1.4 Semi-Discrete Optimal Transport

Suppose we want to find the optimal transport map \(T : (X, \mu) \rightarrow (Y, \nu) \) with a cost function \(c : X \times Y \rightarrow \mathbb{R} \), where \(\mu \) is a continuous distribution \(d\mu(x) = f(x)dx \) on the compact space \(X \), and \(\nu \) is a discrete distribution \(\nu = \sum_{i=1}^{n} \nu_i \delta(y - y_i) \). In this circumstances, the target space \(Y \) becomes a set of finite distinct points
\[Y = \{ y_1, y_2, \ldots, y_n \} \].

Based on the dual problem formulation, we want to find the Kontarovich potential \(\phi : Y \rightarrow \mathbb{R} \) to maximize the functional:
\[
\max_{\varphi} \left\{ F(\varphi) := \int_X \varphi^c(x) d\mu(x) + \int_Y \varphi(y) d\nu(y) \right\}.
\]

Since \(\nu \) is discrete, the above functional can be reformulated as:
\[
\max_{\varphi} \left\{ F(\varphi_1, \ldots, \varphi_n) := \int_X \varphi^c(x) f(x) dx + \sum_{i=1}^{n} \varphi_i \nu_i \right\}. \tag{1.25}
\]

By the definition of \(c \)-transform, we obtain:
\[
\varphi^c(x) = \inf_{y \in Y} c(x, y) - \varphi(y) = \min_{j=1}^{n} c(x, y_j) - \varphi_j
\]

Definition 1.13 (c-Voronoi Cell Decomposition). The \(c \)-transform induces a \(c \)-Voronoi cell decomposition of \(X \),
\[
X = \bigcup_{i=1}^{n} W_\varphi(i) \tag{1.26}
\]
where each cell is called a \(c \)-Voronoi cell and defined as
\[
W_\varphi(i) := \{ x \in X | c(x, y_i) - \varphi_i \leq c(x, y_j) - \varphi_j, \forall j = 1, \ldots, n \}. \tag{1.27}
\]

Suppose the intersection between \(W_\varphi(i) \) and \(W_\varphi(j) \) is
\[
\Gamma_\varphi(i, j) = W_\varphi(i) \bigcap W_\varphi(j),
\]
which has zero \(\mu \)-measure. Then the \(c \)-transform \(\varphi^c \) can be written explicitly as
\[
\varphi^c(x) = c(x, y_i) - \varphi_i, \quad \forall x \in W_\varphi(i), \tag{1.28}
\]
plug into (1.25), we obtain
1.4 Semi-Discrete Optimal Transport

\[
F(\phi_1, \ldots, \phi_n) = \sum_{i=1}^{n} \phi_i v_i + \sum_{i=1}^{n} \int_{W_{\phi}(i)} c(x, y_i) - \phi_i \) f(x) \) dx
\]

(1.29)

by \(\int_{W_{\phi}(i)} \) f(x) \) dx = \(\mu(W_{\phi}(i)) \), the above functional can be simplified to

\[
F(\phi_1, \ldots, \phi_n) = \sum_{i=1}^{n} (v_i - \mu(W_{\phi}(i))) \phi_i + \sum_{i=1}^{n} \int_{W_{\phi}(i)} c(x, y_i) f(x) dx.
\]

(1.30)

We define an auxiliary function

\[
\lambda(x) = c(x, y_i) - c(x, y_j),
\]

(1.31)

then \(\Gamma_{\phi}(i, j) \) is the level set \(\lambda(x) = \phi_i - \phi_j \). The level sets are orthogonal to the gradient of \(\lambda \),

\[
\nabla \lambda(x) = \nabla_x c(x, y_i) - \nabla_x c(x, y_j).
\]

(1.32)

Definition 1.14 (Stream Line). The stream curve along the gradient field of \(\lambda \) can be defined as follows:

\[
\frac{d}{dt} \gamma(x, t) = \frac{\nabla \lambda(x)}{|\nabla \lambda(x)|} \quad \text{and} \quad \gamma(x, 0) = x.
\]

(1.33)

Along the stream line, we have

\[
\frac{d}{dt} \lambda(\gamma(x, t)) = \langle \nabla \lambda, \dot{\gamma}(\gamma(x, t)) \rangle = |\nabla \lambda|(\gamma(x, t)).
\]

(1.34)

By implicit function theorem, along a stream line \(\gamma(x, t) \), \(\lambda(\gamma(x, t)) \) is invertible, \((\lambda \circ \gamma)^{-1} \) maps the value of \(\lambda \) to the parameter \(t \).

1.4.1 Derivative of Cell Measure

Suppose \(h = (h_1, h_2, \ldots, h_n) \) is a vector with small norm. Some point will change from c-power Voronoi cell \(W_{\phi}(j) \) to \(W_{\phi + h}(i) \), as shown in Figure 1.14. Suppose \(h_i > h_j \), then the \(i \)-th power cell will be enlarged,

\[
h_i > h_j \quad \Rightarrow \quad W_{\phi}(j) \cap W_{\phi + h}(i) \neq \emptyset.
\]

We would like to estimate the \(\mu \)-measure of this set. Each stream line \(\gamma(x, t) \) starting from \(\Gamma_{\phi}(i, j) \) and arriving at \(\Gamma_{\phi + h}(i, j) \) at time \(T(x) \),

\[
h_i - h_j = \lambda(\gamma(x, T)) - \lambda(\gamma(x, 0)) = \int_{0}^{T} \dot{\lambda}(\gamma(x, t)) dt = \int_{0}^{T} |\nabla \lambda|(\gamma(x, t)) dt
\]

\[
\frac{d}{dt} \gamma(x, t) = \frac{\nabla \lambda(x)}{|\nabla \lambda(x)|}
\]

(1.33)
Therefore, we get the length estimate

\[h_i - h_j = |\nabla \lambda(x)| T(x), \quad \text{for some } \xi \in \gamma(x,t), \quad t \in [0, T(x)]. \]

Since \(\gamma \) has the unit speed, \(T(x) = (h_i - h_j)/|\nabla \lambda(\xi)| \) is the length of the curve. Because \(W_\varphi(j) \cap W_{\varphi+h}(i) \) is compact, from the regularity of \(\lambda \), we have

\[\|D^2 \lambda(\xi)\| \leq C, \quad \forall \xi \in W_\varphi(j) \cap W_{\varphi+h}(i). \]

Since \(h \) is small enough, from the regularity of \(\lambda \), we have

\[|\nabla \lambda(x)| - C|h| \leq |\nabla \lambda(\xi)| \leq |\nabla \lambda(x)| + C|h|. \quad (1.35) \]

We obtain the estimate of the length of the curve

\[T(x) = \frac{h_i - h_j}{|\nabla \lambda(\xi)|} = \frac{h_i - h_j}{|\lambda(x)|} \left(1 \pm \frac{C}{|\lambda(x)|} |h| + o(|h|^2) \right) = \frac{h_i - h_j}{|\lambda(x)|} + o(|h|^2). \quad (1.36) \]

Since \(\gamma(x,t) \) is perpendicular to \(\Gamma_\varphi(i,j) \), hence the \(\mu \)-measure

\[\mu(W_\varphi(j) \cap W_{\varphi+h}(i)) = \int_{\Gamma_\varphi(i,j)} f(x) T(x) dx = (h_i - h_j) \int_{\Gamma_\varphi(i,j)} \frac{f(x)}{|\nabla \lambda(x)|} dx + o(|h|^2). \]

Therefore

\[\mu(W_\varphi(j) \cap W_{\varphi+h}(i)) = (h_i - h_j) \int_{\Gamma_\varphi(i,j)} \frac{f(x)}{|\nabla c(x,y_i) - \nabla c(x,y_j)|} dx + o(|h|^2). \]

This gives the partial derivatives of the \(\mu \)-measure of the cell
\[
\frac{\partial}{\partial \phi_j} \mu(W_\phi(i)) = -\int_{\Gamma_{\phi(i,j)}} f(x) \left| \nabla_x c(x,y_i) - \nabla_x c(x,y_j) \right| dx.
\]

(1.37)

This gives the symmetric relation:

\[
\frac{\partial}{\partial \phi_j} \mu(W_\phi(i)) = \frac{\partial}{\partial \phi_i} \mu(W_\phi(j))
\]

(1.38)

Furthermore,

\[
\frac{\partial}{\partial \phi_i} \mu(W_\phi(i)) = -\sum_{j \neq i} \frac{\partial}{\partial \phi_j} \mu(W_\phi(i))
\]

(1.39)

Proposition 1.5. In the linear space orthogonal to \((1,1,\ldots,1)^T\), the matrix

\[
H := \left(\frac{\partial}{\partial \phi_j} \mu(W_\phi(i)) \right)_{i,j}
\]

is positive definite.

Proof. From (1.37) we can see that

\[
\frac{\partial}{\partial \phi_j} \mu(W_\phi(i)) \leq 0,
\]

all the elements off diagonal are non-positive. By (1.39), we see that the summation of each row is zero, therefore \((1,1,\ldots,1)^T\) is the eigen vector corresponding to the eigen value zero. The matrix \(H + \varepsilon I\) is diagonal dominant, therefore positive definite, all eigen values are positive. Let \(\varepsilon \to 0\), then all the eigen values of \(H\) are non-negative.

Suppose the zero eigen value is multiple, there is another eigen vector \(v\), \(Hv = 0\) and \(v\) is not equal to \(\alpha(1,1,\ldots,1)^T\) for any real number \(\alpha\). Assume \(v_1 > 0\) and \(|v_1| \geq |v_i|\) for any \(i = 1,\ldots,n\), strict inequality holds for at least some \(i\). Then we get

\[
v_1 h_{11} + v_2 h_{12} + \cdots + v_n h_{1n} \geq v_1 h_{11} - \sum_{i=2}^n |v_i| h_i = \sum_{i=2}^n (v_1 - |v_i|) h_i > 0.
\]

contradiction. This shows \(H\) is positive definite in the subspace orthogonal to \((1,1,\cdots,1)^T\).

\(\square\)

1.4.2 Derivatives of Functional

When \(\phi\) is changed to \(\phi + h\), the c-Voronoi cell decomposition is changed as

\[
X = \bigcup_{i=1}^n W_\phi(i) = \bigcup_{j=1}^n W_{\phi+h}(j).
\]

The functional \(F(\phi)\) in (1.29) is changed accordingly.

1.4.2.1 Points Within the Same Cell

One the set of $W_{\phi}(i) \cap W_{\phi+\lambda}(i)$, we have

$$(\phi + h)f(x) - \phi^0(x) = (c(x,y_i) - \phi_i - h_i) - (c(x,y_j) - \phi_j) = -h_i.$$

This give us that

$$\int_{W_{\phi}(i) \cap W_{\phi+\lambda}(i)} ((\phi + h)f(x) - \phi^0(x)) f(x) dx = -h_i \mu(W_{\phi}(i) \cap W_{\phi+\lambda}(i)).$$

(1.40)

By (1.37) and (1.39), we know

$$\mu(W_{\phi}(i)) = \mu(W_{\phi}(i) \cap W_{\phi+\lambda}(i)) + \sum_{j \neq i} \mu(W_{\phi}(i) \cap W_{\phi+\lambda}(j))$$

$$= \mu(W_{\phi}(i) \cap W_{\phi+\lambda}(i)) + O(|h|).$$

$$\int_{W_{\phi}(i) \cap W_{\phi+\lambda}(i)} ((\phi + h)f(x) - \phi^0(x)) f(x) dx = -h_i \mu(W_{\phi}(i)) + O(|h|).$$

(1.41)

1.4.2.2 Points Changing to Different Cells

As shown in Figure 1.15, on the set of $W_{\phi}(j) \cap W_{\phi+\lambda}(i)$, we apply the stream line between $\Gamma_{\phi}(i,j)$ to $\Gamma_{\phi+\lambda}(i,j)$ as defined in (1.33), for $t \in [0, T(x)]$

$$(\phi + h)^{\gamma}(\gamma(x,t)) - \phi^0(\gamma(x,t)) = (c(x,y_i) - \phi_i - h_t) - (c(x,y_j) - \phi_j)$$

$$= \lambda(\gamma(x,t)) - (\phi_i - \phi_j) - h_t$$

$$= \lambda(\gamma(x,t)) - \lambda(\gamma(x,0)) - h_t.$$

The integration along one stream line

$$\int_{0}^{T(x)} [(\phi + h)^{\gamma}(\gamma(x,t)) - \phi^0(\gamma(x,t))] dt = \int_{0}^{T(x)} [\lambda(\gamma(x,t)) - \lambda(\gamma(x,0)) - h_t] dt.$$
We can define \(\rho(t) = \lambda \circ \gamma(x,t) \), then
\[
\frac{d \rho}{dt}(t) = |\nabla \lambda(\gamma(x,t))| > 0.
\]
by changing variable, \(t \mapsto \rho(t) - \rho(0) \), the above integration can be rewritten as
\[
\int_0^T (\rho(t) - h_i)dt = \int_0^{h_i} \frac{\rho - h_i}{\rho} d\rho
\]
By gradient estimate (1.35), we get
\[
\int_0^{h_i} \frac{\rho - h_i}{\rho} d\rho = \frac{1}{|\nabla \lambda(x)|} \int_0^{h_i} (\rho - h) d\rho + O(|h|^2)
\]
Then we estimate the functional difference on \(W_{\phi(j)} \cap W_{\phi+h(i)} \),
\[
\int_{W_{\phi(j)} \cap W_{\phi+h(i)}} (\phi + h)^c(x) - \phi^c f(x) dx
\]
\[
= \int_{I_{\phi(i,j)}} f(x) \int_0^{T(x)} [(\phi + h)^c(\gamma(x,t) - \phi^c(\gamma(x,t))] dt dx
\]
\[
= \int_{I_{\phi(i,j)}} f(x) \int_0^{T(x)} (\frac{\rho - h_i}{\rho}) d\rho + O(|h|^2)
\]
This shows
\[
\int_{W_{\phi(j)} \cap W_{\phi+h(i)}} (\phi + h)^c - \phi^c f(x) dx = O(|h|^2). \tag{1.42}
\]
Combining the estimate in (1.41) and (1.42), We obtain the following theorem:

Theorem 1.4 (Semi-discrete Optimal Transport). Suppose \(X \) is a compact domain in a metric space \(X \), \(\mu \) is a probability measure with continuous density function \(d\mu = f(x)dx \); \(Y \subset X \) is a discrete point set \(Y = \{y_1, \ldots, y_n\} \) with Dirac measure \(\nu = \sum_{i=1}^n \delta(y - y_i) \), \(\nu_i \geq 0 \). The total measures are equal, \(\mu(X) = \sum \nu_i \). Given a \(C^2 \) cost function \(c : X \times Y \to \mathbb{R} \), the Kontarovici dual functional for the semi-discrete optimal transportation problem is defined as
\[
F(\phi) = \sum_{i=1}^n \nu_i \phi_i + \int_X \phi^c(x) f(x) dx.
\]
Then the first order partial derivative of the functional is given by
\[
\frac{\partial F(\phi)}{\partial \phi_i} = \nu_i - \mu(W_{\phi(i)}). \tag{1.43}
\]
the second derivative is given by
\[
\frac{\partial^2 F(\varphi)}{\partial \varphi_i \partial \varphi_j} = \int_{\Gamma_{\varphi(i,j)}} \frac{f(x)}{|V_x c(x,y_j) - V_x c(x,y_i)|} d\mathcal{H}^{d-1}(x). \tag{1.44}
\]

Furthermore, the functional \(F(\varphi) \) is strictly concave in the space

\[\Phi := \{ \varphi : \varphi_1 + \varphi_2 + \cdots + \varphi_n = 1 \}. \]

Proof. By the definition of the functional, we have

\[
F(\varphi + h) = \sum_{i=1}^{n} (\varphi_i + h_i) \nu_i + \int_X ((\varphi + h)^c(x) - \varphi^c(x)) f(x) dx,
\]

Then

\[
F(\varphi + h) - F(\varphi) = \sum_{i=1}^{n} h_i \nu_i + \int_X ((\varphi + h)^c - \varphi^c)(x) f(x) dx.
\]

Consider the c-voronoi cell decomposition,

\[
X = \bigcup_{i=1}^{n} W(\varphi + h)(i) = \bigcup_{i=1}^{n} \left\{ W_{\varphi + h}(i) \cap W_{\varphi}(i) \bigcup_{j \neq i} W_{\varphi + h}(i) \cap W_{\varphi}(j) \right\}
\]

We estimate the second term using this decomposition, by (1.41) and (1.42), we obtain

\[
\int_X ((\varphi + h)^c - \varphi^c)(x) f(x) dx = - \sum_{i=1}^{n} h_i \mu(W_{\varphi}(i)) + O(|h|^2).
\]

This proves the first derivative formula (1.43) of the functional. The partial derivative of the \(\mu \)-measure of the cell (1.37) gives the second derivative formula (1.44) for the functional. The proposition 1.5 proves the strict concavity of the functional. This completes the proof. \(\square \)