Infinite Circle Packing

David Gu1,2

1Computer Science Department
Stony Brook University
2Yau Mathematical Sciences Center
Tsinghua University

Tsinghua University
Definition (Triangulation)

A triangulation of a surface S refers to locally decompose S to a set of topological closed triangles, denoted as $T = \{ t_j \}$, such that either $t_i \cap t_j = \emptyset$ or t_i intersects t_j at a vertex or a whole edge. T can be finite or infinite.

A triangulation is also called a simplical 2-complex.
Definition (Label)

Given a complex K with vertex set $\{v_1, v_2, \ldots, v_j, \ldots\}$, assign each vertex $v_j (j = 1, 2, \cdots)$ a positive number r_j in Euclidean, spherical or hyperbolic geometry, then the set of these positive numbers $R = \{r_1, r_2, \cdots, r_j, \cdots\}$ is called a label of K in Euclidean, spherical or hyperbolic geometry.
Circle Packing

Definition (Circle Packing)

Circle packing refers to a special type of circle pattern, K is a simplical 2-complex, simplicial equivalent to a triangulation of a surface. We say a circle pattern is a circle packing of the complex K, if it satisfies the following conditions:

1. For each vertex $v \in K$, there is a circle C_v in P corresponding to it.
2. If $[u, v]$ is an edge of K, then C_u and C_v are tangent.
3. If $[u, v, w]$ is a positively oriented face of K, then C_u, C_v, C_w form a positively oriented, mutually tangent triple circles.

Definition (Univalent)

A circle packing is called univalent, if there is no overlapping among all the circles. Namely, no two circles intersect at more than one point.
Discrete Conformal Metric Deformation vs CP

David Gu
Discrete Ricci Flow
Discrete Conformal Metric Deformation vs CP

David Gu
Discrete Ricci Flow
Discrete Conformal Metric Deformation vs CP
Discrete Conformal Metric Deformation vs CP
Discrete Conformal Metric Deformation vs CP

David Gu

Discrete Ricci Flow
Definition (Horocircle)

Circles, that are internally tangent to the unit circle, are called horocircles. The centers of horocircles are the tangent points.
Theorem (Andreev-Thurston)

Let K be a combinatorial closed disk, then there exists a circle packing P_k of K in the hyperbolic plane \mathbb{H}^2, such that all boundary circles are horocircles. P_k is unique up to hyperbolic rigid motion.
Lemma (Flower)

Suppose P and \tilde{P} are flowers of the same complex K, surrounding the center vertex v, then

$$\max_{w \sim v} \frac{\tilde{R}(w)}{R(w)} \geq \frac{\tilde{R}(v)}{R(v)}, \min_{w \sim v} \frac{\tilde{R}(w)}{R(w)} \leq \frac{\tilde{R}(v)}{R(v)}$$
Lemma (Max Value Principle)

Suppose P_K and \tilde{P}_K are circle packings of the same complex K, then the max and min values of $\frac{\tilde{R}(v)}{R(v)}$ are on boundary circles.
Lemma

Suppose P_K and \tilde{P}_K are circle packings of the same complex K, \tilde{P}_K is the maximal circle packing, then $\forall v \in K, R(v) \leq \tilde{R}(v)$.

David Gu Discrete Ricci Flow
Discrete Riemann mapping

Let Ω be a simply connected domain contained in the unit disk. Compute a triangulation and construct a mesh. Run hyperbolic ricci flow, such that

$$\forall v_i \in \partial M, u_i \to \infty.$$

Then the resulting mapping is the discrete Riemann mapping.

Theorem

Discrete Riemann mapping

Conformal mapping from a simply connected planar domain to the unit disk exists, and unique up to a rigid motion.
Maximal Hyperbolic Ricci flow

Discrete Ricci Flow
Maximal Hyperbolic Ricci flow

David Gu

Discrete Ricci Flow
Maximal Hyperbolic Ricci flow
Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Sophie - Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Alex - Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Alex - Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Alex - Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
Alex - Maximal Hyperbolic Ricci flow

David Gu
Discrete Ricci Flow
K is a infinite, with boundary, complex of the whole upper half plane.
K is a infinite, with boundary, complex. Get a sequence of simply connected complexes

$$\{K_j, j = 1, 2, 3 \cdots \}$$

1. $v_1 \in K_1$
2. $\forall j, K_j$ is a finite triangulation of a topological disk,
3. $K_j \subset K_{j+1}$
4. $K_j \uparrow K$, namely $\forall L \subset K, L \neq K, \exists j, j$ is big enough, s.t. $L \subset K_j$.
In general, \(\{K_j | j = 1, 2, 3 \cdots \} \) can be chosen as:

1. \(K_1 = \{v_1\} \).
2. \(K_j = K_{j-1} \cup \{v \in K | \exists w \in K_{j-1}, v \sim w\} \).

Each \(K_j \) has a maximal hyperbolic circle packing in \(H^2 \), denoted as \(P_{K_j} \), the radius function for \(P_{K_j} \) is \(R_j \). Normalize the \(P_{K_j} \), such that the center of the circle of \(v_1 \) is the origin.
Lemma

Suppose K and L are two finite triangulations of closed disk, $L \subseteq K$, R_K and R_L are the radius functions of maximal circle packings of K and L respectively, then

$$\forall v \in L, R_K(v) \leq R_L(v).$$
Infinite Circle Packing
Claim: consider the sequence of radius functions \(\{R_j\} \), because \(K_j \subset K_{j+1} \), for all vertex \(v \in K_j \),

\[
R_{j+1}(v) \leq R_j(v),
\]

\(\{R_j(v)\} \) is monotonously decreasing. Two situations can happen, for a vertex \(v_1 \in K \)

1. \(R_j(v_1) \downarrow r_1, \ r_1 > 0, \) when \(j \to \infty \).
2. \(R_j(v_1) \downarrow 0, \) when \(j \to \infty \).

This is determined by the complex \(K \) itself, independent of the choice of \(v_1 \) and \(K_j \).
1. \(K \) is called the hyperbolic type, there exists a univalent circle packing of \(K \), which fills the whole hyperbolic plane.

2. \(K \) is called the parabolic type, there exists a univalent circle packing of \(K \), which fills the whole Euclidean plane.
Theorem

If K is an infinite complex with boundary, then K is of hyperbolic type.

Lemma (Ring)

For each $k \geq 3$ integer, there exists a constant $c(k) > 0$, such that for a k-flower on Euclidean or hyperbolic plane, the center circle radius is r_0, then each pedal circle radius

$$r \geq c(k)r_0.$$
Ring lemma holds for interior circles.
Ring lemma also holds for horocircles on the boundary.
Hyperbolic Complex

Fix a boundary vertex $v_1 \in \partial K$, get a sequence finite subcomplexes $\{K_j\}$. Suppose P_{K_j} are the maximal circle packing of K_j, with circle of v_1 normalized, $R_j(v) = r_1 > 0$, the center of the $c_j(v)$ is at z_1.

claim: $\forall v \in K$, $\lim_{j \to \infty} R_j(v) = r_v > 0$.

If $v \in \partial K$, then $c_j(v)$ is a horocircle, $R_j(v) > 0$, $\{R_j(v)\}$ monotonously decreases, the limit exists. If $v \notin \partial K$, find the shortest path from v_1 to v in the interior of K, $\gamma = [v_1, v_2, \cdots, v_N]$, $v_N = v$. Assume the maximum valence of K is d, then by ring lemma

$$c(d)R_j(v_n) \leq R_j(v_{n+1}) \leq \frac{1}{c(d)}R_j(v_n)$$

then

$$(c(d'))^N R_j(v_1) \leq R_j(v) \leq \frac{1}{(c(d'))^N} R_j(v_1)$$

$\{R_j(v)\}$ monotonously decreases, $\lim_{j \to \infty} R_j(v) \to r_v > 0$. K is hyperbolic.
Existence

Theorem

Let K be an infinite simply connected complex with boundary, then there exists a univalent circle packing filling the whole hyperbolic plane.

Get the sequence of $\{K_j\}$ and the maximal circle packing sequence $S_1 = \{P_{K_j}\}$, the vertex sequence of K is $\{v_1, v_2, \ldots\}$. Choose a subsequence $S_2 \subset S_1$, such that the centers of the circles of v_2 in S_2 converges; choose a subsequence $S_3 \subset S_2$, such that the centers of the circles of v_3 in S_3 converges. Similarly, take $S_{n+1} \subset S_n$, $\lim_{n \to \infty} S_n$ gives the desired circle packing.
Uniqueness

Theorem

Such two circle packings differ by a Möbius transformation.
Definition (Winding Number)

If $\gamma : [a, b] \rightarrow \mathbb{C}$ is a continuous curve in the plane, and $g : \gamma \rightarrow \mathbb{C}$ is a continuous nonvanishing function on γ, then the winding number of g on γ, denoted $P(g; \gamma)$, is the change of the argument of g while transiting γ, i.e.

$$P(g; \gamma) := \frac{\text{arg}(g(\gamma(b))) - \text{arg}(g(\gamma(a)))}{2\pi}.$$
Definition (Fixed-Point Index)

Let γ and σ be positively oriented Jordan curves and let $f : \gamma \to \sigma$ be an orientation preserving, fixed point-free homeomorphism. Then the fixed-point index of f denoted as $\eta(f, \gamma)$ is the winding number of $P(f(z) - z; \gamma)$.
Lemma

Suppose $\phi : \mathbb{C} \to \mathbb{C}$ is an orientation-preserving homeomorphism. If $f : \gamma \to \sigma$ is an orientation preserving, fixed-point free homeomorphism, then same is true for the map $f_1 = \phi \circ f \circ \phi^{-1} : \phi(\gamma) \to \phi(\sigma)$, moreover

$$\eta(\phi \circ f \circ \phi^{-1}; \phi(\gamma)) = \eta(f; \gamma)$$
Lemma

Let γ, σ be Jordan curves in \mathbb{C}, positively oriented; $f : \gamma \to \sigma$ be an orientation preserving homeomorphism with no fixed points. Then

1. $\eta(f; \gamma) = \eta(f^{-1}; f(\gamma))$
2. If γ is contained in closure of the domain determined by σ, or vice versa, then $\eta(f; \gamma) = 1$.
3. If the intersection of γ and σ contains at most 2 points, then $\eta(f; \gamma) \geq 0$.
Proof.

1. \(\arg(f(z) - z) = \pi + \arg(f^{-1}(w) - w) \).

2. Homotopically shrink \(\sigma \) to a point. If the point is inside \(\gamma \), then index equals to one; if the point is outside of \(\gamma \), then the index equals to zero.

3. The fixed point index is one. (see the following figure)
Get a maximal circle packing of K. Suppose $[u, v, w]$ is a triangle, choose a point z_0 inside an interstice of $[c_u, c_v, c_w]$, use

$$z \mapsto \frac{1}{z - z_0}$$

to map the whole circle packing inside the interstice bounded by c_u, c_v, c_w.

David Gu
Discrete Ricci Flow
Suppose there are two circle packings P_K, P'_K, each interstice determines a unique Möbius transformation, which maps the intersection points to intersection points. The piecewise Möbius transformations can be extended to a diffeomorphism, which is orientation preserving and fix point free. On each interstice, the Möbius map is $f_j : e_j \to e'_j$; on each circle, the map is $g_i : c_i \to c'_i$. The Total map is $F : \mathbb{C} \to \mathbb{C}$.
Denote the exterior interstice as Γ_P and Γ'_P, and the mappings are defined as above, then

$$\eta(F; \Gamma_P) = \sum_j \eta(f_j, e_j) + \sum_i \eta(g_i, c_i),$$

where the sum is over all interstices and circles inside the exterior interstice.
Key Idea

(a) (b) (c) (d)
Proof.

If P_K and $P_{K'}$ do not differ by a Möbius transformation, then situation (a) will happen. Deformation by Möbius, we get situation (d). Then $\eta(F; \Gamma_P) = -1$. But for any circle or interstice inside Γ_P, the fixed-point index is non-negative. If the triangulation is finite, then we are done.

Now we are focusing on the case K is infinite.
Proof.

Suppose P_K has countable singularities, denoted as $Singular(P)$. The set $Singular(P)$ is a compact set. By small perturbation,

$$Singular(P) \cap \{ c | circleinP_{K'} \} = \emptyset$$

Denote

1. Circle at $v \in K$ in $P_{K'}$, as P'_v
2. Interstices in $P_{K'}$, \mathcal{J}'
3. Singularities of $P_{K'}$, \mathcal{R}'

$SingularP$ is contained in the union of all disks, interstices and the interior of singularities in $P_{K'}$.

David Gu Discrete Ricci Flow
Proof.

Because $\text{Singlar}(P)$ is compact, we can choose a finite open cover. Let

$$G = \{(\bigcup_{v \in K} \text{interior}(P_v)) \bigcup (\bigcup_{H \in \mathcal{H}'} H) \bigcup (\bigcup_{L \in \mathcal{L}'} \text{interior}(L))\}$$

which contains $\text{Singlar}(P)$. Let $V_1 \subset V$ be the vertices, whose circles are not contained in G. Then each connected component of $V - V_1$ contains at least a singularity, the boundary of each connected component is a Jordan curve, composed by a finite number of circular arcs (of circles in V_1), denoted as $\sigma_j \subset P_K$. The corresponding image of σ_j is $\gamma_j \subset P_{K'}$. Then σ_j is disjoint from γ_j.

Disregard the interior of σ_j’s, then the packing is finite.
Replace singularities and their neighboring circles by Jordan curve σ_j's (red curves).
Discrete Conformal Metric Deformation vs CP

David Gu

Discrete Ricci Flow
Discrete Conformal Metric Deformation vs CP

David Gu

Discrete Ricci Flow
Discrete Conformal Metric Deformation vs CP
Discrete Conformal Metric Deformation vs CP

David Gu

Discrete Ricci Flow
Discrete Conformal Metric Deformation vs CP