Optimal Transportation: Convex Geometric View

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 14, 2020

Overview

There are three views of optimal transportation theory:

- Duality view
- Fluid dynamics view
- Differential geometric view

Different views give different insights and induce different computational methods; but all three theories are coherent and consistent.

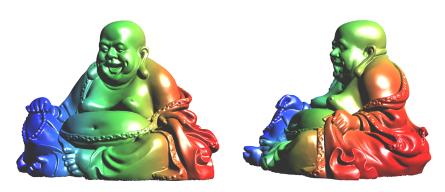


Figure: Buddha surface.

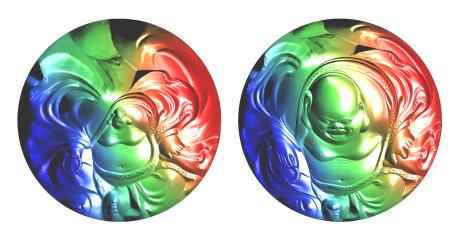


Figure: Optimal transportation map.

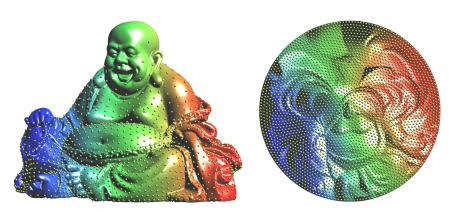


Figure: Brenier potential.

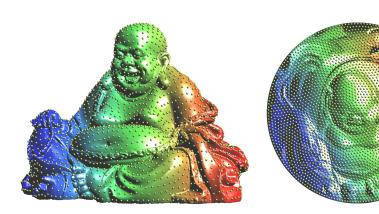


Figure: Brenier potential.

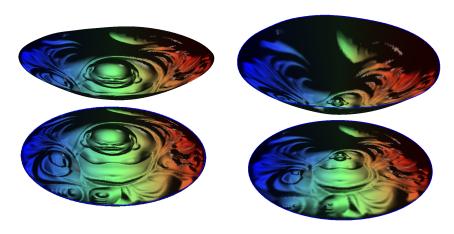


Figure: Brenier potential.

Convex Geometric View

Monge-Ampére Equation

Problem (Brenier)

Given (Ω, μ) and (Σ, ν) and the cost function $c(x, y) = \frac{1}{2}|x - y|^2$, the optimal transportation map $T: \Omega \to \Sigma$ is the gradient map of the Brenier potential $u: \Omega \to \mathbb{R}$, which satisfies the Monge-Ampére equation,

$$det\left(\frac{\partial^2 u(x)}{\partial x_i \partial x_j}\right) = \frac{f(x)}{g \circ \nabla u(x)}$$

Monge-Ampére Equation

Problem (prescribed Gauss curvature)

Suppose that a real-valued function K is specified on a domain Ω in \mathbb{R}^d , the problem seeks to identify a hypersurface of \mathbb{R}^{d+1} as a graph z=u(x) over $x\in\Omega$ so that at each point of the surface the Gauss curvature is given by K(x).

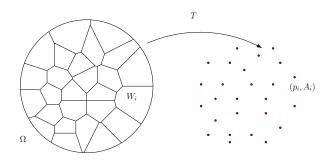
$$\mathbf{r}(x,y) = (x,y,u(x,y)), \ \mathbf{r}_x = (1,0,u_x), \ \mathbf{r}_y = (0,1,u_y), \ \mathbf{n} = \frac{(-u_x,-u_y,1)}{\sqrt{1+|\nabla u|^2}},$$

$$E = 1 + u_x^2, \quad F = u_x u_y, \quad G = 1 + u_y^2$$

$$L = \frac{u_{xx}}{\sqrt{1 + |\nabla u|^2}}, \quad M = \frac{u_{xy}}{\sqrt{1 + |\nabla u|^2}}, \quad N = \frac{u_{yy}}{\sqrt{1 + |\nabla u|^2}}$$

$$\mathcal{K}(x,y) = \frac{u_{xx}u_{yy} - u_{xy}^2}{(1+|\nabla u|^2)^2}, \quad \text{Geneal case} \quad \boxed{\mathcal{K}(x)(1+|\nabla u|^2)^{\frac{n+2}{2}} = \det\! D^2 u}$$

Semi-Discrete Optimal Transportation Problem

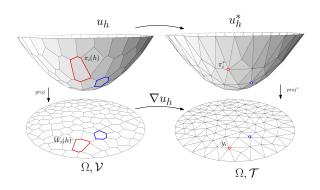


Problem (Semi-discrete OT)

Given a compact convex domain Ω in \mathbb{R}^d , and p_1, p_2, \dots, p_k and weights $w_1, w_2, \dots, w_k > 0$, find a transport map $T : \Omega \to \{p_1, \dots, p_k\}$, such that $vol(T^{-1}(p_i)) = w_i$, so that T minimizes the transportation cost:

$$C(T) := \frac{1}{2} \int_{\Omega} |x - T(x)|^2 dx$$

Semi-Discrete Optimal Transportation Problem



According to Brenier theorem, there will be a piecewise linear convex function $u: \Omega \to \mathbb{R}$, the gradient map gives the optimal transport map.

Optimality

Lemma

Suppose the projection of Brenier potential u_h induces a cell decomposition $\Omega = \bigcup_{i=1}^k W_i$, and the map $T: W_i \to p_i$. Given another cell decomposition $\Omega = \bigcup_{i=1}^k W_i'$, $vol(W_i) = vol(W')$ and $T': W_i' \to p_i$, then $C(T) \leq C(T')$.

Proof.

Since $\operatorname{vol}(W_i) = \operatorname{vol}(W_j')$, we have $\sum_{i=1}^k \operatorname{vol}(W_i) h_i = \sum_{j=1}^k \operatorname{vol}(W_j') h_j$, namely

$$\sum_{i=1}^k \sum_{j=1}^k \operatorname{vol}(W_i \cap W_j') h_i = \sum_{i=1}^k \sum_{j=1}^k \operatorname{vol}(W_i \cap W_j') h_j,$$

$$\sum_{i,j=1}^k \int_{W_i \cap W_i'} (h_i - h_j) \ dx = 0 \quad \sum_{i,j=1}^k \int_{W_i \cap W_i'} (|p_i|^2 - |p_j|^2) \ dx = 0$$

therefore

Optimality

continued

$$\mathcal{C}(T) - \mathcal{C}(T')$$

$$= \frac{1}{2} \sum_{i,j} \int_{W_i \cap W'_j} |x - p_i|^2 - |x - p_j|^2 dx$$

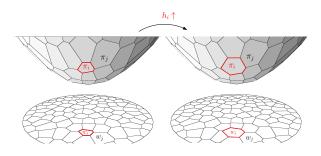
$$= \frac{1}{2} \sum_{i,j} \int_{W_i \cap W'_j} |x|^2 - 2\langle x, p_i \rangle + |p_i|^2 - (|x|^2 - 2\langle x, p_j \rangle + |p_j|^2) dx$$

$$= -\sum_{i,j} \int_{W_i \cap W'_j} \langle x, p_i \rangle - \langle x, p_j \rangle dx$$

$$= -\sum_{i,j} \int_{W_i \cap W'_j} (\langle x, p_i \rangle - h_i) - (\langle x, p_j \rangle - h_j) dx$$

$$< 0.$$

Semi-Discrete Optimal Transportation Problem



Each target point p_i corresponds to a supporting plane

$$\pi_{h,i}(x) = \langle x, p_i \rangle - h_i.$$

The Brenier potential is the upper envelope of the supporting planes,

$$u_h(x) := \max_{i=1}^k \{\pi_{h,i}(x)\} = \max_{i=1}^k \{\langle x, p_i \rangle - h_i\}.$$

Minkowski problem - General Case

Theorem

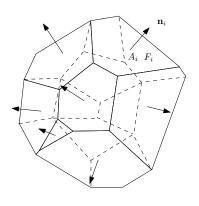
Minkowski Given k unit vectors $\mathbf{n}_1, \cdots, \mathbf{n}_k$ not contained in a half-space in \mathbb{R}^n and $A_1, \cdots, A_k > 0$, such that

$$\sum_{i}A_{i}\mathbf{n}_{i}=\mathbf{0},$$

there is a compact convex polytope P with exactly k codimension-1 faces F_1, \dots, F_k , such that

- \bullet area $(F_i) = A_i$,
- \mathbf{o} $\mathbf{n}_i \perp F_i$.

All such polytopes differ by a translation.



Brunn-Minkowski inequality

Definition (Minkowski Sum)

Given $A, B \subset \mathbb{R}^n$, their Minkowski sum is defined as

$$A \oplus B := \{p + q | p \in A, q \in B\}.$$

Theorem (Brunn-Minkowski)

For every pair of nonempty compact subsets A and B of \mathbb{R}^n and every $0 \le t \le 1$,

$$[Vol(tA \oplus (1-t)B)]^{\frac{1}{n}} \geq t[vol(A)]^{\frac{1}{n}} + (1-t)[vol(B)]^{\frac{1}{n}}.$$

For convex sets A and B, the inequality is strick for 0 < t < 1 unless A and B are homothetic i.e. are equal up to translation and dilation.

Minkowski Theorem

Proof.

Construct hyper-planes $\langle x, \mathbf{n}_i \rangle = h_i$, the hyper-planes support a convex polytope $P(h_1, h_2, \dots, h_k)$, we maximize the volume of P(h),

$$\max_{\mathbf{h}} Vol(P(h_1, h_2, \dots, h_k))$$

under the constraint

$$h_1A_1 + h_2A_2 + \cdots + h_kA_k = 1.$$

We use Lagrange multiplier method,

$$\max_{\mathbf{h},\lambda} Vol(P(\mathbf{h})) - \lambda \left(\sum_{i=1}^k h_i A_i - 1\right),\,$$

Minkowski Theorem

continued

We define admissible space of the heights

$$\mathcal{H} := \{\mathbf{h}|w_i(\mathbf{h}) > 0, i = 1, 2, \cdots, k\}$$

By Brunn-Minkowski inequality, \mathcal{H} is convex. At the boundary of \mathcal{H} , some face F_i has zero volume, $w_i(\mathbf{h}) = 0$. The functional is C^1 , hence we get the gradient

$$\frac{\partial Vol(P(\mathbf{h}))}{\partial h_i} - \lambda A_i = w_i(\mathbf{h}) - \lambda A_i < 0,$$

hence the maximal point \mathbf{h}^* is the interior point of \mathcal{H} . At the maximal point, the gradient equals to zero, then we obtain

$$(w_1(\mathbf{h}^*), w_2(\mathbf{h}^*), \cdots, w_k(\mathbf{h}^*)) = \lambda(A_1, A_2, \cdots, A_k).$$

Alexandrov Theorem

Theorem (Alexandrov 1950)

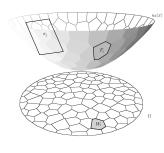
Given Ω compact convex domain in \mathbb{R}^n , p_1, \dots, p_k distinct in \mathbb{R}^n , $A_1, \dots, A_k > 0$, such that $\sum A_i = Vol(\Omega)$, there exists PL convex function

$$f(\mathbf{x}) := \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i | i = 1, \cdots, k\}$$

unique up to translation such that

$$Vol(W_i) = Vol(\{\mathbf{x}|\nabla f(\mathbf{x}) = \mathbf{p}_i\}) = A_i.$$

Alexandrov's proof is topological, not variational. It has been open for years to find a constructive proof.



Theorem (Gu-Luo-Sun-Yau 2013)

 Ω is a compact convex domain in \mathbb{R}^n , y_1, \dots, y_k distinct in \mathbb{R}^n , μ a positive continuous measure on Ω . For any $\nu_1, \dots, \nu_k > 0$ with $\sum \nu_i = \mu(\Omega)$, there exists a vector (h_1, \dots, h_k) so that

$$u(\mathbf{x}) = \max\{\langle \mathbf{x}, \mathbf{p}_i \rangle + h_i\}$$

satisfies $\mu(W_i \cap \Omega) = \nu_i$, where $W_i = \{\mathbf{x} | \nabla f(\mathbf{x}) = \mathbf{p}_i\}$. Furthermore, **h** is the maximum point of the concave function

$$E(\mathbf{h}) = \sum_{i=1}^k \nu_i h_i - \int_0^{\mathbf{h}} \sum_{i=1}^k w_i(\eta) d\eta_i,$$

where $w_i(\eta) = \mu(W_i(\eta) \cap \Omega)$ is the μ -volume of the cell.

Outline of a variational Proof

Definition (Admissible Height Space)

Define admissible height space

$$\mathcal{H} := \{(h_1, h_2, \cdots, h_k) | w_i(\mathbf{h}) > 0, \forall i = 1, 2, \cdots, k\}.$$

Lemma

The admissible height space \mathcal{H} is convex.

Proof.

Suppse $\textbf{h}_0,\textbf{h}_1\in\mathcal{H}$, construct the minkowski sum

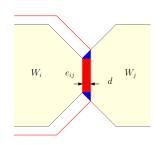
$$P((1-t)\mathbf{h}_0) \oplus P(t\mathbf{h}_1) = P((1-t)\mathbf{h}_0 + t\mathbf{h}_1),$$

By Brunn-Minkowski inequality, the volume of each face is positive, hence $(1-t)\mathbf{h}_0 + t\mathbf{h}_1 \in \mathcal{H}$. \mathcal{H} is convex.

Lemma

The following symmetric relation holds, $w_i(\mathbf{h})$ is the area of face F_i :

$$\frac{\partial w_i(\boldsymbol{h})}{\partial h_j} = \frac{\partial w_j(\boldsymbol{h})}{\partial h_i} = -\frac{|e_{ij}|}{|\bar{e}_{ij}|} \leq 0.$$



Proof.

$$\forall x \in e_{ij}, \langle p_i, x \rangle - h_i = \langle p_j, x \rangle - h_j$$
, hence $\langle p_i - p_j, x \rangle = h_i - h_j$. Change $h_i \to h_i + \delta h_i$, then $x \to x + d$, $|d| = \frac{\delta h_i}{|p_i - p_j|}$,

$$\delta w_j = -|\mathbf{e}_{ij}||\mathbf{d}| + o(\delta h_i^2) = -\frac{|\mathbf{e}_{ij}|}{|\mathbf{p}_i - \mathbf{p}_i|}\delta h_i$$

$$\bar{e}_{ij}=|p_i-p_j|.$$

Lemma

The energy

$$E(\mathbf{h}) = \int_{i=1}^{\mathbf{h}} \sum_{i=1}^{\kappa} w_i(\eta) d\eta_i$$

is well defined and strictly convex in the space

$$\mathcal{H}\cap\{\mathbf{h}|h_1+h_2+\cdots+h_k=1\}.$$

Proof.

Define a differential form , $\omega=w_1(\mathbf{h})dh_1+w_2(\mathbf{h})dh_2+\cdots+w_k(\mathbf{h})dh_k$,

$$d\omega = \sum_{i,j} \left(\frac{\partial w_j}{\partial h_i} - \frac{\partial w_i}{\partial h_j} \right) dh_i \wedge dh_j = 0.$$

 \mathcal{H} is simply connected, ω is closed, hence exact. $\int^{\mathbf{h}} \omega$ is well defined.

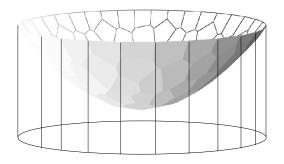
continued

The total area is fixed, $\sum_{i=1}^{k} w_i(\mathbf{h}) = \text{vol}(\Omega)$, hence

$$\frac{\partial w_i}{\partial h_i} = -\sum_{j=1}^k \frac{\partial w_j}{\partial h_i} = -\sum_{j=1}^k \frac{\partial w_i}{\partial h_j} > 0,$$

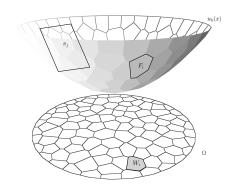
all the off-diagonal elements are non-positive, the diagonal elements are positive. The Hessian matrix is diagonal dominant, with a null space $\{\lambda(1,1,\cdots,1)\}$. Hence the energy is strictly convex, the Hessian is positive definite on $\{\sum_{i=1}^k h_i = 1\} \cap \mathcal{H}$.

Geometric Interpretation



One can define a cylinder through $\partial\Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{\mathbf{h}} \sum w_i(\eta) d\eta_i$ equals to the volume of the truncated cylinder.

Computational Algorithm



Definition (Alexandrov Potential)

The concave energy is

$$E(h_1, h_2, \dots, h_k) = \sum_{i=1}^k \nu_i h_i - \int_0^h \sum_{j=1}^k w_j(\eta) d\eta_j,$$

Existence Proof

Now we can prove Alexandrov's theorem.

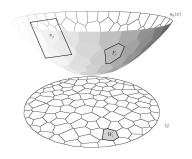
Proof.

The energy $E(\mathbf{h})$ is strictly concave. On the boundary $\Omega \cap \{\mathbf{h} | \sum_{i=1}^k h_i = 1\}$, the gradient is given by

$$E(\mathbf{h}) = (\nu_1 - w_1(\mathbf{h}), \nu_2 - w_2(\mathbf{h}), \cdots, \nu_k - w_k(\mathbf{h})),$$

The gradient points to the interior of the admissible space, hence the energy reaches maximum on an interior point \mathbf{h}^* , where the gradient vanishes, namely $\nu_i = w_i(\mathbf{h}^*)$.

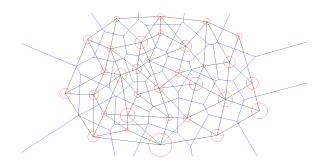
Computational Algorithm



The gradient of the Alexanrov potential is the differences between the target measure and the current measure of each cell

$$\nabla E(h_1, h_2, \dots, h_k) = (\nu_1 - w_1, \nu_2 - w_2, \dots, \nu_k - w_k)$$

Computational Algorithm



The Hessian of the energy is the length ratios of edge and dual edges,

$$\frac{\partial w_i}{\partial h_j} = -\frac{|e_{ij}|}{|\bar{e}_{ij}|}$$

Convex Hull Algorithm

Input: A set of distinct points $P = \{p_1, p_2, \dots, p_k\} \subset \mathbb{R}^3$; Output: Convex hull of P, Conv(P);

- Use the first 4 points to construct a tetrahedron, adjust the order of the points, such that the volume of the tetrahedron is positive. Initialize Conv(P) as the tetrahedron;
- ② Select the next point $p_i \in P$, $p_i \notin Conv(P)$;
- **3** Compute the visibility of all faces of Conv(P); remove all visible faces;
- For all edges on the silhouette, connect the edge with p_i to form a new face. All the new faces with the invisible faces form the updated Conv(P).
- Repeat step 2 through 4 until all points in P are processed.

Upper Envelope Algorithm

Input: A set of planes $\Pi = \{\pi_1, \pi_2, \cdots, \pi_k\}$; Output: The upper envelope of Π , Env (Π) ;

- For each plane $\pi_i(x) = \langle x, y_i \rangle h_i$, $y_i \in \mathbb{R}^2$, construct a dual point $\pi_i^* = (y_i, h_i)$;
- **②** Construct the convex hull of $\Pi^* := \{\pi_i^*\}$, Conv (Π^*) ;
- **3** Remove all faces of Conv(Π^*), whose normals are upwards;
- Compute the Poincaré dual of Conv(Π^*), each face $[\pi_i^*, \pi_j^*, \pi_k^*]$ corresponds to a vertex $\pi_i \cap \pi_j \cap \pi_k$; every edge $[\pi_i^*, \pi_j^*]$ corresponds to an edge $\pi_i \cap \pi_j$; every vertex π_i^* corresponds to a face π_i .

Optimal Transport Map

Input: A set of distinct points $P = \{p_1, p_2, \dots, p_k\}$, and the weights $\{A_1, A_2, \dots, A_k\}$; A convex domain $\Omega, \sum A_j = \text{Vol}(\Omega)$; Output: The optimal transport map $T : \Omega \to P$

- **1** Scale and translate P, such that $P \subset \Omega$;
- ② Initialize $\mathbf{h}^0 \leftarrow \frac{1}{2}(|p_1|^2, |p_2|^2, \cdots, |p_k|^2)^T$;
- **3** Compute the Brenier potential $u(\mathbf{h}^k)$ (envelope of π_i 's) and its Legendre dual $u^*(\mathbf{h}^k)$ (convex hull of π_i^* 's);
- **1** Project the Brenier potential and Legendre dual to obtain weighted Delaunay triangulation $\mathcal{T}(\mathbf{h}^k)$ and power diagram $\mathcal{D}(\mathbf{h}^k)$;

Optimal Transport Map

Ompute the gradient of the energy

$$\nabla E(\mathbf{h}) = (A_1 - w_1(\mathbf{h}), A_2 - w_2(\mathbf{h}), \cdots, A_k - w_k(\mathbf{h}))^T.$$

- **1** If $||E(\mathbf{h}^k)||$ is less than ε , then return $T = \nabla u(\mathbf{h}^k)$;
- Compute the Hessian matrix of the energy

$$\frac{\partial w_i(\mathbf{h})}{\partial h_j} = -\frac{|e_{ij}|}{|\bar{e}_{ij}|}, \quad \frac{\partial w_i}{\partial h_i} = -\sum_j \frac{\partial w_i(\mathbf{h})}{\partial h_j}.$$

Solve linear system

$$\nabla E(\mathbf{h}) = \mathsf{Hess}(\mathbf{h}^k)\mathbf{d};$$

Optimal Transport Map

- Set the step length $\lambda \leftarrow 1$;
- **②** Construct the convex hull $Conv(\mathbf{h}^k + \lambda \mathbf{d})$;
- (a) if there is any empty power cell, $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 3 and 4, until all power cells are non-empty;
- \bullet set $\mathbf{h}^{k+1} \leftarrow \mathbf{h}^k + \lambda \mathbf{d}$;
- Repeat step 3 through 14.

Regularity of Optimal Transportation Map

Theorem (Ma-Trudinger-Wang)

The potential function u is C^3 smooth if the cost function c is smooth, f,g are positive, $f \in C^2(\Omega)$, $g \in C^2(\Omega^*)$, and

- A1 $\forall x, \xi \in \mathbb{R}^n$, $\exists ! y \in \mathbb{R}^n$, s.t. $\xi = D_x c(x, y)$ (for existence)
- $A2 |D_{xy}^2 c| \neq 0$.
- $A3 \exists c_0 > 0 \text{ s.t. } \forall \xi, \eta \in \mathbb{R}^n, \xi \perp \eta$

$$\sum (c_{ij,rs}-c^{p,q}c_{ij,p}c_{q,rs})c^{r,k}c^{s,l}\xi_i\xi_j\eta_k\eta_l\geq c_0|\xi|^2|\eta|^2.$$

• B1 Ω^* is c-convex w.r.t. Ω , namely $\forall x_0 \in \Omega$,

$$\Omega_{x_0}^* := D_x c(x_0, \Omega^*)$$

is convex.

Subgradient

Definition (subgradient)

Given an open set $\Omega \subset \mathbb{R}^d$ and $u : \Omega \to \mathbb{R}$ a convex function, for $x \in \Omega$, the subgradient (subdifferential) of u at x is defined as

$$\partial u(x) := \{ p \in \mathbb{R}^n : u(z) \ge u(x) + \langle p, z - x \rangle \ \forall z \in \Omega \}.$$

The Brenier potential u is differentiable at x if its subgradient $\partial u(x)$ is a singleton. We classify the points according to the dimensions of their subgradients, and define the sets

$$\Sigma_k(u) := \left\{ x \in \mathbb{R}^d | \operatorname{dim}(\partial u(x)) = k \right\}, \quad k = 0, 1, 2 \dots, d.$$

Regularity of Solution to Monge-Ampere Equation

Theorem (Figalli Regularity)

Let $\Omega, \Lambda \subset \mathbb{R}^d$ be two bounded open sets, let $f,g:\mathbb{R}^d \to \mathbb{R}^+$ be two probability densities, that are zero outside Ω , Λ and are bounded away from zero and infinity on Ω , Λ , respectively. Denote by $T = \nabla u: \Omega \to \Lambda$ the optimal transport map provided by Brenier theorem. Then there exist two relatively closed sets $\Sigma_\Omega \subset \Omega$ and $\Sigma_\Lambda \subset \Lambda$ with $|\Sigma_\Omega| = |\Sigma_\Lambda| = 0$ such that $T: \Omega \setminus \Sigma_\Omega \to \Lambda \setminus \Sigma_\Lambda$ is a homeomorphism of class $C_{loc}^{0,\alpha}$ for some $\alpha > 0$.

Singularity Set of OT Maps

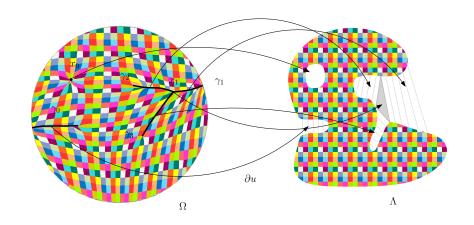


Figure: Singularity structure of an optimal transportation map.

We call Σ_{Ω} as singular set of the optimal transportation map $\nabla u:\Omega \to \Lambda$.

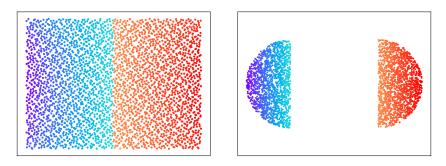
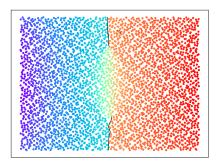


Figure: Discontinuous Optimal transportation map, produced by a GPU implementation of algorithm based on our theorem. The middle line is the singularity set Σ_1 .



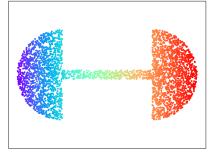


Figure: Discontinuous Optimal transportation map, produced by a GPU implementation of algorithm based on regularity theorem. γ_1 and γ_2 are two singularity sets.

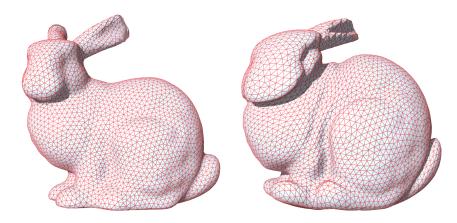


Figure: Optimal transportation between a solid ball to the Stanford bunny. The singular sets are the foldings on the boundary surface.

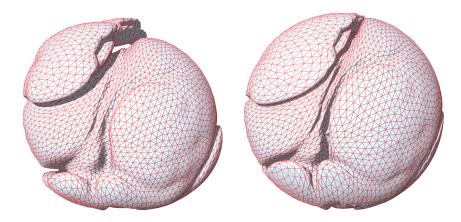


Figure: Optimal transportation between a solid ball to the Stanford bunny. The singular sets are the foldings on the boundary surface.

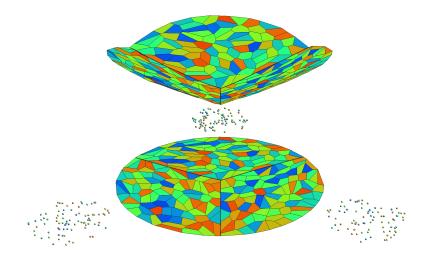


Figure: Optimal transportation map is discontinuous, but the Brenier potential itself is continuous. The projection of ridges are the discontinuity singular sets.

Optimal Transportation Map

Figure: Optimal transportation map.

Optimal Transportation Map

Figure: Optimal transportation map.

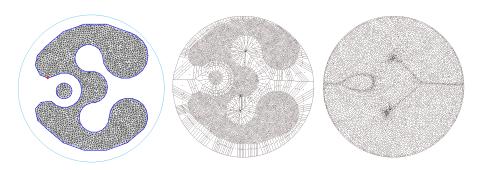


Figure: Optimal transportation map is discontinuous.

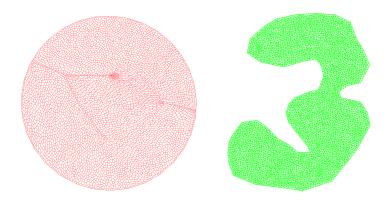


Figure: Optimal transportation map is discontinuous.