Assignment Three: Hodge Decomposition and Riemann Mapping

David Gu

Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

July 27, 2020

Hodge Decomposition

Holomorphic One-form

Holomorphic One-form

Holomorphic One-form

Discrete Hodge Operator

Cotangent edge weight:

$$w_{ij} = \frac{1}{2}(\cot \alpha + \cot \beta)\omega(e). \tag{1}$$

Dual Mesh

Poincaré's duality, equivalent to Delaunay triangulation and Voronoi diagram. The Delaunay triangulation is the primal mesh, the Voronoi diagram is the dual mesh.

Duality

$$1-form~\omega$$

$$2-form\ \Omega$$

$$\frac{\omega(e)}{|e|} = \frac{*\omega(*e)}{|*e|}$$

$$\frac{\omega(e)}{|e|} = \frac{*\omega(*e)}{|*e|} \qquad \frac{\Omega(f)}{|f|} = \frac{*\Omega(*f)}{|*f|}$$

Discrete Operator

Discrte Codifferential Operator

The codifferential operator $\delta:\Omega^p\to\Omega^{p-1}$ on an *n*-dimensional manifold,

$$\delta := (-1)^{n(p+1)+1} * d^*.$$

Discrte Hodge star operator

** :
$$\Omega^p \to \Omega^p$$
,

** :=
$$(-1)^{(n-p)p}$$

$$*(*\omega)(e) = (*\omega)(*e)\frac{|e|}{|*e|}(-1) = \omega(e)\frac{|*e|}{|e|}\frac{|e|}{|*e|}(-1).$$

Dual Mesh

Generate a random one-form ω on the prime mesh, by Hodge decomposition theorem:

$$\omega = d\eta + \delta\Omega + h$$

where η is a 0-form, Ω a 2-form and h a harmonic one-form.

compute $d\omega$,

$$d\omega = d^2\eta + d\delta\Omega + dh = d\delta\Omega, \quad \Omega = (d\delta)^{-1}(d\omega).$$

$$\begin{split} & \frac{\delta\Omega([v_i, v_j])}{=(-1)(*d^*)\Omega([v_i, v_j])} \\ & = (-1)(d^*\Omega)(*[v_i, v_j]) \frac{1}{w_{ij}}(-1) \\ & = \frac{1}{w_{ij}}(d^*\Omega)([*f_k, *f_{\Delta}]) \\ & = \frac{1}{w_{ij}}(*\Omega)(\partial[*f_k, *f_{\Delta}]) \\ & = \frac{1}{w_{ij}}\{*\Omega(*f_{\Delta}) - *\Omega(*f_k)\} \\ & = \frac{1}{w_{ij}}\left\{\frac{\Omega(f_{\Delta})}{|f_{\Delta}|} - \frac{\Omega(f_k)}{|f_k|}\right\} \end{split}$$

$$\delta\Omega([v_i,v_j]) = \frac{1}{w_{ij}} \left\{ \frac{\Omega(f_{\Delta})}{|f_{\Delta}|} - \frac{\Omega(f_k)}{|f_k|} \right\}$$

For each face Δ , we have the equation $d\omega(\Delta)=\omega(\partial\Delta)=d\delta\Omega(\Delta)$,

$$\omega(\partial \Delta) = \frac{F_i - F_{\Delta}}{w_{jk}} + \frac{F_j - F_{\Delta}}{w_{ki}} + \frac{F_k - F_{\Delta}}{w_{ij}}$$
(2)

where $F_i=-rac{\Omega(f_i)}{|f_i|}$'s are 2-forms, ω is 1-form, w_{ij} 's are cotangent edge weights.

For each boundary face Δ , we have the equation

$$d\omega(\Delta) = \omega(\partial\Delta) = \frac{F_i - F_{\Delta}}{w_{jk}} + \frac{F_j - F_{\Delta}}{w_{ki}} + \boxed{\frac{0 - F_{\Delta}}{w_{ij}}}$$
(3)

compute $\delta\omega$,

$$\delta\omega = \delta d\eta + \delta^2 \Omega + \delta h = \delta d\eta, \quad \eta = (\delta d)^{-1} (\delta\omega).$$

$$\delta\omega(v_{i}) = (-1)(*d^{*})\omega(v_{i})
= (-1)(d^{*}\omega)(*v_{i})\frac{1}{|*v_{i}|}
= (-1)(*\omega)(\partial *v_{i})\frac{1}{|*v_{i}|}
= (-1)\sum_{j}(*\omega)(*e_{ij})\frac{1}{|*v_{i}|}
= (-1)\frac{1}{|*v_{i}|}\sum_{j}w_{ij}\omega(e_{ij})$$

$$\delta\omega(v_i) = (-1)\frac{1}{|*v_i|}\sum_j w_{ij} \ \omega(e_{ij})$$

For each vertex v_i , we obtain an equation $\delta\omega(v_i) = \delta d\eta(v_i)$,

$$\sum_{\mathbf{v}_i \sim \mathbf{v}_j} w_{ij} \ \omega([\mathbf{v}_i, \mathbf{v}_j]) = \sum_{\mathbf{v}_i \sim \mathbf{v}_j} w_{ij} (\eta_j - \eta_i). \tag{4}$$

where η_i 's are 0-forms, w_{ij} 's are cotangent edge weights.

for each boundary vertex v_i , we obtain an equation:

$$\sum_{j=0}^{n-1} w_{ij} \ \omega([v_i, v_j]) \boxed{-w_{i,n} \ \omega([v_n, v_i])} = \sum_{j=0}^{n} w_{ij} (\eta_j - \eta_i). \tag{5}$$

ロト 4回ト 4 恵ト 4 恵ト - 恵 - 夕久で

Algorithm for Random Harmonic One-form

```
Input: A closed genus one mesh M; output: A basis of harmonic one-form group;
```

- **1** Generate a random one form ω , assign each $\omega(e)$ a random number;
- 2 Compute cotangent edge weight using Eqn. (1);
- **3** Compute the coexact form δF using Eqn. (2);
- Compute the exact form df using Eqn. (4);
- **1** Harmonic 1-form is obtained by $h = \omega d\eta \delta\Omega$;

Wedge Product

Given two one-forms ω_1 and ω_2 on a triangle mesh M, then the 2-form $\omega_1 \wedge \omega_2$ on each face $\Delta = [v_i, v_j, v_k]$ is evaluated as

$$\omega_1 \wedge \omega_2(\Delta) = \frac{1}{6} \begin{vmatrix} \omega_1(e_i) & \omega_1(e_j) & \omega_1(e_k) \\ \omega_2(e_i) & \omega_2(e_j) & \omega_2(e_k) \\ 1 & 1 & 1 \end{vmatrix}$$
 (6)

Wedge Product Formula

Set
$$f: \Delta \to \mathbb{R}$$
,
$$\begin{cases} f(v_i) = 0 \\ f(v_j) = \omega(e_k) \\ f(v_k) = -\omega(e_j) \end{cases}$$

$$\nabla f(p) = \frac{1}{2A} (f(v_i)\mathbf{s}_i + f(v_j)\mathbf{s}_j + f(v_k)\mathbf{s}_k)$$

$$\mathbf{w} = \frac{1}{2A} [\omega(e_k)\mathbf{s}_j - \omega(e_j)\mathbf{s}_k]$$

$$= \frac{\mathbf{n}}{2A} \times [\omega(e_k)(\mathbf{v}_i - \mathbf{v}_k) - \omega(e_j)(\mathbf{v}_j - \mathbf{v}_i)]$$

$$= -\frac{\mathbf{n}}{2A} \times [\omega(e_k)\mathbf{v}_k + \omega(e_j)\mathbf{v}_j + \omega(e_i)\mathbf{v}_i]$$

Wedge Product Formula

$$\mathbf{w} = \frac{1}{2A} (\omega_k \mathbf{s}_j - \omega_j \mathbf{s}_k)$$

$$\mathbf{w} = \frac{-1}{6A} \begin{vmatrix} \omega_i & \omega_j & \omega_k \\ \mathbf{s}_i & \mathbf{s}_j & \mathbf{s}_k \\ 1 & 1 & 1 \end{vmatrix}$$

$$\int_{\Delta} \omega_1 \wedge \omega_2 = A |\mathbf{w}_1 \times \mathbf{w}_2|$$

$$= \frac{A}{4A^2} (\omega_k^1 \omega_j^2 - \omega_j^1 \omega_k^2) |\mathbf{s}_j \times \mathbf{s}_k|$$

$$= \frac{1}{2} \begin{vmatrix} \omega_k^1 & \omega_j^1 \\ \omega_k^2 & \omega_j^2 \end{vmatrix}$$

since
$$\omega_i^{\gamma} + \omega_j^{\gamma} + \omega_k^{\gamma} = 0$$
, $\gamma = 1, 2$, we obtain

$$\boxed{\int_{\Delta}\omega_1\wedge\omega_2=\frac{1}{6}\left|\begin{array}{ccc}\omega_k^1&\omega_j^1&\omega_i^1\\\omega_k^2&\omega_j^2&\omega_i^2\\1&1&1\end{array}\right|}$$

Wedge Product

Given two one-forms ω_1 and ω_2 on a triangle mesh M, then the 2-form $\omega_1 \wedge {}^*\omega_2$ on each face $\Delta = [v_i, v_j, v_k]$ is evaluated as

$$\omega_1 \wedge^* \omega_2(\Delta) = \frac{1}{2} \left[\cot \theta_i \omega_1(e_i) \omega_2(e_i) + \cot \theta_j \omega_1(e_j) \omega_2(e_j) + \cot \theta_k \omega_1(e_k) \omega_2(e_k) \right]$$
(7)

Wedge Product Formula

$$w_1 = \frac{1}{2A} (\omega_k^1 s_j - \omega_j^1 s_k)$$

$$w_2 = \frac{1}{2A} (\omega_k^2 s_j - \omega_j^2 s_k)$$

$$\int_{\Delta} \omega_1 \wedge^* \omega_2 = A \langle w_1, w_2 \rangle$$

$$= \frac{1}{4A} \left\{ \omega_k^1 \omega_k^2 \langle s_j, s_j \rangle + \omega_j^1 \omega_j^2 \langle s_k, s_k \rangle \right.$$

$$\left. - (\omega_k^1 \omega_j^2 + \omega_j^1 \omega_k^2) \langle s_j, s_k \rangle \right\}$$

$$= \frac{1}{4A} \left\{ - \omega_k^1 \omega_k^2 \langle s_j, s_i + s_k \rangle \right.$$

$$\left. - \omega_j^1 \omega_j^2 \langle s_k, s_i + s_j \rangle \right.$$

$$\left. - (\omega_k^1 \omega_j^2 + \omega_j^1 \omega_k^2) \langle s_j, s_k \rangle \right\}$$

Wedge Product Formula

$$= \frac{1}{4A} \left\{ -\omega_k^1 \omega_k^2 \langle s_j, s_i \rangle - \omega_k^1 \omega_k^2 \langle s_j, s_k \rangle \right.$$

$$- \omega_j^1 \omega_j^2 \langle s_k, s_i \rangle - \omega_j^1 \omega_j^2 \langle s_k, s_j \rangle$$

$$- (\omega_k^1 \omega_j^2 + \omega_j^1 \omega_k^2) \langle s_j, s_k \rangle \right\}$$

$$= -\omega_k^1 \omega_k^2 \frac{\langle s_j, s_i \rangle}{4A} - \omega_j^1 \omega_j^2 \frac{\langle s_k, s_i \rangle}{4A}$$

$$- \frac{\langle s_k, s_j \rangle}{4A} (\omega_k^1 \omega_k^2 + \omega_j^1 \omega_j^2 + \omega_k^1 \omega_j^2 + \omega_j^1 \omega_k^2)$$

$$= -\omega_k^1 \omega_k^2 \frac{\langle s_j, s_i \rangle}{4A} - \omega_j^1 \omega_j^2 \frac{\langle s_k, s_i \rangle}{4A}$$

$$- \frac{\langle s_k, s_j \rangle}{4A} (\omega_k^1 + \omega_j^1) (\omega_k^2 + \omega_j^2)$$

$$= -\omega_k^1 \omega_k^2 \frac{\langle s_j, s_i \rangle}{4A} - \omega_j^1 \omega_j^2 \frac{\langle s_k, s_i \rangle}{4A} - \omega_i^1 \omega_i^2 \frac{\langle s_j, s_k \rangle}{4A}$$

$$= \frac{1}{2} (\omega_i^1 \omega_i^2 \cot \theta_i + \omega_j^1 \omega_j^2 \cot \theta_j + \omega_k^1 \omega_k^2 \cot \theta_k)$$

Holomorphic 1-form Basis

Given a set of harmonic 1-form basis $\omega_1, \omega_2, \dots, \omega_{2g}$; in smooth case, the conjugate 1-form ω_i is also harmonic, therefore

$$^*\omega_i = \lambda_{i1}\omega_1 + \lambda_{i2}\omega_2 + \cdots + \lambda_{i,2g}\omega_{2g},$$

We get linear equation group,

$$\begin{pmatrix} \omega_{1} \wedge^{*} \omega_{i} \\ \omega_{2} \wedge^{*} \omega_{i} \\ \vdots \\ \omega_{2g} \wedge^{*} \omega_{i} \end{pmatrix} = \begin{pmatrix} \omega_{1} \wedge \omega_{1} & \omega_{1} \wedge \omega_{2} & \cdots & \omega_{1} \wedge \omega_{2g} \\ \omega_{2} \wedge \omega_{1} & \omega_{2} \wedge \omega_{2} & \cdots & \omega_{2} \wedge \omega_{2g} \\ \vdots & \vdots & & \vdots \\ \omega_{2g} \wedge \omega_{1} & \omega_{2g} \wedge \omega_{2} & \cdots & \omega_{2g} \wedge \omega_{2g} \end{pmatrix} \begin{pmatrix} \lambda_{i,1} \\ \lambda_{i,2} \\ \vdots \\ \lambda_{i,2g} \end{pmatrix}$$
(8)

We take the integration of each element on both left and right side, and solve the λ_{ii} 's.

Holomorphic 1-form Basis

In order to reduce the random error, we integrate on the whole mesh,

$$\begin{pmatrix} \int_{M} \omega_{1} \wedge^{*} \omega_{i} \\ \int_{M} \omega_{2} \wedge^{*} \omega_{i} \\ \vdots \\ \int_{M} \omega_{2g} \wedge^{*} \omega_{i} \end{pmatrix} = \begin{pmatrix} \int_{M} \omega_{1} \wedge \omega_{1} & \cdots & \int_{M} \omega_{1} \wedge \omega_{2g} \\ \int_{M} \omega_{2} \wedge \omega_{1} & \cdots & \int_{M} \omega_{2} \wedge \omega_{2g} \\ \vdots & & \vdots \\ \int_{M} \omega_{2g} \wedge \omega_{1} & \cdots & \int_{M} \omega_{2g} \wedge \omega_{2g} \end{pmatrix} \begin{pmatrix} \lambda_{i,1} \\ \lambda_{i,2} \\ \vdots \\ \lambda_{i,2g} \end{pmatrix}$$
(9)

and solve the linear system to obtain the coefficients.

Algorithm for Holomorphic 1-form Basis

Input: A set of harmonic 1-form basis $\omega_1, \omega_2, \ldots, \omega_{2g}$; Output: A set of holomorphic 1-form basis $\omega_1, \omega_2, \ldots, \omega_{2g}$;

- Compute the integration of the wedge of ω_i and ω_j , $\int_M \omega \wedge \omega_j$, using Eqn. (6);
- ② Compute the integration of the wedge of ω_i and $^*\omega_j$, $\int_M \omega \wedge ^*\omega_j$, using Eqn. (7);
- **3** Solve linear equation group Eqn. (9), obtain the linear combination coefficients, get conjugate harmonic 1-forms, $*\omega_i = \sum_{j=1}^{2g} \lambda_{ij}\omega_j$
- Form the holomorphic 1-form basis $\{\omega_i + \sqrt{-1}^*\omega_i, \quad i = 1, 2, \dots, 2g\}.$

Riemann Mapping

Topological Annulus

Conformal mapping for topological annulus.

Topological Annulus

exact harmonic form

closed harmonic 1-form

Exact Harmonic One-form

Input: A topological annulus M;

Output: Exact harmonic one-form ω ;

- **1** Trace the boundary of the mesh $\partial M = \gamma_0 \gamma_1$;
- Set boundary condition:

$$f|_{\gamma_0}=0, \quad \gamma_1=-1;$$

- Ompute cotangent edge weight;
- **3** Solve Laplace equation $\Delta f \equiv 0$ with Dirichlet boundary condition, for all interior vertex,

$$\sum_{\mathbf{v}_i \sim \mathbf{v}_j} w_{ij}(f_j - f_i) = 0;$$

 $\omega = df$.

Topological Fundamental Domain

Find the shortest path τ connecting γ_0 and γ_1 , slice the mesh along τ to get a topological disk \bar{M} .

Holomorphic One-Form

holomorphic 1-form

- Use the algorithm for random harmonic One-form algorithm to compute a closed but non-exact harmonic one-form ω_1 ;
- ② Use holomorphic 1-form basis algorithm with $\{\omega,\omega_1\}$ as input to compute a holomorphic 1-form $\omega+\sqrt{-1}^*\omega$.

Integration

Input: A topological disk \overline{M} , a holomorphic 1-form;

Output: Integration

$$\varphi(q) := \int_{p}^{q} \omega + \sqrt{-1}^* \omega$$

- Choose a base point p, set $\varphi(p) = (0,0)$. $p \to touched() = true$, put p to the queue Q;
- ② while Q is non-empty, $v_i \leftarrow Q.pop()$;
- **3** for each adjacent vertex $v_j \sim v_i$, if v_j hasn't been touched, $v_j \rightarrow touched() = true$, enqueue v_j to Q;

$$\varphi(v_j) = \varphi(v_i) + (\omega, {}^*\omega)([v_i, v_j]);$$

repeat step 3,4 until all vertices have been touched.

Integration

Integrating $\omega+\sqrt{-1}^*\omega$ on \bar{M} , normalize the rectangular image $\varphi(\bar{M})$, such that $\varphi(\gamma_0)$ is along the imaginary axis, the height is 2π , $\varphi(\gamma_1)$ is $x=-c,\ c>0$ is a real number.

Integration

Compute the polar map e^{φ} , which maps $\varphi(\bar{M})$ to an annulus.

Riemann mapping can be obtained by puncturing a small hole on the surface, then use topological annulus conformal mapping algorithm.

Exact harmonic 1-form and closed, non-exact harmonic 1-form.

Periodic conformal mapping image $\varphi(M)$.

Polar map $e^{\varphi(p)}$ induces the Riemann mapping.

The choice of the central puncture, and the rotation determine a Möbius transformation.

The conformal automorphism of the unit disk is the Möbius transformation group.

Instruction

Dependencies

- MeshLib', a mesh library based on halfedge data structure.
- 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

Directory Structure

- hodge_decomposition/include, the header files for Hodge decomposition;
- hodge_decomposition/src, the source files for Hodge decomposition algorithm.
- data, Some models.
- CMakeLists.txt, CMake configuration file.
- resources, Some resources needed.
- 3rdparty, MeshLib and freeglut libraries.

Configuration

Before you start, read README.md carefully, then go three the following procedures, step by step.

- Install [CMake](https://cmake.org/download/).
- Oownload the source code of the C++ framework.
- Onfigure and generate the project for Visual Studio.
- Open the .sln using Visual Studio, and complie the solution.
- Finish your code in your IDE.
- On the executable program.

3. Configure and generate the project

- open a command window
- 2 cd ccg_homework_skeleton
- mkdir build
- cd build
- o cmake ..
- open CCGHomework.sln inside the build directory.

5. Finish your code in your IDE

- You need to modify the file: HodgeDecomposition.cpp
- search for comments

```
//insertyourcodehere
```

and insert your code

Modify

```
MeshLib::CHodgeDecomposition::_d(int dimension)
```

MeshLib::CHodgeDecomposition::_delta(int dimension)

 $MeshLib:: CHodgeDecomposition::_remove_exact_form()$

 $MeshLib:: CHodgeDecomposition::_compute_coexact_form()$

 $MeshLib:: CHodgeDecomposition::_remove_coexact_form()$

5. Finish your code in your IDE

- You need to modify the file: WedgeProduct.h
- search for comments

```
//insertyourcodehere
```

and insert your code

Modify

```
double CWedgeOperator::wedge_product()
double CWedgeOperator::wedge_star_product()
```

6. Run the executable program

Command line:

 $Hodge Decomposition. exe_closed_mesh.m_open_mesh.m_texture_image.bmp$

All the data files are in the data folder, all the texture images are in the textures folder.