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Convex Geometric View
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Monge Problem

Monge Problem

Given planar domains with probability measures (Ω, µ) and (Ω∗, ν), Ω is
convex, total measures are equal µ(Ω) = ν(Ω∗), the density functions are
bounded dµ = f (x)dx and dν = g(y)dy , the transportation cost function
is c(x , y) = 1

2 |x − y |, the Monge problem aims at finding the optimal
transportation map,

min
T#µ=ν

∫
Ω
c(x , y)dµ(x).
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Brenier Theorem

Theorem (Brenier)

Given the above conditions, assume the density functions satisfy
appropriate regularity conditions, f , g ∈ L1(Rd , Ω,Ω∗ are compact, then
the optimal transportation map exists and is unique, it is the gradient of a
convex function u : Ω→ R, T = ∇u, where u is the Brenier potential
function.

The Brenier potential satisfies the Monge-Ampere equation,

det(D2u) =
f (x)

g ◦ ∇u(x)

with boundary condition ∇u(Ω) = Ω∗.
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Semi-Discrete Optimal Transportation Problem

Wi

Ω

T

(pi, Ai)

Problem (Semi-discrete OT)

Given a compact convex domain Ω in Rd , and y1, y2, · · · , yk and weights
ν1, ν2, · · · , νk > 0, find a transport map T : Ω→ {y1, . . . , yk}, such that
vol(T−1(pi )) = νi , so that T minimizes the transportation cost:

C(T ) :=
1

2

∫
Ω
|x − T (x)|2dx
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Semi-Discrete Optimal Transportation Map

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

(Ω∗, ν) is discretized as {(yi , νi )}ki=1. Each sample yi corresponds to a
plane πi (x) = 〈x , yi 〉 − hi , the Brenier potential is

uh(x) :=
k

max
i=1
{〈x , yi 〉 − hi},

where the height vector h = (h1, h2, · · · , hk). u∗h is the Legendre dual of
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Semi-Discrete Optimal Transportation Map

uh u∗h

∇uh

Wi(h) yi

πi(h)
π∗i

Ω,V Ω, T

proj proj∗

uh is the upper envelope of plane πi ’s; u∗h is the convex hull of points
{(yi , hi )}ki=1; the projection of u∗h is a power Delaunay triangulation of
{yi}ki=1; the projection of uh is the dual power diagram of Ω.
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in Rn, y1, · · · , yk distinct in Rn, µ a
positive continuous measure on Ω. For any ν1, · · · , νk > 0 with∑
νi = µ(Ω), there exists a vector (h1, · · · , hk) so that

u(x) = max{〈x,pi 〉+ hi}

satisfies µ(Wi ∩ Ω) = νi , where Wi = {x|∇f (x) = pi}. Furthermore, h is
the maximum point of the concave function

E (h) =
k∑

i=1

νihi −
∫ h

0

k∑
i=1

wi (η)dηi ,

where wi (η) = µ(Wi (η) ∩ Ω) is the µ-volume of the cell.

The energy E (h) is called the Alexandrov’s energy.

David Gu (Stony Brook University) Optimal Transportation November 6, 2020 8 / 49



Admissible Height Space

Definition (Admissible Height Space)

The admissible height space is defined as

H(Y ) :=
{
h ∈ Rk : wi (h) > 0, i = 1, 2, . . . , k

}⋂{
k∑

i=1

hi = 1

}
.

The admissible height space is a non-empty convex space. The
optimization is to maximize the energy E (h) in the admissible height space
H, using Newton’s method.
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Geometric Interpretation

One can define a cylinder through ∂Ω, the cylinder is truncated by the
xy-plane and the convex polyhedron. The energy term

∫ h∑
wi (η)dηi

equals to the volume of the truncated cylinder.
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Computational Algorithm

Ω

Wi

Fi

πj

uh(x)

Definition (Alexandrov Potential)

The concave energy is

E (h1, h2, · · · , hk) =
k∑

i=1

νihi −
∫ h

0

k∑
j=1

wj(η)dηj ,

Geometrically, the energy is the volume beneath the parabola.
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Semi-Discrete Optimal Transportation Map

The gradient is ∇uh = (νi − wi (h)); the element of the Hessian matrix is
the ratio between the power voronoi edge length and the power Delaunay
edge length,

aij = − 1

|yi − yj |

∫
Wi∩Wj

f (x)dx

and the diagonal element equals aii = −∑
j 6=i aij .
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Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

∂wi

∂hj
= −|eij ||ēij |
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Optimal Transport Map

Input: A set of distinct points Y = {y1, y2, · · · , yk}, and the weights
{ν1, ν2, · · · , νk};A convex domain Ω,

∑
νj = Vol(Ω);

Output: The optimal transport map T : Ω→ Y

1 Scale and translate Y , such that Y ⊂ Ω;

2 Initialize h0 ← 1
2 (|y1|2, |y2|2, · · · , |yk |2)T ;

3 Compute the Brenier potential u(hk) (envelope of πi ’s ) and its
Legendre dual u∗(hk) (convex hull of π∗i ’s);

4 Project the Brenier potential and Legendre dual to obtain weighted
Delaunay triangulation T (hk) and power diagram D(hk);
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Optimal Transport Map

5 Compute the gradient of the energy

∇E (h) = (ν1 − w1(h), ν2 − w2(h), · · · , νk − wk(h))T .

6 If ‖∇E (hk)‖ is less than ε, then return T = ∇u(hk);

7 Compute the Hessian matrix of the energy

∂wi (h)

∂hj
= −|eij ||ēij |

,
∂wi

∂hi
= −

∑
j

∂wi (h)

∂hj
.

8 Solve linear system
∇E (h) = Hess(hk)d;
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Optimal Transport Map

Damping Algorithm

9 Set the step length λ← 1;

10 Construct the convex hull Conv(hk + λd);

11 if there is any empty power cell, λ← 1
2λ, repeat step 3 and 4, until

all power cells are non-empty;

12 set hk+1 ← hk + λd;

13 Repeat step 9 through 12.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Computational Geometric Algorithms
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File Format

(Ω∗, ν) is represented as a triangle mesh (obj format), each vertex has
both (x , y , z) coordinates and (u, v) parameters. Each vertex vi
represents a sample yi = (ui , vi ), (ui , vi ) specify the planar position in
Ω∗. The summation of the areas of all triangular faces adjacent to vi
is treated as νi , (after normalization).

(Ω, µ) is represented as another triangle mesh (obj format), its
boundary gives the boundary of Ω. For current version, µ is the
uniform distribution.
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File IO

(a) Y and ν (b) planar positions {yi} (c) convex Ω

Figure: Input files.
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Data Structure & Algorithms

1 The combinatorial data structure to represent the Delaunay
triangulation and the dual voronoi diagram is either half-edge or Dart
data structure;

2 The linear numerical solver is Eigen library;

3 The geometric computation is based on adaptive arithmetic method.

4 The power Delaunay is based on Lawson’s edge flip algorithm.

5 The polygon clipping is based on Sutherland–Hodgman algorithm.

6 The optimization of Alexandrov energy is based on damping
algorithm.
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Edge Local Power Delaunay

Given an edge e in a planar triangulation T , find the two neighboring
faces, lift the four vertices to the convex hull ϕ, suppose vertex vi is
represented as pi (ui , vi , ϕ(ui , vi )), compute the volume of the tetrahedron
[p0, p1, p2, p3]. If the volume is positive, then e is locally powerd Delaunay,
if the volume is negative, then e is non-locally-power-Delaunay.

v0 v1

v2

v3

p0

p1p2

p3
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Edge Flippable

Given an edge e = [v0, v1] in a planar triangulation T , if [v0, v3, v2] or
[v1, v2, v3] is clockwise, then the edge is not flippable.

v0 v1

v2

v3

v0 v1

v2

v3
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Lawson Edge Flip Algorithm

Input is a set of points S on the plane with the powers, the output is the
power Delaunay triangulation.

1 Construct an arbitrary triangulation of the point set S ;

2 Push all non-locally intrior edges of T on stack and mark them;
3 While the stack is non-empty do

1 e ← pop();
2 unmark e;
3 if e is locally power Delaunay then continue;
4 if e can’t be flipped then continue;
5 flip edge e;
6 push other four edges of the two triangles adjacent to e into the stack

if unmarked;

4 If there is an edge e, which is not local power Delaunay, then there is
some point pi that is not on the convex hull of all pk ’s.
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Lawson Edge Flip for Convex Hull

Figure: Construct convex hull of the graph of ϕ, using Lawson Edge Flip
algorithm.
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Legendre Dual

Given a convex hull, which is the graph of a convex function ϕ, we
compute its Legendre dual ϕ∗. Each point pi = (ai , bi , ci ) on the convex
hull represents a plane πi ,

π(x , y) = aix + biy − ci .

Each face [pi , pj , pk ] is dual to a point (x , y , z) satisfying the linear
equation group,  ci

cj
ck

 =

 ai bi −1
aj bj −1
ak bk −1

 x
y
z


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Upper Envelope-Brenier Potential

Given the convex hull {p1, p2, · · · , pk}, where pi (ui , vi , ϕ(ui , vi )), add one
more point as infinity point (0, 0,−h), h is big enough to be above all
other points. Each face fα is dual to a point f ∗α ; each vertex vi is dual to a
supporting plane v∗i .

Figure: Legendre dual of the convex hull is the upper envelope.
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Sutherland–Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C , we use C to
clip S . Each time, we use one edge e of C to cut off a corner of S .
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Sutherland–Hodgman algorithm

foreach Edge clipEdge in clipPolygon do
List inputList ← outputList;

outputList.clear();
foreach Edge [pk−1, pk ] in inputList do

Point q ← ComputeIntersection(pk−1, pk , clipEdge);
if pk inside clipEdge then

if pk−1 not inside clipEdge then

outputList.add(q);

end

outputList.add(pk);

end
else if pk−1 inside clipEdge then

outputList.add(q)
end

end
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Upper Envelope - Brenier Potential

Figure: Brenier potential obtained by clipping the Legendre dual.
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Cell Clipping

Figure: Boundary cell clipping.
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Power Diagram Algorithm

1 Compute the convex hull using Lawson edge flipping, add the infinity
vertex (0, 0,−h); project the convex hull to power Delaunay
triangulation T ;

2 Compute the upper envelope using Legendre dualalgorithm and the,
project to the power diagram D ;

3 Clip the power cells using Sutherland-Hodgman algorithm;
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Damping Algorithm

1 Initialize the step length λ;

2 ϕ← ϕ+ λd ;

3 Compute the convex hull using Lawson edge flipping, add the infinity
vertex (0, 0,−h); project the convex hull to power Delaunay
triangulation T ;

4 If the convex hull misses any vertex, then λ← 1
2λ, repeat step 2 and

step 3;

5 Compute the upper envelope using Legendre dual algorithm, project
to the power diagram D ;

6 Clip the power cells using Sutherland-Hodgman algorithm;

7 If any power cell is empty, then λ← 1
2λ, repeat step 5 and step 6;
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Newton’s Method

1 Initialize φ as φ(u, v) = 1
2 (u2 + v2);

2 Call the power diagram algorithm;

3 Compute the gradient ∇E , the target area minus the current power
cell area;

4 Compute the Hessian matrix H, using the power diagram edge length;

5 Compute the update direction Hd = ∇E ;

6 Call the damping algorithm, set φ← φ+ λd , such that φ is
admissible;

7 Repeat step 2 through step 6, until the gradient is close to 0.
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Transportation Map

Figure: Transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.
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Optimal Transportation Map

Figure: Optimal transportation map.

David Gu (Stony Brook University) Optimal Transportation November 6, 2020 40 / 49



Instruction
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Dependencies

1 ‘DartLib‘ or ’MeshLib’, a general purpose mesh library based on Dart
data structure.

2 ’Eigen’, numerical solver.

3 ‘freeglut‘, a free-software/open-source alternative to the OpenGL
Utility Toolkit (GLUT) library.

David Gu (Stony Brook University) Optimal Transportation November 6, 2020 42 / 49



Commands and Hot keys

Command: -target target mesh -source source mesh

’ !’: Newton’s method

’m’: Compute the mass center of power cells

’W’: output the Legendre dual mesh and the optimal transportation
map mesh

’L’: Edit the lighting

’d’: Show convex hull or upper envelope; power Delaunay or diagram

’g’: Show 3D view or 2D view

’e’: Show edges

’c’: Show cell centers

’o’: Take a snapshot

’?’: Help information
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PowerDynamicMesh class

Compute the Power Delaunay and Power Diagram.

1 CPDMesh :: Lawson edge swap Lawson edge swap algorithm to
compute convex hull u∗h, Power Delaunay triangulation;

2 CPDMesh :: Legendre transform Legendre dual transformation
compute upper envelope uh, Power voronoi diagram;

3 CPDMesh :: power cell clip Clip power cells, based on
Sutherland-Hodgman algorithm;
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COMTDynamicMesh class

Compute the Optimal Mass Transportation Map.

1 COMTMesh :: update direction compute the update direction, based
on Newton’s method;

2 COMTMesh :: calculate gradient calculate the gradient of the
Alexandrov energy;

3 COMTMesh :: calculate hessian calculate the Hessian matrix of the
Alexandrov energy;

4 COMTMesh :: edge weight calculate the edge weight
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Coding Assignment

Compute the Optimal Mass Transportation Map.

1 Implement Lawson’s edge flipping algorithm to compute weighted
Delaunay triangulation, CPDMesh :: Lawson edge swap;

2 Implement Sutherland-Hodgman algorithm for convex polygon
clipping, Polygon2D :: Sutherland Hodgman;

3 Implement Computing the Wasserstein distance.
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Directory Structure

3rdparty/DartLib or 3rdparty/MeshLib, header files for mesh;

MeshLib/algorithms/OMT, the header files for Power Diagram Mesh
and Optimal Mass Transportation Map Mesh;

OT/src, the source files for optimal transportation map;

CMakeLists.txt, CMake configuration file;
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Configuration

Before you start, read README.md carefully, then go three the following
procedures, step by step.

1 Install [CMake](https://cmake.org/download/).

2 Download the source code of the C++ framework.

3 Configure and generate the project for Visual Studio.

4 Open the .sln using Visual Studio, and complie the solution.

5 Finish your code in your IDE.

6 Run the executable program.
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Configure and generate the project

1 open a command window

2 cd ot-homework3 skeleton

3 mkdir build

4 cd build

5 cmake ..

6 open OTHomework.sln inside the build directory.
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