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Surface Uniformization

Figure: Closed surface uniformization.
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Surface Uniformization

Figure: Open surface uniformization.
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Conformal Mapping of Infinite Triangle Mesh

Problem

Suppose we have an infinite triangle mesh, M̃, such as the universal
covering space of a closed mesh, fix a point v0 ∈ M̃, choose a sequence of
neighborhood En ⊂ M̃,

v0 ∈ E0 ⊂ E1 ⊂ E2 · · ·En · · ·

where each Ek is a topological disk, construct discrete conformal mapping
ϕn : En → Dn, such that

ϕn(v0) = 0, ϕ′n(v0) > 0,

then what is the is limit of the sequence {ϕn(v0)′} ?
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Conformal Mapping of Infinite Triangle Mesh

Answer

1 If M̃ is the universal covering of a torus, then the limit is 0;

2 If M̃ is the universal covering space of a high genus mesh, then the
limit is a positive number δ > 0.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Conformal Mapping of Infinite Triangle Mesh

Figure: Discrete Riemann mapping of triangle mesh.
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Liuville Theorem

Theorem (Liuville)

Suppose a holomorphic function f : C→ C is bounded, |f (z)| < C, for all
z ∈ C, then f (z) = const.

Proof.

According to Cauchy’s formula:

f (n)(a) =
n!

2πi

∮

Γ

f (z)

(z − a)n+1
dz ,

here Γ is a circle centered at a with radius r ,

|f ′(a)| =

∣∣∣∣
1

2πi

∮

Γ

f (z)

(z − a)2
dz

∣∣∣∣ ≤
1

2π

∫ 2π

0

C

r
dθ =

C

r
,

let r →∞, the derivative goes to 0. Hence the holomorhic function f (z)
is constant.

David Gu (Stony Brook University) Computational Conformal Geometry August 22, 2020 12 / 40



Liuville Theorem

The unit sphere S2 is conformal equivalent to the augmented complex
plane Ĉ. Complex plane C and the unit open disk D are open sets,
therefore they are not homeomorphic to the compact set S2. Liuville
theorem shows C and D are not conformally equivalent to each other.

Corollary

The complex plane C and the unit disk D are not conformally equivalent.

Proof.

Suppose they are equivalent, there is a biholomorphic function f : C→ D,
according to Liuville, f (z) is constant. Contradiction to biholomorphic
function.
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Crescent and Full-Moon Theorem

A1 B1 b1a1a2 b2

ϕ1

Ā B̄

Figure: Initial Map.
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Crescent and Full-Moon Theorem

A1 B1 b1a1a2 b2

ϕ1

Ā B̄

A∗ B∗

C∗

g G

Figure: Analytic extension result.
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Crescent and Full Moon

Lemma (Crescent and Full Moon)

As shown in Fig. 9, the boundaries of the crescent domain A1 are circular
arcs a1 and a2, they have intersection angle π/2m, m ∈ Z+. A conformal
map ϕ1 : A1 → B1 is defined on the crescent A1, ϕ1(ak) = bk , k = 1, 2,
b2 is a circular arc. Then there exist analytic functions, g ,G : D→ D, as
shown Fig. 10, satisfying

1 A∗ = g(Ā), C ∗ = g(A1);

2 B∗ = G (B̄), C ∗ = G (B1);

3 g |A1 = G ◦ ϕ1|A1 ;

and the restriction on ak ’s and bk ’s, the mappings g and G are
homeomorphisms.
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Crescent and Full-Moon Theorem

A1 B1

b1
a1a2 b2

Φ1

B̄
a3

A2 B2

b3

ψ1

b1
b2b3

B1

B2

ϕ2

B̄

Figure: Analytic extension, step one.
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Crescent and Full Moon

Proof.

As shown in Fig. (11), crescents A1 and A2 are symmetric about a2, by
the Schwartz reflection principle, analytic function ϕ1 : A1 → B1 can be
extended about the circular arc a2 to

Φ1 : A1 + A2 → B1 + B2,

using Riemann mapping

ψ1 : B1 + B2 + B̄ → D,

which maps the target to the unit disk. For convenience, we relabel
ψ1(B1), ψ1(B2) as B1 and B2, then the composition map is:

ϕ2 = ψ1 ◦ Φ1 : A1 + A2 → B1 + B2.
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Crescent and Full-Moon Theorem

A1
a1a2a3

A2
b4

ψ2

b1b2
b3
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ϕ3
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Figure: Analytic extension, step two.
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Crescent and Full Moon

continued.

As shown in Fig. (12), we extend ϕ2 : A1 + A2 → B1 + B2 again, A1 + A2

is reflected about a3 to a crescent A3, by Schwartz reflection principle,

Φ2 : (A1 + A2) + A3 → (B1 + B2) + B3,

then composed with the Riemann mapping ψ2 : B1 + B2 + B3 + B̄ → D,
we get the result for the second step extension,

ϕ3 = ψ2 ◦ Φ2 : A1 + A2 + A3 → B1 + B2 + B3.

Repeat this procedure, by analytic extension we get conformal mappings:

ϕk :
k∑

i=1

Ai →
k∑

j=1

Bj ,

David Gu (Stony Brook University) Computational Conformal Geometry August 22, 2020 20 / 40



Crescent and Full Moon

continued.

Consider the inner angle of the crescents, the angle of Ak is θk , we have
recursive relations,





θ1 = π/2m

θ2 = π/2m

θk =
∑k−1

j=1 θj , k > 2

therefore at the m + 1 step, all the crescents cover the whole disk. Hence,
we obtain analytic function

G = ψm ◦ ψm−1 ◦ · · · ◦ ψ2 ◦ ψ1,

and
g = ψm ◦ ψm−1 ◦ · · · ◦ ψ2 ◦ φ1.
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Uniformization

We use a combinatorial representation to define a Riemann surface. Given
a Riemann surface M, and a triangulation T . If T has finite number of
faces, then M is a compact surface; if the surface has countable infinite
number of faces, then M is an open surface. Van der Waerden proves the
existence of a special type of triangulation.
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Uniformization

Lemma (Van der Waerden)

Assume M̃ is an open surface, then its triangulation can be sorted,

T = {∆1,∆2,∆3, · · · ,∆n, · · · }

such that for any n = 1, 2, · · · ,

Tn :=
n⋃

k=1

∆k

and ∆n+1 has only one intersection edge (and the third non-intersecting
vertex), or two edges, namely Tn is a topological disk.
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Uniformization

Let M̃ be the universal covering space of a Riemann surface, then M̃ is a
simply connected Riemann surface, its triangulation T is sorted in Van der
Waerden pattern. All the edges of T are analytic arcs, and every face ∆k

is covered by a conformal local chart.

Lemma

For any n > 0, the interior of

En = ∆1 + ∆2 + · · ·+ ∆n,

is conformally mapped onto the open unit disk, ϕn : En → Rn, Rn is an
open unit disk, and the restriction on the boundary,

ϕn|∂En : ∂En → ∂Rn

is topological homeomorphic.
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Uniformization

E1

M̃

∆̄

t s

R1

∆

U

ψ

ϕ1t

Ū

Figure: Initial induction step.
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Uniformization

Proof.

Step one: when n = 1, as shown in Fig. (13), E1 only includes one triangle
∆1, denote ∆ = ∆1. ∆ is covered by a conformal coordinate system
(U, t), ∆ ⊂ U. Let ∆̄, Ū are the pre-images of ∆, U on the t-plane,

t(∆̄) = ∆, t(Ū) = U.

∆̄ is a simply connected domain, its boundary is piecewise analytic curves.
According to Riemann mapping theorem, there is a holomorphic map
ψ : ∆̄→ R1, from ∆̄ to the unit disk R1 on s-plane, and the restriction on
the boundary is topological homeomorphic,

ψ|∂∆̄ : ∂∆̄→ ∂R1,

then construct a holomorphic map ϕ1 = ψ ◦ t−1 : E1 → R1, its restriction
on the boundary is a homeomorphism.
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Uniformization

∆En

H̃ B̃

Rn
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Figure: Induction step.
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Uniformization

continued.

Step two: when n > 1, assume at the n-th step, En is conformally mapped
onto the unit disk Rn on s-plane, ϕn : En → Rn, the restriction on the
boundary ϕn|∂En : ∂En → ∂Rn is homeomorphic.
As shown in Fig. (14), we consider En+1 = En + ∆n+1. Let ∆ = ∆n+1,
covered by a local conformal coordinates (U, t), the preimages of U and ∆
are Ū and ∆̄ respectively in the local coordinate system,

t
(
Ū
)

= U, t
(
∆̄
)

= ∆.

En and ∆ intersect at an analytic arc a, ∆ ∩ En = a. The image of a
under ϕn is ã, ϕn(a) = ã. The conformal local parametric representation
of a is ā, t(ā) = a.
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Uniformization

continued.

In the unit disk Rn on the s-plane, draw a circular arc b̃, two circular arcs
ã and b̃ have the same ending points, and the intersection angles at the
ending points equal to π/2k , where k is a big positive integer. The circlar
arcs bound a crescent B̃, the pre-image of B̃ on M̃ is B; the image of B
on the t-image is B̄, ϕn(B) = B̃, t(B̄) = B. We want to show the
existence of holomorphic maps s∗ = g(s) and s∗ = G (t), satisfying:

1 g(B̃) = B∗, g(H̃) = H∗, where H̃ = Rn − B̃;

2 G (B̄) = B∗, G (∆̄) = ∆∗;

3 on domain B̄, G (t) = g ◦ ϕn ◦ t;

4 Rn+1 = B∗ + H∗ + ∆∗

The combination of g(s) and G (t) gives the conformal mapping from
En+1 to Rn+1.
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Uniformization

H̃ B̃

Rn

ãb̃

s

∆̄

B̄
ā

b̄
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B∗

a∗b∗

Figure: Combination of conformal mappings.
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Uniformization

continued.

As shown in Fig. (15), by Riemann mapping, there is a mapping
t∗ = ψ(t), mapping ∆̄ + B̄ to ∆∗ + B∗, the center of the disk is inside
∆∗. Then the composition

τ = ψ ◦ ϕ−1
n , t∗ = τ(s)

maps the crescent B̃ to B∗. Note that τ : B̃ → B∗ is defined on crescent
B̃, not defined on H̃. By crescent-full moon lemma, there exist
holomorphic functions g and G , this proves the existence of
ϕn+1 : En+1 → Rn+1. By induction, the lemma holds.

David Gu (Stony Brook University) Computational Conformal Geometry August 22, 2020 31 / 40



Uniformization

Theorem (Open Riemann Surface Uniformization)

Simply connected open Riemann surface is conformal equivalent to the
whole complex plane C or the unit open disk D.

Proof.

Construct a sequence of holomorphic functions

ϕ1,n(s) = ϕn ◦ ϕ−1
1 ,

univalent on R1, and normalized at s = 0, ϕ1,n(0) = 0, ϕ′1,n(0) = 1. Then
{ϕ1,n} is a normal family. We choose subsequence Γ1 ⊂ {ϕ1,n}, which
converges to univalent function in the interior of R1, denoted as

Γ1 : ϕ1
1(p), ϕ1

2(p), ϕ1
3(p), · · ·

converges to a univalent function ϕ0(p) in E1.
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Construction of Normal Family

En

R1

s

M̃

ϕ1

ϕn ◦ ϕ−1
1

s∗

Rn

E1

ϕn

Figure: Construction of normal family {ϕn ◦ ϕ−1
1 }.
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Uniformization

continued.

Construct a sequence of holomorphic functions

ϕ2,n(s) = ϕ1
n ◦ ϕ−1

2 , ϕ1
n ∈ Γ1,

from {ϕ2,n} choose subsequence

Γ2 : ϕ2
1(p), ϕ2

2(p), · · ·

converges to a univalent holomorphic function on E2, and the restriction
on E1 equals to ϕ0(p), we still denote it as ϕ0(p).
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Uniformization

continued.

Furthermore, construct a sequence of functions

ϕ3,n(s) = ϕ2
n ◦ ϕ−1

3 , ϕ1
n ∈ Γ2,

from {ϕ3,n} choose subsequence

Γ3 : ϕ3
1(p), ϕ3

2(p), · · ·

converges to a univalent holomorphic function on E3, and the restriction
on E2 equals to ϕ0(p), we still denote it as ϕ0(p). Repeat this step, apply
diagonal principle, we obtain a function sequence

ϕ1
1(p), ϕ2

2(p), ϕ3
3(p), . . .

where ϕk
k(p) are well defined on En (k ≥ n), and converge to ϕ0(p) on En.
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Uniformization

continued.

Since En exhausts the whole open Riemann surface M̃, ϕ0(p) is univalent,
and maps M̃ to a simply connected domain R on s-plane.
Since M̃ is open, R can’t be the augmented complex plane. Hence, R is
either the whole complex plane C, or a domain on the complex plane. In
the second situation, by Riemann mapping theorem, R can be conformally
mapped to the unit disk D.
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Compact Surface Uniformization

R

∆′

s̄
E ′
n

R′

Figure: Compact surface case.
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Uniformization

Theorem (Compact Riemann Surface Uniformization)

Compact simply connected Riemann surface is conformal equivalent to the
unit sphere.

Proof.

Suppose M̃ has a triangulation T , which includes a finite number of faces,

Tn = ∆1 + ∆2 + · · ·+ ∆n,

the last triangle ∆n has three common eges with Tn−1. Choose an interior
point q ∈ ∆n, remove this point, we obtain an open Riemann surface,

M̃0 = M̃ \ {q},

according to open Riemann surface uniformization theorem, there is a
conformal mapping, ϕ : M̃0 → C, s = ϕ(p), which maps the open
Riemann surface either to a unit disk or the whole complex plane.
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Uniformization

continued.

on s-complex plane, let ϕ(∆n \ {q}) = ∆′, ϕ(En−1) = E ′n, point o ∈ En−1,
ϕ(o) = 0. Let R ′ ⊂ E ′n be a disk centered at the origin, then ∆′ is outside
R ′.
Function w = 1/z maps ∆′ to a bounded domain on w -plane. Consider a
function w = 1/ϕ(p) defined on M̃ \ {q}, w is bounded in a neighborhood
of q, hence q is a removable singularity of function w . Let the image of q
in w -plane is w(q).
Assume R = ϕ(M̃ \ {q}) is not the whole complex plane, but the unit
disk. Choose a point sequence s1, s2, · · · ,, its accumulation point is on the
unit circle. The corresponding point sequence on the surface is p1, p2, · · · .
Since M̃ is compact, the accumulation point of the point sequence is on
the surface. But the images of all points on M̃ \ {q} on s-plane are not on
the unit circle, hence

q = lim
n→∞

pn.
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Uniformization

continued.

For any point on the unit circle, s̄ ∈ ∂R, there is a point sequence
converging to s̄, hence

1/s̄ = w(q),

but s̄ has infinite many value, hence w(q) has infinite, contradiction.
Hence the assumption is incorrect, R = ϕ(M̃ \ {q}) is the whole complex
plane, M̃ is conformal equivalent to the augmented complex plane. �
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