Fixed Point, Hopf-Poincarère Index Theorem, Characteristic Class

David Gu

Computer Science Department
Stony Brook University

gu@cs.stonybrook.edu

July 6, 2022
$\omega(\rightarrow) = +1 \quad \omega(\leftarrow) = -1 \quad \omega(\Rightarrow) = -1$

Figure: γ is the generator of $H_1(M, \mathbb{Z})$, ω is the generator of $H^1(M, \mathbb{R})$.

d$\omega = 0$ but $\int_\gamma \omega = 18$, so ω is closed but not exact.
Fixed Point
Figure: Brouwer fixed point.
Brouwer Fixed Point

Theorem (Brouwer Fixed Point)

Suppose $\Omega \subset \mathbb{R}^n$ is a compact convex set, $f : \Omega \to \Omega$ is a continuous map, then there exists a point $p \in \Omega$, such that $f(p) = p$.

Proof.

Assume $f : \Omega \to \Omega$ has no fixed point, namely $\forall p \in \Omega$, $f(p) \neq p$. We construct $g : \Omega \to \partial \Omega$, a ray starting from $f(p)$ through p and intersect $\partial \Omega$ at $g(p)$, $g|_{\partial \Omega} = id$. i is the inclusion map, $(g \circ i) : \partial \Omega \to \partial \Omega$ is the identity,

$$
\begin{align*}
\partial \Omega \xrightarrow{i} \Omega \xrightarrow{g} \partial \Omega
\end{align*}
$$

$(g \circ i)\# : H_{n-1}(\partial \Omega, \mathbb{Z}) \to H_{n-1}(\partial \Omega, \mathbb{Z})$ is $z \mapsto z$. But $H_{n-1}(\Omega, \mathbb{Z}) = 0$, then $g\# = 0$. Contradiction.
Definition (Index of Fixed Point)

Suppose M is an n-dimensional topological space, p is a fixed point of $f : M \to M$. Choose a neighborhood $p \in U \subset M$, $f_* : H_{n-1}(\partial U, \mathbb{Z}) \to H_{n-1}(\partial U, \mathbb{Z})$, $f_* : \mathbb{Z} \to \mathbb{Z}, z \mapsto \lambda z$,

where λ is an integer, the algebraic index of p, $\text{Ind}(f, p) = \lambda$.
Given a compact topological space M, and a continuous automorphism $f : M \rightarrow M$, it induces homomorphisms

$$f_* : H_k(M, \mathbb{Z}) \rightarrow H_k(M, \mathbb{Z}),$$

each f_*k is represented as a matrix.

Definition (Lefschetz Number)

The Lefschetz number of the automorphism $f : M \rightarrow M$ is given by

$$\Lambda(f) := \sum_k (-1)^k \text{Tr}(f_*|_{H_k(M, \mathbb{Z})}).$$
Lefschetz Fixed Point

Theorem (Lefschetz Fixed Point)

Given a continuous automorphism of a compact topological space $f : M \to M$, if its Lefschetz number is non-zero, then there is a point $p \in M$, $f(p) = p$.

Proof.

Triangulate M, use a simplicial map to approximate f, then

$$
\sum_k (-1)^k Tr(f_k|C_k) = \sum_k (-1)^k Tr(f_k|H_k) = \Lambda(f).
$$

If $\Lambda(f) \neq 0$, $\exists \sigma \in C_k$, $f_k(\sigma) \subset \sigma$, from Brouwer fixed point theorem, there is a fixed point $p \in \sigma$.

David Gu (Stony Brook University)
Computational Conformal Geometry
July 6, 2022
8 / 42
Lefschetz Fixed Point

Lemma

\[
\sum_{k} (-1)^{k} Tr(f_k | C_k) = \sum_{k} (-1)^{k} Tr(f_k | H_k) = \Lambda(f).
\]

Proof.

\(C_k = C_k / Z_k \oplus Z_k\), \(Z_k\) is the closed chain space; \(Z_k = B_k \oplus H_k\), \(B_k\) is the exact chain space, \(H_k\) is the homology group. \(\partial_k : C_k / Z_k \to B_{k-1}\) is isomorphic.

\[
\begin{array}{ccc}
C_k / Z_k & \xrightarrow{f_k} & C_k / Z_k \\
\downarrow \partial_k & & \downarrow \partial_k \\
B_{k-1} & \xrightarrow{f_{k-1}} & B_{k-1}
\end{array}
\]
Lefschetz Fixed Point

Lemma

\[\sum_k (-1)^k \text{Tr}(f_k|C_k) = \sum_k (-1)^k \text{Tr}(f_k|H_k) = \Lambda(f). \]

The left hand side depends on the triangulation, the right hand side is independent.

Proof.

\[\partial_k \circ f_k \circ \partial_k^{-1} = f_{k-1}, \quad \text{Tr}(f_k|C_k/Z_k) = \text{Tr}(f_{k-1}|B_{k-1}), \]

\[\text{Tr}(f_k|C_k) = \text{Tr}(f_k|C_k/Z_k) + \text{Tr}(f_k|Z_k) \]

\[= \text{Tr}(f_{k-1}|B_{k-1}) + \text{Tr}(f_k|B_k) + \text{Tr}(f_k|H_k) \]
Lemma

Suppose M is a compact oriented surface with genus g, $f : M \to M$ is a continuous automorphism of M, f is homotopic to the identity map of M, then the Lefschetz number of f equals to the Euler characteristic number of M,

$$\Gamma(f) = \chi(S).$$

Proof.

We construct a triangulation of M and use a simplicial map to approximate the automorphism. Then

$$\Lambda(f) = \Lambda(Id) = |V| + |F| - |E| = \chi(S).$$
Poincaré-Hopf Theorem
Definition (Isolated Zero)

Given a smooth tangent vector field \(v : S \rightarrow TS \) on a smooth surface \(S \), \(p \in S \) is called a zero point, if \(v(p) = 0 \). If there is a neighborhood \(U(p) \), such that \(p \) is the unique zero in \(U(p) \), then \(p \) is an isolated zero point.

Figure: Isolated zero point.
Given a zero $p \in Z(\nu)$, choose a small disk $B(p, \varepsilon)$ define a map $\varphi : \partial B(p, \varepsilon) \to \mathbb{S}^1$, $q \mapsto \frac{\nu(q)}{|\nu(q)|}$. This map induces a homomorphism $\varphi_\# : \pi_1(\partial B) \to \pi_1(\mathbb{S}^1)$, $\varphi_\#(z) = kz$, where the integer k is called the index of the zero.
Zero Index

Figure: Indices of zero points.

- **source** +1
- **saddle** −1
- **sink** +1
Theorem (Poincaré-Hopf Index)

Assume S is a compact, oriented smooth surface, v is a smooth tangent vector field with isolated zeros. If S has boundaries, then v point along the exterior normal direction, then we have

$$\sum_{p \in Z(v)} \text{Index}_p(v) = \chi(S),$$

where $Z(v)$ is the set of all zeros, $\chi(S)$ is the Euler characteristic number of S.
Proof.

Given two vector fields v_1 and v_2 with different isolated zeros. We construct a triangulation T, such that each face contains at most one zero. Define two 2-forms, Ω_1 and Ω_2.

$$\Omega_k(\Delta) = \text{Index}_p(v_k), \quad p \in \Delta \cap Z(v_k), \quad k = 1, 2.$$

Along $\gamma(t)$, $\theta(t)$ is the angle from $v_1 \circ \gamma(t)$ to $v_2 \circ \gamma(t)$. Define a one form,

$$\omega(\gamma) := \int_{\gamma} \dot{\theta}(\tau) d\tau.$$
Given a smooth tangent vector field v, we can define a one parameter family of automorphisms, $\varphi(p, t)$,

$$\frac{\partial \varphi(p, t)}{\partial t} = v \circ \varphi(p, t).$$

Then $f_t : p \mapsto \varphi(p, t)$ is an automorphism homotopic to the identity. According to lemma 7, the total index of fixed points of f_t is $\chi(S)$. The fixed points of f_t corresponds to the zeros of v with the sample index.
continued.

Given a triangle Δ, then the relative rotation of v_2 about v_1 is given by

$$\omega(\partial \Delta) = d\omega(\Delta)$$

then we get

$$\Omega_2 - \Omega_1 = d\omega.$$

Therefore Ω_1 and Ω_2 are cohomological. The total index of zeros of a vector field

$$\sum_{p \in v_k} \text{Index}_p(v_k) = \int_S \Omega_k$$
continued.

We construct a special vector field, then the total index of all the zeros is

\[\sum_{p \in Z(v)} \text{Index}_p(v) = |V| + |F| - |E| = \chi(S). \]
Unit Tangent Bundle of the Sphere
Smooth Manifold

Figure: A manifold.
Definition (Manifold)

A manifold is a topological space M covered by a set of open sets $\{U_\alpha\}$. A homeomorphism $\phi_\alpha : U_\alpha \to \mathbb{R}^n$ maps U_α to the Euclidean space \mathbb{R}^n. (U_α, ϕ_α) is called a coordinate chart of M. The set of all charts $\{(U_\alpha, \phi_\alpha)\}$ form the atlas of M. Suppose $U_\alpha \cap U_\beta \neq \emptyset$, then

$$\phi_{\alpha\beta} = \phi_\beta \circ \phi_\alpha^{-1} : \phi_\alpha(U_\alpha \cap U_\beta) \to \phi_\beta(U_\alpha \cap U_\beta)$$

is a transition map.

If all transition maps $\phi_{\alpha\beta} \in C^\infty(\mathbb{R}^n)$ are smooth, then the manifold is a differential manifold or a smooth manifold.
Definition (Tangent Vector)

A tangent vector ξ at the point p is an association to every coordinate chart (x^1, x^2, \cdots, x^n) at p an n-tuple $(\xi^1, \xi^2, \cdots, \xi^n)$ of real numbers, such that if $(\tilde{\xi}^1, \tilde{\xi}^2, \cdots, \tilde{\xi}^n)$ is associated with another coordinate system $(\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^n)$, then it satisfies the transition rule

$$\tilde{\xi}^i = \sum_{j=1}^{n} \frac{\partial \tilde{x}^i}{\partial x^j}(p) \xi^j.$$

A smooth vector field ξ assigns a tangent vector for each point of M, it has local representation

$$\xi(x^1, x^2, \cdots, x^n) = \sum_{i=1}^{n} \xi_i(x^1, x^2, \cdots, x^n) \frac{\partial}{\partial x^i}.$$

$\{\frac{\partial}{\partial x^i}\}$ represents the vector fields of the velocities of iso-parametric curves on M. They form a basis of all vector fields.
Definition (Push-forward)

Suppose $\phi : M \rightarrow N$ is a differential map from M to N, $\gamma : (-\epsilon, \epsilon) \rightarrow M$ is a curve, $\gamma(0) = p$, $\gamma'(0) = v \in T_pM$, then $\phi \circ \gamma$ is a curve on N, $\phi \circ \gamma(0) = \phi(p)$, we define the tangent vector

$$\phi_*(v) = (\phi \circ \gamma)'(0) \in T_{\phi(p)}N,$$

as the push-forward tangent vector of v induced by ϕ.
The unit tangent bundle of the unit sphere is the manifold

\[UTM(S) := \{(p, v) | p \in S, v \in T_p(S), |v|_g = 1 \} . \]

The unit tangent bundle of a surface is a 3-dimensional manifold. We want to compute its triangulation and its fundamental group.
Sphere

Figure: Stereo-graphic projection

\[
(x, y) = \left(\frac{x_1}{1 - x_3}, \frac{x_2}{1 - x_3} \right)
\]

\[
r(x, y) = (x_1, x_2, x_3) = \left(\frac{2x}{1 + x^2 + y^2}, \frac{2y}{1 + x^2 + y^2}, \frac{-1 + x^2 + y^2}{1 + x^2 + y^2} \right)
\]
Sphere

\[r_x = \partial_x = \frac{2}{(1 + x^2 + y^2)^2} (1 - x^2 + y^2, -2xy, 2x) \]

\[r_y = \partial_y = \frac{2}{(1 + x^2 + y^2)^2} (-2xy, 1 + x^2 - y^2, 2y) \]

\[\langle \partial_x, \partial_x \rangle = \frac{4}{(1 + x^2 + y^2)^2} \]

\[\langle \partial_y, \partial_y \rangle = \frac{4}{(1 + x^2 + y^2)^2} \]

\[\langle \partial_x, \partial_y \rangle = 0 \]
A tangent vector at $r(x, y)$ is given by: $dr(x, y) = r_x(x, y)dx + r_y(x, y)dy$. On the equator

$$((x, y), (dx, dy)) = ((\cos \theta, \sin \theta), (\cos \tau, \sin \tau)).$$
The unit tangent bundle of a hemisphere is a direct product $\mathbb{S}^1 \times \mathbb{D}^2$, where \mathbb{S}^1 is the fiber of each point, \mathbb{D}^2 is the hemisphere. The boundary of the UTM of the hemisphere is a torus $\mathbb{S}^1 \times \partial \mathbb{D}^2$.

Figure: Unit tangent bundle.
Sphere

\[
(u, \nu) = \left(\frac{x_1}{1 + x_3}, \frac{-x_2}{1 + x_3} \right)
\]

\[
r(u, \nu) = (x_1, x_2, x_3) = \left(\frac{2u}{1 + u^2 + \nu^2}, \frac{-2\nu}{1 + u^2 + \nu^2}, \frac{1 - u^2 - \nu^2}{1 + u^2 + \nu^2} \right)
\]

\[
r_u = \partial_u = \frac{2}{(1 + u^2 + \nu^2)^2} (1 - u^2 + \nu^2, 2uv, -2u)
\]

\[
r_v = \partial_v = \frac{2}{(1 + u^2 + \nu^2)^2} (-2uv, -1 - u^2 + \nu^2, -2\nu)
\]

\[
\left\langle \partial_u, \partial_u \right\rangle = \frac{4}{(1 + u^2 + \nu^2)^2}
\]

\[
\left\langle \partial_v, \partial_v \right\rangle = \frac{4}{(1 + u^2 + \nu^2)^2}
\]

\[
\left\langle \partial_u, \partial_v \right\rangle = 0
\]
Let \(z = x + iy \) and \(w = u + iv \), Then

\[
\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \frac{x_1 - ix_2}{1 - x_3} \cdot \frac{x_1^2 + x_2^2}{(1 - x_3)^2} = \frac{x_1 - ix_2}{1 + x_3} = w.
\]

Therefore \(dw = -\frac{1}{z^2} \, dz \),

\[
\begin{bmatrix}
du \\
dv
\end{bmatrix} =
\begin{bmatrix}
u_x & u_y \\
v_x & v_y
\end{bmatrix}
\begin{bmatrix}
dx \\
dy
\end{bmatrix}
\]

this gives the Jacobi matrix,

\[
\begin{bmatrix}
u_x & u_y \\
v_x & v_y
\end{bmatrix} = \frac{1}{(x^2 + y^2)^2}
\begin{bmatrix}
y^2 - x^2 & -2xy \\
2xy & y^2 - x^2
\end{bmatrix}
\]
Construct the unit tangent bundle of the sphere. The unit tangent bundle of the upper hemisphere is a solid torus, the unit tangent bundle of the lower hemisphere is also a solid torus. The unit tangent bundle of the equator is a torus, $\varphi: (z, dz) \mapsto (w, dw)$, $z = e^{i\theta}$, $dz = e^{i\tau}$,

$$\varphi: (z, dz) \mapsto \left(\frac{1}{z}, -\frac{1}{z^2} dz\right), (\theta, \tau) \mapsto (-\theta, \pi - 2\theta + \tau)$$
Automorphism of the Torus

\[\varphi : (\tau, \theta) \mapsto (\tau - 2\theta + \pi, -\theta) \]

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>((\tau, \theta))</th>
<th>((\tau', \theta'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>((0, 0))</td>
<td>((\pi, 0))</td>
</tr>
<tr>
<td>B</td>
<td>((2\pi, 0))</td>
<td>((3\pi, 0))</td>
</tr>
<tr>
<td>C</td>
<td>((2\pi, 2\pi))</td>
<td>((-\pi, -2\pi))</td>
</tr>
<tr>
<td>D</td>
<td>((0, 2\pi))</td>
<td>((-3\pi, -2\pi))</td>
</tr>
</tbody>
</table>

Table: Corresponding corner points.
This induces an automorphism of the fundamental group of the torus,
\[\varphi^\#: \pi_1(T^2) \rightarrow \pi_1(T^2), \]
\[\varphi^\#: a \mapsto a, \quad b \mapsto a^{-2}b^{-1}. \]
This induces an automorphism of the fundamental group of the torus,

$$\phi : \pi_1(T^2) \to \pi_1(T^2),$$

$$\phi : a \mapsto a, \quad b \mapsto a^{-2}b^{-1}.$$
Torus Automorphism on UCS

\[\varphi(a) = a \]

\[\varphi(b) = a^{-2}b^{-1} \]

\[\pi_1(M_1) = \langle a_1 \rangle, \quad \pi_1(M_2) = \langle a_2 \rangle, \quad M_1 \cap M_2 = T^2, \quad \pi_1(T^2) = \langle a, b | [a, b] \rangle, \]

then the \(\pi_1 \) of the unit tangent bundle is

\[\pi_1(M_1 \cup M_2) = \langle a_1, a_2 | a_1a_2, a_2^{-2}b_2^{-1} \rangle = \mathbb{Z}_2. \]
Obstruction Class

Figure: Local obstruction.
The topological obstruction for the existence of global section $\varphi : S^2 \to UTM(S^2)$ is constructed as follows:

1. Construct a triangulation \mathcal{T}, which is refined enough such that the fiber bundle of each face is trivial (direct product).
2. For each vertex v_i, choose a point on its fiber, $\varphi(v_i) \in F(v_i)$.
3. For each edge $[v_i, v_j]$, choose a curve connecting $\varphi(v_i)$ and $\varphi(v_j)$ in the restriction of the UTM on $[v_i, v_j]$, which is an annulus;
4. For each face Δ, $\varphi(\partial \Delta)$ is a loop in the fiber bundle of Δ, $[\varphi(\partial \Delta)]$ is an integer, an element in $\pi_1(UTM(\Delta))$, this gives a 2-form Ω on the original surface M,
 \[\Omega(\Delta) = [\varphi(\partial \Delta)]. \]
5. If Ω is zero, then global section exists. Otherwise doesn’t exists.
6. Different constructions get different Ω’s, but all of them are cohomological. Therefore $[\Omega] \in H^2(M, \mathbb{R})$ is the characteristic class of fiber bundle.
Lemma

Given two sections $\varphi, \bar{\varphi} : \mathbb{S} \to UTM(S)$, they induce two 2-forms $\Omega_2, \bar{\Omega}_2$. Then there exists a 1-form h, such that

$$\forall \sigma^2, \hspace{1em} \delta h(\sigma^2) = \Omega^2(\sigma^2) - \bar{\Omega}^2(\sigma^2).$$

Proof.

$\forall \sigma^0_a \in B^{(0)}$, construct a path in the fiber $p_a : [0, 1] \to F$, such that

$$p_a(0) = \bar{\varphi}(\sigma^0_a), \hspace{1em} p_a(1) = \varphi(\sigma^0_a)$$

Given a 1-simplex σ^1_a, with boundary $\partial \sigma^1_a = \sigma^0_j - \sigma^0_i$, construct a loop

$$l_a = p_i \varphi(\sigma^1_a) p_j^{-1} \bar{\varphi}(\sigma^1_a)^{-1}.$$
Figure: Denote $a = \varphi(\sigma_a^1)$, $b = \varphi(\sigma_b^1)$ and $c = \varphi(\sigma_c^1)$.

\[
\begin{align*}
 l_a &:= p_i \varphi(\sigma_a^1)p_j^{-1} \bar{\varphi}(\sigma_a^1)^{-1} = p_i a p_j^{-1} \bar{a}^{-1} \\
 l_b &:= p_j b p_k^{-1} \bar{b}^{-1} \sim \bar{a} p_j b p_k^{-1} \bar{b}^{-1} \bar{a}^{-1} \\
 l_c &:= p_k c p_i^{-1} \bar{c}^{-1} \sim \bar{a} b p_k c p_i^{-1} \bar{c}^{-1} \bar{b}^{-1} \bar{a}^{-1}
\end{align*}
\]
\[(l_a)[l_b][l_c] = (iaj^{-1}\bar{a}^{-1})(\bar{a}jbk^{-1}\bar{b}^{-1}\bar{a}^{-1})(\bar{a}\bar{b}kci^{-1}\bar{c}^{-1}\bar{b}^{-1}\bar{a}^{-1})
\]
\[= iaj^{-1}jbk^{-1}kci^{-1}\bar{c}^{-1}\bar{b}^{-1}\bar{z}^{-1}
\]
\[= (iabc i^{-1})(\bar{c}^{-1}\bar{b}^{-1}\bar{a}^{-1})
\]

Then

\[\delta h(\sigma^2) = [l_a][l_b][l_c]
\]
\[= [iabc i^{-1}][\bar{c}^{-1}\bar{b}^{-1}\bar{a}^{-1}]
\]
\[= [abc][(\bar{a}\bar{b}\bar{c})]^{-1}
\]
\[= C_2(\sigma^2)(\bar{C}(\sigma^2))^{-1}
\]