance,
assuming that we label particles according to their initial position x0,
we denote by

x = m(t, x0)

the position at time t of a particle that was located at position x0 at
time 0. It is usually assumed that for each time t, the map
x0 7→ m(t, x0), defined on Ω, is one-to-one.
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Eulerian and Lagrangian Views

To switch between these two descriptions, it suffices to use the identities
v(t,m(t, x0)) = d

dtm(t, x0),

m(0, x0) = x0.

(3)

It is important to keep in mind the Eulerian expression of the Lagrangian
acceleration: by differentiating (3) with respect to time, one finds that

d2

dt2
m(t, x0) =

[
∂v

∂t
+ (v · ∇v)

]
(t,m(t, x0)), (4)

which explains the occurence of the convective derivative v · ∇v in the
Euler equation.
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Diffeomorphism

It seems natural to search for (m(t, ·))t≥0 as a family of diffeomorphisms
from Ω to Ω:

The mapping m is injective, because different trajectories won’t
intersect at the same time t;

the mapping is surjective, otherwise there would be some vaccum
created inside the domain, contradicting the fact that the fluid has
constant density (incompressibility).
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Diffeomorphism

The imcompressibility constraint can be recast in terms of m: if v is
regular enough, then

∇ · v = 0 ⇐⇒ det

(
∂m

∂x0

)
≡ 1. (5)

Indeed, the identity on the right-hand side of (5) is obviously satisfied at
time 0, since m(0, ·) is the identity map; then (5) is a consequence of the
identity

∂

∂t
log det

[
∂m

∂x0

]
= (∇ · v)(t,m(t, x0)). (6)

The formula can be proved using the derivative of the determinant of a
matrix,

d

dt
det(A(t)) = det (A(t))Tr

(
A−1 d

dt
A

)
.
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Diffeomorphism

In Lagrangian formulation, the Euler equation becomes an evolution
equation for a map t 7→ m(t, ·), with values in the group G (Ω) of
diffeomorphisms Ω→ Ω with unit determininant. To recall this, we use
the letter g for the trajectory map m. In particular, g is
measure-preserving: it pushes Lebesgue measure forward to itself.
The physical interpretation is that the volume of a set of particles is kept
constant under time-evolution, which is precisely the incompressibility.
Thus, we rewrite (3) as

v(t, g(t, x0)) =
d

dt
g(t, x0), or v(t.x) =

∂g

∂t
◦ g−1(t, x). (7)

By (4), the Euler equation (2) translates into an equation on the
trajectory field t 7→ g(t, ·) of R+ into G (Ω),

d2

dt2
g(t, x0) = −∇p(t, g(t, x0)). (8)
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Arnold’s Interpretation

Theorem (Arnold)

The Euler equation is the equation of geodesics on G (Ω), endowed with
the Riemannian structure inherited from the Euclidean space L2(Ω;Rn).

Recall that a geodesic on a Riemannian manifold M is a path γ(t) which
minimizes the distance [∫ t2

t1

|ġ(t)|2dt
] 1

2

(9)

among all curves g : [t1, t2]→ M constrained by the boundary conditions
g(t1) = γ(t1), g(t2) = γ(t2), and this minimization property should hold
true whenever t2 is close enough to t1. It is equivalent to stating that the
acceleration of the curve γ, viewed from the tangent space to the
manifold, vanishes identically.
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Arnold’s Interpretation

S

γ

p

n

Figure: Geodesic: curve normal coincide with the surface normal.
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Arnold’s Interpretation

In Arnold’s interpretation, we consider the Riemannian structure on G (Ω)
inherited from L2(Ω), and this simply means that the acceleration d2g/dt2

should be orthogonal to the tangent space Tg(t)G (Ω) in L2(Ω;Rn).
Recall from the preceding discussion that a path g(t), starting from
g0 ∈ G , stays in G if and only if ∂g/∂t is tangent to the boundary, and
∇ · v(t, x) = 0, by (7)

∇ ·
[
∂g

∂t
◦ g−1

]
= 0.

Thus, tangent vector in TgG are all vector fields h such that
∇ · (h ◦ g−1) = 0, or equivalently h = w0 ◦ g , where w0 lies in D0, the
space of divergence-free vector fields.
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Arnold’s Interpretation

Using the fact that g is measure-preserving diffeomorphism, one
immediately checks that (TgG )⊥ is the space of all vector fields q0 ◦ g ,
where g0 ∈ D⊥0 , and D⊥0 is the orthogonal subspace to D0 in L2. Now, it is
an easy consequence of the Helmoltz decomposition that under reasonable
regularity condition on Ω,

D⊥0 = {−∇p, p : Ω→ R} .

So the equation for geodesics becomes

d2

dt2
g(t) = −∇p(t, g(t)).

This is exactly the incompressible Euler equation (8) in Lagrangian
formulation. This gives an interpretation of the pressure field.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 26 / 45



Arnold’s Interpretation

If g(t, x0) is a smooth solution of the Euler equation, with a pressure field
p bounded in C 2(Ω), uniformly in time, then there exists ε > 0 such that
for |t1 − t2| < ε,∫ t2

t1

(∫
Ω

∣∣∣∣∂g∂t (t, x0)

∣∣∣∣2 dx0

)
dt ≤

∫ t2

t1

(∫
Ω

∣∣∣∣∂γ∂t (t, x0)

∣∣∣∣2 dx0

)
dt

for any other trajectory mapping γ with γ(t1) = g(t1) and γ(t2) = g(t2).
If Ω is convex, one can choose

ε =
π√

‖D2p‖L∞
.
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Fluid Dynamics View

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 28 / 45



Fluid View

Consider a flow field of special gas. At each time t ∈ [0, 1], at point
x ∈ Ω, the density of the gas is ρ(x , t). For Lagrangian point of view, the
trajectory of each particle (molecule) is a curve, denoted as γx(t), with
initial position and velocity

γx(0) = x , γ′x(t) = v(γx(t)).

The density function is ρ(x , t), by mass conservation law, we get the
continuity equation

∂tρt +∇ · (ρtvt) = 0 .
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Diffeomorphism

Suppose the trajectories of different particles intersect at some time t,
then globally there will be shock waves in the flow field. If there is no
shocks, then at each time t ∈ [0, 1], the initial position x of each particle
is mapped to the current position γx(t), this gives a global diffeomorphism

gt := g(·, t) : x 7→ γx(t),

at time t, the velocity of the particle is γ′x(t) = v(γx(t)), the global
velocity field is denoted as v(x , t), then the diffeomorphism satisfies the
ODE:

d

dt
g(x , t) = v(g(x , t), t). (10)
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Diffeomorphism

Given a smooth velocity field v(x , t), we can get the diffeomorphism group
g(x , t). Namely, if v(x , t) is smooth enough, no shock waves will appear,

∂t log det

[
∂g(x , t)

∂x

]
= ∇ · v(g(x , t), t). (11)
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McCann Displacement

Definition (McCann’s Displacement)

If the cost function is strictly convex, under Lagrangian point of view, all
particles move with uniform speed in a straight line, their trajectories are

gt(x) = (1− t)x + t(∇c)−1(∇ϕ), (12)

where ϕ is the optimal Kantorovich potential, this is called McCann
displacement,

ρt = [(1− t)Id + t(∇c)−1(∇ϕ)]#µ.

McCann’s displacement gives geodesics in Wasserstein space. One can
show that

Wc((gs)#µ, (gt)#µ) = |s − t|Wc(µ, ν), ∀s, t ∈ [0, 1].
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Time Dependent Optimal Transport Problem

Given a differential cost function c(v), defined on velocity vector, then the
cost for a trajectory is

C[gt(x)] :=

∫ 1

0
c(ġt(x))dt.

Problem (Time Dependent Optimal Transport)

Find a flow field connecting µ and ν, that minimizes the total cost of all
trajectories:

inf

{∫
Ω
C[gt(x)]dµ(x) : g0 = Id, (g1)#µ = ν

}
. (13)
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Time Dependent Optimal Transport Problem

Figure: McCann’s displacementEvery particle is in a uniform linear motion.
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Time Dependent Optimal Transport Problem

From mass-conservation law, we get the continuity equation:

d

dt
ρ(x , t) +∇ · (ρ(x , t)v(x , t)) = 0,

By McCann interpolation, each trajectory is a constant velocity, the
material derivative Dv/Dt is 0, hence the velocity field satisfies the Euler
equation:

d

dt
v(x , t) + v(x , t) · ∇v(x , t) = 0.

The cost function information is implied by the initial conditon

v(x , 0) = (∇c)−1(∇ϕ),

where ϕ is the optimal Kantorovich potential.

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 35 / 45



Benamou-Brenier Problem

Consider all flow fields connecting µ and ν, denote (ρ(x , t), v(x , t)) as
(ρt , vt), then

Γ(µ, ν) :=

{
(ρt , vt) :

∂ρt
∂t

= −∇ · (ρtvt), ρ0 = µ, ρ1 = ν

}
Given any time t ∈ [0, 1], the Kinetic energy of the velocity field v(x , t) is
defined as

E (vt) :=
1

2

∫
Ω
ρ(x , t)‖v(x , t)‖2dx .

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 36 / 45



Benamou-Brenier Problem

Problem (Benamou-Brenier)

Find the flow field in Γ(µ, ν), that minimizes the total kinetic energy,

BB : min

{
1

2

∫ 1

0

∫
Ω
ρt‖vt‖2dxdt : (ρt , vt) ∈ Γ(µ, ν)

}
(14)
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Benamou-Brenier Problem

Use variational approach, assume ρtwt is divergence free,

1

2

d

dε

∫ 1

0

∫
Ω
ρt〈vt + εwt , vt + εwt〉dxdt =

∫ 1

0

∫
Ω
ρt〈vt , εwt〉dxdt = 0,

by Hodge decomposition theorem, vt is orthogonal to all divergence free
vector fields, so vt = ∇ut , where ut : Ω→ R is a family of funcitions.
This can be obatined by McCann interpolation.
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Benamou-Brenier Problem

Problem (Benamou-Brenier)

W2(µ, ν) := min

{∫ 1

0

∥∥∥∥∂ρ∂t
∥∥∥∥2

ρ(t)

dt, ρ0 = µ, ρ1 = ν,−∇ · (ρ∇u) =
∂ρ

∂t

}

where ∥∥∥∥∂ρ∂t
∥∥∥∥2

ρ(t)

=

∫
Ω
ρ|∇u|2,
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Otto’s Interpretation

Given two geodesics ρ1(t), ρ2(t) ⊂ P(Ω), ρ1(0) = ρ2(0) = ρ, the tangent
vector at ρ ∈ P(Ω),

∂ρ1

∂t
= −∇ · (ρ∇ϕ1)

∂ρ2

∂t
= −∇ · (ρ∇ϕ2)

the Riemannian inner product is〈
∂ρ1

∂t
,
∂ρ2

∂t

〉
ρ

=

∫
Ω
ρ〈∇ϕ1,∇ϕ2〉dx .

David Gu (Stony Brook University) Computational Conformal Geometry August 15, 2020 40 / 45



Entropy Flow

Definition (Entropy)

Given a probability measure ρ ∈ P(Ω), its entropy is defined as

Ent(ρ) :=

∫
Ω
ρ log ρdx .

Principle of maximum entropy

The principle of maximum entropy states that the probability distribution
which best represents the current state of knowledge is the one with
largest entropy, in the context of precisely stated prior data.
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Entropy Flow

Consider a path ρ(t) ⊂ P(Ω),

d

dt
Ent(ρ(t)) =

∫
ω

(
ρ̇ log ρ+ ρ

ρ̇

ρ

)
dx =

∫
Ω

(1 + log ρ)ρ̇dx .

By continuity equation ρ̇ = −∇ · (ρv), assume Ω = Rd , hence∫
Ω
ρ̇dx = −

∫
Ω
∇ · (vρ)dx = −

∫
∂Ω
ρvdx = 0.

We obtain

d

dt
Ent(ρ(t)) =

∫
Ω

log ρρ̇dx = −
∫

Ω
log ρ∇ · (ρv),
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Entropy Flow

At the same time

∇ · (ρ log ρv) = log ρ∇ · (ρv) + 〈∇ log ρ, ρv〉,

We obtain

d

dt
Ent(ρ(t)) = −

∫
Ω

log ρ∇ · (ρv)

=

∫
Ω
〈∇ log ρ, ρv〉 −

∫
∂Ω
ρ log ρv

=

∫
Ω
〈∇ log ρ, v〉ρdx .

This shows the Wasserstein gradient of Entropy is ∇ log ρ.
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Entropy Flow

In order to reduce the entropy, we let v = −∇ log ρ, plug into the
continuity equation:

∂ρt
∂t

+∇ · (ρtvt) = 0,

hence

∂ρt
∂t
−∇ · (ρt∇ log ρt) = 0

∂ρt
∂t
−∇ · (ρt

∇ρt
ρt

) = 0

∂ρt
∂t
−∆t = 0

This shows Wasserstein gradient flow of entropy equals to the classical
heat flow.
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Entropy Flow

We let v = −∇ log ρ, plug into the continuity equation:

d

dt
Ent(ρ(t)) =

∫
Ω
〈∇ log ρ, v〉ρdx = −

∫
Ω

|∇ρ|2

ρ
dx = −4

∫
Ω
|∇√ρ|2dx .

This gives the dissipation speed of the entropy. Let t go to infinity, ρ∞
becomes a uniform distribution.
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