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Algebraic Topology: Fundamental Group
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Orientability-Möbius Band

Figure: Escher. Ants
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Surface Genus

Topological Sphere Topological Torus

Figure: How to differentiate the above two surfaces.
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Key Idea

Figure: Check whether all loops on the surface can shrink to a point.

All oriented compact surfaces can be classified by their genus g and
number of boundaries b. Therefore, we use (g , b) to represent the
topological type of an oriented surface S .
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Application

Figure: Handle detection by finding the handle loops and the tunnel loops.
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Application

Figure: Topological Denoise in medical imaging.
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Surface Topology

Philosophy

Associate groups with manifolds, study the topology by analyzing the
group structures.

C1 = {Topological Spaces,Homeomorphisms}
C2 = {Groups,Homomorphisms}
C1 → C2

Functor between categories.
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Fundamental group

Suppose q is a base point, all the oriented closed curves (loops) through q
can be classified by homotopy. All the homotopy classes form the so-called
fundamental group of S , or the first homotopy group, denoted as π1(S , q).
The group structure of π1(S , q) determines the topology of S .
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Homotopy

p q

γ0

γ1s

t

F

Figure: Path homotopy.
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Homotopy

Let S be a two manifold with a base point p ∈ S ,

Definition (Curve)

A curve is a continuous mapping γ : [0, 1]→ S .

Definition (Loop)

A closed curve through p is a curve, such that γ(0) = γ(1) = p.

Definition (Homotopy)

Let γ1, γ2 : [0, 1]→ S be two curves. A homotopy connecting γ1 and γ2 is
a continuous mapping F : [0, 1]× [0, 1]→ S , such that

f (0, t) = γ1(t), f (1, t) = γ2(t).

We say γ1 is homotopic to γ2 if there exists a homotopy between them.
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Homotopy

Lemma

Homotopy relation is an equivalence relation.

Proof.

γ ∼ γ,F (s, t) = γ(t). If γ1 ∼ γ2, F (s, t) is the homotopy, then
F (1− s, t) is the homotopy from γ2 to γ1.

Corollary

All the loops through the base point can be classified by homotopy
relation. The homotopy class of a loops γ is denoted as [γ].
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Fundamental Group

Definition (Loop product)

Suppose γ1, γ2 are two loops through the base point p, the product of the
two loops is defined as

γ1 · γ2(t) =

{
γ1(2t) 0 ≤ t ≤ 1

2
γ2(2t − 1) 1

2 ≤ t ≤ t

Definition (Loop inverse)

γ−1(t) = γ(1− t).
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Loop Inversion

γ

p

γ−1

Figure: Loop inversion
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Loop Product

γ1γ0

γ0 · γ1

p

Figure: Loop product
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Fundamental Group

Definition (Fundamental Group)

Given a topological space S , fix a base point p ∈ S , the set of all the loops
through p is Γ, the set of all the homotopy classes is Γ/ ∼. The product is
defined as:

[γ1] · [γ2] := [γ1 · γ2],

the unit element is defined as [e], the inverse element is defined as

[γ]−1 := [γ−1],

then Γ/ ∼ forms a group, the fundamental group of S , and is denoted as
π1(S , p).
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Fundamental Group Representation

Let G = {g1, g2, · · · , gn} be n symbols, a word generated by G is a
sequence

w = g e1
i1
g e2
i2
· · · g ek

ik
, gij ∈ G , ej ∈ Z.

The empty word ∅ is also treated as the unit element.

Given two words w1 = α1 · · ·αn1 and w2 = β1 · · ·βn2 , the product is
defined as concatenation:

w1 · w2 = α1 · · ·αn1β1 · · ·βn2 .

The inverse of a work is defined as

(g e1
i1
g e2
i2
· · · g ek

ik
)−1 = g−ekik

g
−ek−1

ik−1
· · · g−e1

i1
.

All words form a group, freely generated by G ,

〈g1, g2, · · · , gn〉.
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Word Group

The relations R = {R1,R2, · · · ,Rm} are m words, such that we can
replace Rk by the empty word.

Definition (word equivalence relation)

Two words are equivalent if we can transform one to the other by finite
many steps of the following two elementary tranformations:

1 Insert a relation word anywhere.

α1 · · ·αiαi+1 · · ·αl 7→ α1 · · ·αiRkαi+1 · · ·αl

2 If a subword is a relation word, remove it from the word.

α1 · · ·αiRkαi+1 · · ·αl 7→ α1 · · ·αiαi+1 · · ·αl .
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Word Group

Definition (Word Group)

Given a set of generators G and a set of relations R, all the equivalence
classes of the words generated by G form a group under the
concatenation, denoted as

〈g1, g2, · · · , gn|R1,R2, · · · ,Rm〉.

If there is no relations, then the word group is called a free group.
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Intersection Index

q

γ1(t)

γ2(τ) n(q)

S

Definition (Intersection Index)

Suppose γ1(t), γ2(τ) ⊂ S intersect at q ∈ S , the tangent vectors satisfy

dγ1(t)

dt
× dγ2(τ)

dτ
· n(q) > 0,

then the index of the intersection point q of γ1 and γ2 is +1, denoted as
Ind(γ1, γ2, q) = +1. If the mixed product is zero or negative, then the
index is 0 or −1.
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Algebraic Intersection Number

S

q1

q2

q3
q4

γ2

γ1

Figure: Algebraic intersection number

Definition (Algebraic Intersection Number)

The algebraic intersection number of γ1(t), γ2(τ) ⊂ S is defined as

γ1 · γ2 :=
∑

qi∈γ1∩γ2

Ind(γ1, γ2, qi ).
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Algebraic Intersection Number

S

γ2

γ1

γ̃1

Figure: Algebraic intersection number

Algebraic Intersection Number Homotopy Invariance

Suppose γ1 is homotopic to γ̃1, then the algebraic intersection number

γ1 · γ2 = γ̃1 · γ2.
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Canonical Representation of π1(S , p)

q

b1

b2

a2

a1

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2

Figure: Canonical fundamental group representation.
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Canonical Representation of π1(S , p)

Definition (Canonical Basis)

Suppose S is a compact, oriented surface, there exists a set of generators
of the fundamental group π1(S , p),

G = {[a1], [b1], [a2], [b2], · · · , [ag ], [bg ]}

such that
ai · bj = δji , ai · aj = 0, bi · bj = 0,

where ai · bj represents the algebraic intersection number of loops ai and
bj , δij is the Kronecker symbol, then G is called a set of canonical basis of
π1(S , p).
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Canonical Representation of π1(S , p)

Theorem (Surface Fundamental Group Canonical Representation)

Suppose S is a compact, oriented surface, p ∈ S is a fixed point, the
fundamental group has a canonical representation,

π1(S , p) = 〈a1, b1, a2, b2, · · · , ag , bg |Πg
i=1[ai , bi ]〉,

where
[ai , bi ] = aibia

−1
i b−1

i ,

g is the genus of the surface.
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Canonical Representation of π1(S , p)

a1

b1

a2

b2

h1 h2

h3

Figure: Canonical representation of π1(S).

Non-uniqueness

The canonical representation of the fundamental group of the surface is
not unique. It is NP hard to verify if two given representations are
isomorphic.
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Fundamental Group Representation

Theorem

Suppose π1(S1, p1) is isomorphic to π2(S2, p2), then S1 is homeomorphic
to S2, and vice versa.

Proof.

For each surface, find a canonical basis, slice the surface along the basis to
get a 4g polygonal scheme, then construct a homeomorphism between the
polygonal schema with consistent boundary condition.
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Seifert-Van Kampen Theorem

Theorem (Seifert-Van Kampen)

Topological space M is decomposed into the union of U and V , the
intersection of U and V is W , M = U ∪ V , W = U ∩ V , where U,V and
W are path connected. i : W → U, j : W → V are the inclusions. Pick a
base point p ∈W, the fundamental groups

π1(U, p) = 〈u1, · · · , uk |α1, · · · , αl〉
π1(V , p) = 〈v1, · · · , vm|β1, · · · , βn〉
π1(W , p) = 〈w1, · · · ,wp|γ1, · · · , γq〉

then the π1(M, p) is given by

π1(M, p) = 〈u1, . . . , uk , v1, . . . , vm|αi , βj , i(w1)j(w1)−1, . . . , i(wp)j(wp)−1〉
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Canonical Representation of π1(S , p)

a

bp

a

bp

q

b1

a2

a1

D1 D2

f : ∂D1 → ∂D2

Definition (Connected Sum)

Let S1 and S2 be two surfaces, D1 ⊂ S1 and D2 ⊂ S2 are two topological
disks. f : ∂D1 → ∂D2 is a homeomorphism between the boundaries of the
disks. The connected sum is S1 ⊕ S2 := S1 ∪ S2/{p ∼ f (p).
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Surface Topology

Theorem (Surface Topological Classification)

All the compact closed surfaces can be represented as

S ∼= T 2 ⊕ T 2 ⊕ · · · ⊕ T 2

for oriented surfaces, or

S ∼= RP2 ⊕ RP2 ⊕ · · · ⊕ RP2.

RP2 is gluing a Möbius band with a disk along its single boundary.
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Canonical Representation of π1(S , p)

a

bp

a

b

a−1

b−1

p

p

p

p

Figure: π1(T , p) = 〈a, b|aba−1b−1〉.

Lemma

The fundamental group of a torus is π1(T , p) = 〈a, b|aba−1b−1〉.

Proof.

Homotopic deform a loop γ, such that γ intersects a and b only at p;
decompose γ to γ1γ2 . . . γk , such that γi starts and ends at p, the interior
doesn’t intersect a and b; each γi is generated by a, b.
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Canonical Representation of π1(S , p)

a

b
γ

T
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b

a−1

b−1
γ
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b

a−1

b−1

γ

a

b

Figure: Punctured torus, fundamental group π1(T \ {q}, p) = 〈a, b〉.
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Canonical Representation of π1(S , p)

a1

b1

a2

b2 γ

T1
T2

Figure: Divide conquer method.

Fundamental Groups

π1(T1, p) = 〈a1, b1〉, π1(T2, p) = 〈a2, b2〉, π1(T1 ∩ T2, p) = 〈γ〉
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Canonical Represenation of Fundamental Group

Theorem

Show that π1(S) is 〈a1, b1, · · · , ag , bg |Πg
i=1[ai , bi ]〉 for a surface

S = ⊕g
i=1T

2.

Proof.

By induction. If g = 1, obvious. Let g = 2,

π1(T1) = 〈a1, b1〉
π1(T2) = 〈a2, b2〉
π1(T1 ∩ T2) = 〈γ〉

[γ] = a1b1a
−1
1 b−1

1 in π1(T1), [γ] = (a2b2a
−1
2 b−1

2 )−1 in π1(T2), so

π1(T1 ∪ T2) = 〈a1, b1, a2, b2|[a1, b1][a2, b2]〉.

where [ak , bk ] = akbka
−1
k b−1

k .
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Canonical Representation of Fundamental Group

continued.

Suppose it is true for g − 1 case. Then for g case, the intersection is an
annulus,

π1(T1 ∪ T2 . . .Tg−1) = 〈a1, b1, · · · ag−1, bg−1|Πg−1
k=1[ak , bk ]〉

π1(Tg ) = 〈ag , bg |[ag , bg ]〉
π1(S ∩ Tg ) = 〈γ〉

[γ] = πg−1
k=1 [ak , bk ] in π1(T1 ∪ T2 . . .Tg−1) and [ag , bg ] ∈ π1(Tg ).
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Computational Topology: Fundamental Group
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Cut Graph

Figure: Cut graph of a genus two surface.

Definition (Cut Graph)

Γ is a graph on the surface S , such that S \ Γ is a topological disk, then Γ
is a cut graph of S .
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Algorithm for Cut Graph

Cut Graph Algorithm

Input : A closed triangle mesh M;
Output: A cut graph Γ of M.

1 Compute the dual mesh M̄ of the input mesh M;

2 Compute a spanning tree T̄ of M̄;

3 The cut graph is given by

Γ := {e ∈ M|ē 6∈ T̄}.
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Fundamental Group Generators

Figure: Foundamental group generators of a genus two surface.
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Algorithm for Fundamental Group Generators

Fundamental Group Generators Algorithm

Input : A closed triangle mesh M;
Output: A set of generators of π1(M, p).

1 Compute a cut graph Γ of the input mesh M;

2 Compute a spanning tree T of Γ;

3 Select an edge ei ∈ Γ \ T , ei ∪ T has a unique loop γi ;

4 {γ1, γ2, · · · , γk} is a set of generators of the fundamental group of M.
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Algorithm for Fundamental Group Relations

Fundamental Group Relations Algorithm

Input : A closed triangle mesh M;
Output: The relations in π1(M, p).

1 Compute a cut graph Γ of the input mesh M;

2 Compute a spanning tree T of Γ, Γ \ T = {e1, e2, · · · , ek};
3 For each oriented edge, ei ∪ T has an oriented loop γi ,
{γ1, γ2, · · · , γk};

4 Cut the mesh M along Γ to obtain M̄;

5 Set Let γ = ∂M̄, traverse γ. Set w = ∅, once e±1
i is encountered,

append γ±1
i to w , w ← wγ±1

i .
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Algebraic Topology: Universal Covering Space
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Universal Covering Space

Figure: Universal Covering Space
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Covering Space

Definition (Covering Space)

Given topological spaces S̃ and S , a continuous map p : S̃ → S is
surjective, such that for each point q ∈ S , there is a neighborhood U of q,
its preimage p−1(U) = ∪i Ũi is a disjoint union of open sets Ũi , and the
restriction of p on each Ũi is a local homeomorphism, then (S̃ , p) is a
covering space of S , p is called a projection map.

Definition (Deck Transformation)

The automorphisms of S̃ , τ : S̃ → S̃ , are called deck transformations, if
they satisfy p ◦ τ = p. All the deck transformations form a group, the
covering group, and denoted as Deck(S̃).
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Covering Group

Suppose q̃ ∈ S̃ , p(q̃) = q. The projection map p : S̃ → S induces a
homomorphism between their fundamental groups,
p∗ : π1(S̃ , q̃)→ π1(S , q), if p∗π1(S̃ , q̃) is a normal subgroup of π1(S , q)
then

Theorem (Covering Group Structure)

The quotient group of π1(S)

p∗π1(S̃,q̃)
is isomorphic to the deck transformation

group of S̃.
π1(S , q)

p∗π1(S̃ , q̃)
∼= Deck(S̃).
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universal covering space

Definition (Universal Covering Space)

If a covering space S̃ is simply connected (i.e. π1(S̃) = {e}), then S̃ is
called a universal covering space of S .

For universal covering space

π1(π) ∼= Deck(S̃).

Namely, the fundamental group of the base space is isomorphic to the
deck transformation group of the universal covering space.
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Universal Covering Space

Figure: Universal Covering Space of a genus two surface.
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Universal Covering Space

q

q1

q2

γ
τ

α

U(q1)

Figure: Universal Covering Space Construction.

Path homotopy classes form the universal covering space.
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Universal Covering Space

Theorem

Suppose the topological manifold is path connected, then there is a
universal covering space p : S̃ → S.

Proof.

Fix a base point q ∈ S , consider all the paths starting from q,
Γ := {γ : [0, 1]→ S |γ(0) = q}. Define S̃ := Γ/ ∼, the homotopy classes
of paths in Γ. Pick a path γ ∈ Γ, γ(1) = q0, let U ⊂ S be an open set of
q1. For each point q′ ∈ U, there is a path α(q′) ⊂ U connecting q′ to q0.
Then we define an open set Ũ ⊂ S̃ of [γ] as

Ũ := {[τ ]|τ(1) ∈ U, τ · α(τ(1)) ∼ γ}.

The {Ũ} define a topology of Γ̃. p : Γ̃→ S , [γ] 7→ γ(1) is a universal
covering space of S .
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Lifting to Universal Covering Space

Figure: Universal Covering Space
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Lifting to Universal Covering Space

Figure: Universal Covering Space
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Lifting to Universal Covering Space

M

M̃

U0

U1

Uk−1

Ũ0

Ũ1 Ũk−1

Figure: Lifting to the Universal Covering Space
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Lifting to Universal Covering Space

Let (S̃ , p) be the universal covering space of S , q be the base point. The
orbit of base is p−1(q) = {q̃k}. Given a loop through q, there exists a
unique lift of γ, γ̃ ⊂ S̃ , starting from q̃0.

Lemma

γ1 and γ2 are two loops through the base point, their lifts are γ̃1 and γ̃2.
γ1 ∼ γ2 if and only if the end points of γ̃1 and γ̃2 coincide.

[0, 1]
γ̃−−−−→ M̃yid

yp

[0, 1]
γ−−−−→ M
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Graph fundamental group

Let G be an unoriented graph, T is a spanning tree of G ,
G − T = {e1, e2, · · · , en}, where ek is an edge not in the tree. Then
T ∪ ek has a unique loop γk . Choose one orientation of γk .

Lemma

The fundamental group of G is π1(G ) = 〈γ1, γ2 · · · , γn〉, which is a free
group.
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CW-cell decomposition

Definition (CW-cell decomposition)

A k dimensional cell Dk is a k dimensional topological disk. Suppose M is
a n-dimensional manifold.

1 0-skeleton S0 is the union of a set of 0-cells.

2 k-skeleton Sk
Sk = Sk−1 ∪ D1

k ∪ D2
k · · · ∪ Dnk

k ,

such that
∂D i

k ⊂ Sk−1.

The k-skeleton is constructed by gluing k-cells to the k − 1 skeleton,
all the boundaries of the cells are in the k − 1 skeleton.

3 Sn = M.
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CW-cell decomposition

Theorem (CW-cell decomposition)

π1(S2) = π1(S3) · · ·π1(Sn) = π1(M)

Proof.

using induction. S2 ∩ D1
3 is ∂D1

3 , which is a topological sphere.
π1(D1

3 ) = 〈e〉, π1(S2) is 〈e〉.
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Computational Topology: Universal Covering Space
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Algorithm for Universal Covering Space

Universal Covering Space Algorithm

Input : A closed triangle mesh M;
Output: A finite portion of the universal covering space M̃.

1 Compute a cut graph Γ of M, divide Γ into nodes and oriented
segments, {s1, s2, · · · , sk};

2 Slice M along Γ to obtain one fundamental domain M̄;

3 Initialize M̃ ← M̄

4 Choose an oriented segment si on the boundary of M̃, glue a copy of
M̄ with M̃ along si ,

M̃ ← M̃ ∪∂M̃⊃si∼s−1
i ⊂∂M̄

M̄

5 Trace the boundary of M̃, if there are two adjacent segments
si , si+1 ⊂ ∂M̃, such that s−1

i = si+1, then glue them together;

6 Repeat step 4 and step 5, until M̃ is large enough.
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Algorithm for Homotopy Detection

Homotopy Detection Algorithm

Input : A closed triangle mesh M, two loops γ1 and γ2 through a base
point p;
Output: Verify whether γ1 ∼ γ2.

1 Compute a finite portion of the universal covering space M̃ of M;

2 Lift γ1 · γ−1
2 to M̃, the lifted path is γ̃;

3 If γ̃ is a closed loop, then return Yes; otherwise, return No.
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