Topological Algorithm

David Gu

1Computer Science Department
Stony Brook University
Yau Mathematical Sciences Center
Tsinghua University

Tsinghua University
Algebraic Topology
Suppose $\sigma \in C_k$, $\sigma = [v_0, v_1, \cdots, c_k]$ Let p be a permutation, then if \{ $p(0), p(1), \cdots, p(k)$ \} differs from \{ $0, 1, \cdots, k$ \} by even number of swaps, then $[v_{\rho(0)}, v_{\rho(1)}, \cdots, v_{\rho(k)}]$ has the same orientation with σ; if they differ by an odd number of swaps, then $[v_{\rho(0)}, v_{\rho(1)}, \cdots, v_{\rho(k)}] = \sigma^{-1}$.
Suppose M is a triangle mesh, with vertices, edges and faces V, E, F respectively. Given two simplices $\sigma_i \in C_k$, $\tau_j \in C_{k-1}$, denote the adjacency number,

$$[\sigma_i, \tau_j] = \begin{cases}
+1 & \tau_j \in \partial \sigma_i \\
-1 & \tau_j^{-1} \in \partial \sigma_i \\
0 & \tau_j \cap \sigma_i = \emptyset
\end{cases}$$
V = \{v_i\} form the basis of C_0, $E = \{e_j\}$ form the basis of C_1, $F = \{f_k\}$ form the basis of C_2. $\partial_1 : C_1 \rightarrow C_0$ and $\partial_2 : C_2 \rightarrow C_1$ are linear maps, and represented as matrices.

$$\partial_2 = ([f_k, e_j]), \partial_1 = ([e_j, v_i]).$$

construct the following linear operator $\Delta : C_1 \rightarrow C_1$,

$$\Delta = \partial_2 \circ \partial_2^T + \partial_1^T \circ \partial_1,$$

the eigen vectors corresponding to zero eigen values are the basis of $H_1(\Sigma, \mathbb{Z})$.

David Gu

Conformal Geometry
Definition (Cut Graph)

A cut graph G of a mesh Σ is a graph formed by non-oriented edges of Σ, such that Σ/G is a topological disk.

Figure: Cut graph
Algorithm: Cut graph

Input: A triangular mesh Σ.
Output: A cut graph G

1. Compute the dual mesh $\tilde{\Sigma}$, each edge $e \in \Sigma$ has a unique dual edge $\tilde{e} \in \tilde{\Sigma}$.
2. Compute a spanning tree \tilde{T} of $\tilde{\Sigma}$.
3. The cut graph is the union of all edges whose dual edges are in \tilde{T}.

$$G = \{ e \in \Sigma | \tilde{e} \not\in \tilde{T} \}.$$
Definition (Wedge)

On a face f, a corner at vertex v is denoted as a pair (f, v), and represented using halfedge data structure. Given a vertex v, the corners adjacent to it are ordered counter-clockwisely. A maximal sequence of adjacent corners without sharp edges form a wedge.

Figure: Cut graph
Fundamental Domain

Algorithm: Fundamental Domain

Input: A mesh Σ and a cut graph G.
Output: A fundamental domain $\tilde{\Sigma}$.

1. Compute the cut graph G of Σ, label all the edges in G as sharp edges.
2. Compute the wedges of Σ formed by sharp edges.
3. Construct an empty mesh $\tilde{\Sigma}$.
4. For each wedge w insert a vertex into $\tilde{\Sigma}$.
5. For each face $f = [v_0, v_1, v_2]$ in Σ, insert a face $\tilde{f} = [w_0, w_1, w_2]$ into $\tilde{\Sigma}$, such that the corner (f, v_k) belongs to the wedge w_k, $(f, v_k) \in w_k$.

David Gu
Conformal Geometry
Figure: Fundamental domain
Theorem (Homology basis)

Suppose Σ is a closed mesh, G is a cut graph of Σ, then the basis of loops of G (assigned with an orientation) is also a homology basis of Σ.

Proof.

The computation of the cut graph in fact find a CW-cell decomposition

$$\Sigma = G \cup D_2,$$

where D_2 is a 2-cell. Suppose $\{\gamma_1, \gamma_2, \cdots, \gamma_n\}$ are the loop basis of G, ∂D_2 is a loop in G, which is represented as a word in $\pi_1(G)$, then

$$\pi_1(\Sigma) = \langle \gamma_1, \gamma_2, \cdots, \gamma_n | \partial D_2 \rangle.$$
Homology basis

Algorithm: Loop basis for a graph G

Input: A graph G.
Output: A basis of loops of G.

1. Compute a spanning tree T of G.
2. $G/T = \{e_1, e_2, \cdots, e_n\}$.
3. $e_i \cup T$ has a unique loop, denoted as γ_i.
4. $\{\gamma_1, \gamma_2, \cdots, \gamma_n\}$ form a basis of $\pi_1(G)$.
Figure: Homology basis
Algorithm: Universal covering space

Input: A mesh Σ.
Output: A finite portion of the universal cover $\tilde{\Sigma}$.

1. Compute a cut graph G of Σ. We call a vertex on G with valence greater than 2 a knot. The knots divide G to segments, assign an orientation to each segment, label the segments as $\{s_1, s_2, \cdots, s_n\}$.

2. Compute a fundamental domain $\tilde{\Sigma}$, induced by G, whose boundary is composed of $\pm s_k$’s.

3. Initialize $\tilde{\Sigma} \leftarrow \tilde{\Sigma}$, $\partial \tilde{\Sigma} \leftarrow \partial \tilde{\Sigma}$, represented using $\pm s_k$’s.

4. Glue one copy of $\tilde{\Sigma}$ to the current $\tilde{\Sigma}$ along only one segment $s_k \in \partial \tilde{\Sigma}$, $-s_k \in \partial \tilde{\Sigma}$, $\tilde{\Sigma} \leftarrow \tilde{\Sigma} \cup s_k \tilde{\Sigma}$.

5. Update $\partial \tilde{\Sigma}$, if $\pm s_k$ are adjacent in $\partial \tilde{\Sigma}$, glue them. Repeat this step, until there is no adjacent $\pm s_k$ in the boundary $\partial \tilde{\Sigma}$.

6. Repeat gluing copies of $\tilde{\Sigma}$ until $\tilde{\Sigma}$ is large enough.
Universal Covering Space

Figure: universal covering space
Algorithm: Cohomology Basis

Input: A homology basis \{γ_1, γ_2, \cdots, γ_n\}
Output: A cohomology basis \{ω_1, ω_2, \cdots, ω_n\}

1. select γ_k, slice the mesh open along γ_k, to get an open mesh Σ_k, \(\partial Σ_k = γ_k^+ - γ_k^-\).
2. Set a 0-form \(f_k: Σ_k \rightarrow \mathbb{R}\), such that \(∀ v \in γ_k^+, f_k(v) = 1; \ ∀ v \in γ_k^-, f_k(v) = 0\).
3. \(δ_0 f_k\) is defined on Σ_k, because it is consistent on the corresponding edges on γ_k^+ and γ_k^-, so it is well defined on Σ as well.
Algorithm: Double Cover

Input: An open mesh with boundaries. Output: The double covering of the mesh, which is a closed symmetric mesh.

1. construct a copy of the input mesh Σ'
2. reverse the orientation of the copy, each $[v_0, v_1, v_2]$ is converted to $[v_1, v_0, v_2]$.
3. Identify each boundary vertex in $\partial \Sigma$ with the corresponding one in $\partial \Sigma'$,
4. each boundary halfedge $e \in \partial \Sigma$ has a unique corresponding halfedge $e' \in \Sigma'$. glue the corresponding boundary halfedges to the same boundary edge.
Figure: Double Covering