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Overview

There are three views of optimal transportation theory:

1 Duality view

2 Fluid dynamics view

3 Differential geometric view

Different views give different insights and induce different computational
methods; but all three theories are coherent and consistent.
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Optimal Transportation Map

Figure: Buddha surface.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Optimal Transportation Map

Figure: Brenier potential.
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Convex Geometric View
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Monge-Ampére Equation

Problem (Brenier)

Given (Ω, µ) and (Σ, ν) and the cost function c(x , y) = 1
2 |x − y |2, the

optimal transportation map T : Ω→ Σ is the gradient map of the Brenier
potential u : Ω→ R, which satisfies the Monge-Ampére equation,

det

(
∂2u(x)

∂xi∂xj

)
=

f (x)

g ◦ ∇u(x)
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Monge-Ampére Equation

Problem (prescribed Gauss curvature)

Suppose that a real-valued function K is specified on a domain Ω in Rd ,
the problem seeks to identify a hypersurface of Rd+1 as a graph z = u(x)
over x ∈ Ω so that at each point of the surface the Gauss curvature is
given by K (x).

r(x , y) = (x , y , u(x , y)), rx = (1, 0, ux), ry = (0, 1, uy ), n =
(−ux ,−uy ,1)√

1+|∇u|2
,

E = 1 + u2
x , F = uxuy , G = 1 + u2

y

L =
uxx√

1 + |∇u|2
, M =

uxy√
1 + |∇u|2

, N =
uyy√

1 + |∇u|2

K (x , y) =
uxxuyy − u2

xy

(1 + |∇u|2)2
, Geneal case K (x)(1 + |∇u|2)

n+2
2 = detD2u
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Semi-Discrete Optimal Transportation Problem

Wi

Ω

T

(pi, Ai)

Problem (Semi-discrete OT)

Given a compact convex domain Ω in Rd , and p1, p2, · · · , pk and weights
w1,w2, · · · ,wk > 0, find a transport map T : Ω→ {p1, . . . , pk}, such that
vol(T−1(pi )) = wi , so that T minimizes the transportation cost:

C(T ) :=
1

2

∫
Ω
|x − T (x)|2dx
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Semi-Discrete Optimal Transportation Problem

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

According to Brenier theorem, there will be a piecewise linear convex
function u : Ω→ R, the gradient map gives the optimal transport map.

David Gu (Stony Brook University) Computational Conformal Geometry August 14, 2020 12 / 48



Optimality

Lemma

Suppose the projection of Brenier potential uh induces a cell
decomposition Ω =

⋃k
i=1 Wi , and the map T : Wi → pi . Given another

cell decomposition Ω =
⋃k

i=1 W
′
i , vol(Wi ) = vol(W ′) and T ′ : W ′

i → pi ,
then C(T ) ≤ C(T ′).

Proof.

Since vol(Wi ) = vol(W ′
j ), we have

∑k
i=1 vol(Wi )hi =

∑k
j=1 vol(W ′

j )hj ,
namely

k∑
i=1

k∑
j=1

vol(Wi ∩W ′
j )hi =

k∑
i=1

k∑
j=1

vol(Wi ∩W ′
j )hj ,

k∑
i ,j=1

∫
Wi∩W ′

j

(hi − hj) dx = 0
k∑

i ,j=1

∫
Wi∩W ′

j

(|pi |2 − |pj |2) dx = 0

therefore
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Optimality

continued

C(T )− C(T ′)

=
1

2

∑
i ,j

∫
Wi∩W ′

j

|x − pi |2 − |x − pj |2 dx

=
1

2

∑
i ,j

∫
Wi∩W ′

j

|x |2 − 2〈x , pi 〉+ |pi |2 − (|x |2 − 2〈x , pj〉+ |pj |2) dx

=−
∑
i ,j

∫
Wi∩W ′

j

〈x , pi 〉 − 〈x , pj〉 dx

=−
∑
i ,j

∫
Wi∩W ′

j

(〈x , pi 〉 − hi )− (〈x , pj〉 − hj) dx

≤0.

�
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Semi-Discrete Optimal Transportation Problem

hi ↑

πj πj
πiπi

wj

wi wi
wj

Each target point pi corresponds to a supporting plane

πh,i (x) = 〈x , pi 〉 − hi .

The Brenier potential is the upper envelope of the supporting planes,

uh(x) :=
k

max
i=1
{πh,i (x)} =

k
max
i=1
{〈x , pi 〉 − hi} .
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Minkowski problem - General Case

Theorem

Minkowski Given k unit vectors
n1, · · · ,nk not contained in a half-space
in Rn and A1, · · · ,Ak > 0, such that∑

i

Aini = 0,

there is a compact convex polytope P
with exactly k codimension-1 faces
F1, · · · ,Fk , such that

1 area(Fi ) = Ai ,

2 ni ⊥ Fi .

All such polytopes differ by a translation.

ni

FiAi
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Brunn-Minkowski inequality

Definition (Minkowski Sum)

Given A,B ⊂ Rn, their Minkowski sum is defined as

A⊕ B := {p + q|p ∈ A, q ∈ B}.

Theorem (Brunn-Minkowski)

For every pair of nonempty compact subsets A and B of Rn and every
0 ≤ t ≤ 1,

[Vol(tA⊕ (1− t)B)]
1
n ≥ t[vol(A)]

1
n + (1− t)[vol(B)]

1
n .

For convex sets A and B, the inequality is strick for 0 < t < 1 unless A
and B are homothetic i.e. are equal up to translation and dilation.
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Minkowski Theorem

Proof.

Construct hyper-planes 〈x ,ni 〉 = hi , the hyper-planes support a convex
polytope P(h1, h2, . . . , hk), we maximize the volume of P(h),

max
h

Vol(P(h1, h2, . . . , hk))

under the constraint

h1A1 + h2A2 + · · ·+ hkAk = 1.

We use Lagrange multiplier method,

max
h,λ

Vol(P(h))− λ
(

k∑
i=1

hiAi − 1

)
,
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Minkowski Theorem

continued

We define admissible space of the heights

H := {h|wi (h) > 0, i = 1, 2, · · · , k}

By Brunn-Minkowski inequality, H is convex. At the boundary of H, some
face Fi has zero volume, wi (h) = 0. The functional is C 1, hence we get
the gradient

∂Vol(P(h))

∂hi
− λAi = wi (h)− λAi < 0,

hence the maximal point h∗ is the interior point of H. At the maximal
point, the gradient equals to zero, then we obtain

(w1(h∗),w2(h∗), · · · ,wk(h∗)) = λ(A1,A2, · · · ,Ak).

�
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Alexandrov Theorem

Theorem (Alexandrov 1950)

Given Ω compact convex domain in Rn,
p1, · · · , pk distinct in Rn, A1, · · · ,Ak > 0,
such that

∑
Ai = Vol(Ω), there exists PL

convex function

f (x) := max{〈x,pi 〉+ hi |i = 1, · · · , k}

unique up to translation such that

Vol(Wi ) = Vol({x|∇f (x) = pi}) = Ai .

Alexandrov’s proof is topological, not
variational. It has been open for years to
find a constructive proof.

Ω

Wi

Fi

πj

uh(x)
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in Rn, y1, · · · , yk distinct in Rn, µ a
positive continuous measure on Ω. For any ν1, · · · , νk > 0 with∑
νi = µ(Ω), there exists a vector (h1, · · · , hk) so that

u(x) = max{〈x,pi 〉+ hi}

satisfies µ(Wi ∩ Ω) = νi , where Wi = {x|∇f (x) = pi}. Furthermore, h is
the maximum point of the concave function

E (h) =
k∑

i=1

νihi −
∫ h

0

k∑
i=1

wi (η)dηi ,

where wi (η) = µ(Wi (η) ∩ Ω) is the µ-volume of the cell.
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Outline of a variational Proof

Definition (Admissible Height Space)

Define admissible height space

H := {(h1, h2, · · · , hk)|wi (h) > 0,∀i = 1, 2, · · · , k}.

Lemma

The admissible height space H is convex.

Proof.

Suppse h0,h1 ∈ H, construct the minkowski sum

P((1− t)h0)⊕ P(th1) = P((1− t)h0 + th1),

By Brunn-Minkowski inequality, the volume of each face is positive, hence
(1− t)h0 + th1 ∈ H. H is convex.
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Variational Proof

Lemma

The following symmetric relation holds, wi (h) is the area of face Fi :

∂wi (h)

∂hj
=
∂wj(h)

∂hi
= −|eij ||ēij |

≤ 0.

d
WjWi eij

Proof.

∀x ∈ eij , 〈pi , x〉 − hi = 〈pj , x〉 − hj , hence
〈pi − pj , x〉 = hi − hj . Change
hi → hi + δhi , then x → x + d , |d | = δhi

|pi−pj | ,

δwj = −|eij ||d |+ o(δh2
i ) = − |eij |

|pi − pj |
δhi

ēij = |pi − pj |.
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Variational Proof

Lemma

The energy

E (h) =

∫ h k∑
i=1

wi (η)dηi

is well defined and strictly convex in the space

H ∩ {h|h1 + h2 + · · ·+ hk = 1}.

Proof.

Define a differential form , ω = w1(h)dh1 + w2(h)dh2 + · · ·+ wk(h)dhk ,

dω =
∑
i ,j

(
∂wj

∂hi
− ∂wi

∂hj

)
dhi ∧ dhj = 0.

H is simply connected, ω is closed, hence exact.
∫ h
ω is well defined.
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Variational Proof

continued

The total area is fixed,
∑k

i=1 wi (h) = vol(Ω), hence

∂wi

∂hi
= −

k∑
j=1

∂wj

∂hi
= −

k∑
j=1

∂wi

∂hj
> 0,

all the off-diagonal elements are non-positive, the diagonal elements are
positive. The Hessian matrix is diagonal dominant, with a null space
{λ(1, 1, · · · , 1)}. Hence the energy is strictly convex, the Hessian is
positive definite on {∑k

i=1 hi = 1} ∩ H.
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Geometric Interpretation

One can define a cylinder through ∂Ω, the cylinder is truncated by the
xy-plane and the convex polyhedron. The energy term

∫ h∑
wi (η)dηi

equals to the volume of the truncated cylinder.
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Computational Algorithm

Ω

Wi

Fi

πj

uh(x)

Definition (Alexandrov Potential)

The concave energy is

E (h1, h2, · · · , hk) =
k∑

i=1

νihi −
∫ h

0

k∑
j=1

wj(η)dηj ,

Geometrically, the energy is the volume beneath the parabola.
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Existence Proof

Now we can prove Alexandrov’s theorem.

Proof.

The energy E (h) is strictly concave. On the boundary
Ω ∩ {h|∑k

i=1 hi = 1}, the gradient is given by

E (h) = (ν1 − w1(h), ν2 − w2(h), · · · , νk − wk(h)),

The gradient points to the interior of the admissible space, hence the
energy reaches maximum on an interior point h∗, where the gradient
vanishes, namely νi = wi (h

∗).
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Computational Algorithm

Ω

Wi

Fi

πj

uh(x)

The gradient of the Alexanrov potential is the differences between the
target measure and the current measure of each cell

∇E (h1, h2, · · · , hk) = (ν1 − w1, ν2 − w2, · · · , νk − wk)
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Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

∂wi

∂hj
= −|eij ||ēij |
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Convex Hull Algorithm

Input: A set of distinct points P = {p1, p2, · · · , pk} ⊂ R3;
Output: Convex hull of P, Conv(P);

1 Use the first 4 points to construct a tetrahedron, adjust the order of
the points, such that the volume of the tetrahedron is positive.
Initialize Conv(P) as the tetrahedron;

2 Select the next point pi ∈ P, pi 6∈ Conv(P);

3 Compute the visibility of all faces of Conv(P); remove all visible faces;

4 For all edges on the silhouette, connect the edge with pi to form a
new face. All the new faces with the invisible faces form the updated
Conv(P).

5 Repeat step 2 through 4 until all points in P are processed.
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Upper Envelope Algorithm

Input: A set of planes Π = {π1, π2, · · · , πk};
Output: The upper envelope of Π, Env(Π);

1 For each plane πi (x) = 〈x , yi 〉 − hi , yi ∈ R2, construct a dual point
π∗i = (yi , hi );

2 Construct the convex hull of Π∗ := {π∗i }, Conv(Π∗);

3 Remove all faces of Conv(Π∗), whose normals are upwards;

4 Compute the Poincaré dual of Conv(Π∗), each face [π∗i , π
∗
j , π
∗
k ]

corresponds to a vertex πi ∩ πj ∩ πk ; every edge [π∗i , π
∗
j ] corresponds

to an edge πi ∩ πj ; every vertex π∗i corresponds to a face πi .
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Optimal Transport Map

Input: A set of distinct points P = {p1, p2, · · · , pk}, and the weights
{A1,A2, · · · ,Ak};A convex domain Ω,

∑
Aj = Vol(Ω);

Output: The optimal transport map T : Ω→ P

1 Scale and translate P, such that P ⊂ Ω;

2 Initialize h0 ← 1
2 (|p1|2, |p2|2, · · · , |pk |2)T ;

3 Compute the Brenier potential u(hk) (envelope of πi ’s ) and its
Legendre dual u∗(hk) (convex hull of π∗i ’s);

4 Project the Brenier potential and Legendre dual to obtain weighted
Delaunay triangulation T (hk) and power diagram D(hk);
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Optimal Transport Map

5 Compute the gradient of the energy

∇E (h) = (A1 − w1(h),A2 − w2(h), · · · ,Ak − wk(h))T .

6 If ‖E (hk)‖ is less than ε, then return T = ∇u(hk);

7 Compute the Hessian matrix of the energy

∂wi (h)

∂hj
= −|eij ||ēij |

,
∂wi

∂hi
= −

∑
j

∂wi (h)

∂hj
.

8 Solve linear system
∇E (h) = Hess(hk)d;
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Optimal Transport Map

11 Set the step length λ← 1;

12 Construct the convex hull Conv(hk + λd);

13 if there is any empty power cell, λ← 1
2λ, repeat step 3 and 4, until

all power cells are non-empty;

14 set hk+1 ← hk + λd;

15 Repeat step 3 through 14.
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Regularity of Optimal Transportation Map

Theorem (Ma-Trudinger-Wang)

The potential function u is C 3 smooth if the cost function c is smooth,
f , g are positive, f ∈ C 2(Ω), g ∈ C 2(Ω∗), and

A1 ∀x , ξ ∈ Rn, ∃!y ∈ Rn, s.t. ξ = Dxc(x , y) (for existence)

A2 |D2
xyc | 6= 0.

A3 ∃c0 > 0 s.t. ∀ξ, η ∈ Rn, ξ ⊥ η∑
(cij ,rs − cp,qcij ,pcq,rs)c r ,kcs,lξiξjηkηl ≥ c0|ξ|2|η|2.

B1 Ω∗ is c-convex w.r.t. Ω, namely ∀x0 ∈ Ω,

Ω∗x0
:= Dxc(x0,Ω

∗)

is convex.
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Subgradient

Definition (subgradient)

Given an open set Ω ⊂ Rd and u : Ω→ R a convex function, for x ∈ Ω,
the subgradient (subdifferential) of u at x is defined as

∂u(x) := {p ∈ Rn : u(z) ≥ u(x) + 〈p, z − x〉 ∀z ∈ Ω}.

The Brenier potential u is differentiable at x if its subgradient ∂u(x) is a
singleton. We classify the points according to the dimensions of their
subgradients, and define the sets

Σk(u) :=
{
x ∈ Rd | dim(∂u(x)) = k

}
, k = 0, 1, 2 . . . , d .

David Gu (Stony Brook University) Computational Conformal Geometry August 14, 2020 37 / 48



Regularity of Solution to Monge-Ampere Equation

Theorem (Figalli Regularity)

Let Ω,Λ ⊂ Rd be two bounded open sets, let f , g : Rd → R+ be two
probability densities, that are zero outside Ω, Λ and are bounded away from
zero and infinity on Ω, Λ, respectively. Denote by T = ∇u : Ω→ Λ the
optimal transport map provided by Brenier theorem. Then there exist two
relatively closed sets ΣΩ ⊂ Ω and ΣΛ ⊂ Λ with |ΣΩ| = |ΣΛ| = 0 such that
T : Ω \ ΣΩ → Λ \ ΣΛ is a homeomorphism of class C 0,α

loc for some α > 0.
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Singularity Set of OT Maps

x0

x1

γ0

γ1
γ2

γ3

Ω

∂u

Λ

Figure: Singularity structure of an optimal transportation map.

We call ΣΩ as singular set of the optimal transportation map ∇u : Ω→ Λ.
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Discontinuity of Optimal Transportation Map

Figure: Discontinuous Optimal transportation map, produced by a GPU
implementation of algorithm based on our theorem. The middle line is the
singularity set Σ1.
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Discontinuity of Optimal Transportation Map

γ1

γ2

Figure: Discontinuous Optimal transportation map, produced by a GPU
implementation of algorithm based on regularity theorem. γ1 and γ2 are two
singularity sets.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation between a solid ball to the Stanford bunny. The
singular sets are the foldings on the boundary surface.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation between a solid ball to the Stanford bunny. The
singular sets are the foldings on the boundary surface.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous, but the Brenier potential
itself is continuous. The projection of ridges are the discontinuity singular sets.

David Gu (Stony Brook University) Computational Conformal Geometry August 14, 2020 44 / 48



Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous.
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Discontinuity of Optimal Transportation Map

Figure: Optimal transportation map is discontinuous.
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