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Meromorphic Differential
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Abel Differential of the Third Type

Figure: f (z) = log(z + 1)− log(z − 1), df (z) =
(

1
z+1 − 1

z−1

)
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Abel Differential of the Third Type
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Quadrilateral Mesh Generation Theory
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Colorable Quad-Mesh

Figure: A red-blue (colorable) Quad-Mesh.
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Colorable Quad-Mesh

Figure: A quad-mesh induced by a holomorphic 1-form.
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Singularities on a Topological Torus

Topological Torus

χ = 2− 2g = 0,∑
K = 2πχ = 0.

It is impossible to construct a quad mesh
on a topological torus with one valence 3
singular point and one valence 5 singular
point.

Otherwise, the valence 3 vertex p and the valence 5 vertex q become to
the pole and the zero of a meromorphic function. By Abel condition,
µ(p) = µ(q), the pole and the zero coincide, contradiction.
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Quad-Mesh

The number of singularities, and the layouts of separatrices are different.

Figure: Quad-meshes with different number of singularities.
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Quad-Meshes

Aim

Establish complete mathematical theory for structural mesh.

Figure: A quad-mesh of a genus two surface with different number of singularities.
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Central Questions

Given a Riemannian surface (S , g) two quad-meshes are equivalent if they
differ by a finite step of subdivisions,

1 How many quad-mesh equivalent classes are there on S ?
infinite

2 What is the dimension of the space of all the quad-mesh equivalent
classes on S?
Riemann-Roch theorem

3 What is the governing equation for the singularities ?
Abel-Jacobi theorem
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Mathematical View of Structural Quad Mesh
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on the
vertices, l : E = {all edges} → R+, satisfies triangular inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} → R1.

K (vi ) = 2π −
∑
jk

θjki , vi ̸∈ ∂M;K (vi ) = π −
∑
jk

θjk , vi ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)∑
v ̸∈∂M

K (v) +
∑
v∈∂M

K (v) = 2πχ(M).

vi

vj vk

θjki

vivj

vk

θjki
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Quad-Mesh Metric

Definition (Quad-Mesh Metric)

Given a quad-mesh Q, each face is treated as the unit planar square, this
will define a Riemannian metric, the so-called quad-mesh metric gQ, which
is a flat metric with cone singularities.

Uf Ue

Uv
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Discrete Gauss Curvature

Definition (Curvature)

Given a quad-mesh Q, for each vertex vi , the curvature is defined as

K (v) =

{
π
2 (4− k(v)) v ̸∈ ∂Q
π
2 (2− k(v)) v ∈ ∂Q

where k(v) is the topological valence of v , i.e. the number of faces
adjacent to v .

k = π/2 k = 0 k = −π/2 k = −π k = −2π
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Quad-Mesh Metric Conditioins
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Quad-Mesh Metric Conditions

Theorem (Quad-Mesh Metric Conditions)

Given a quad-mesh Q, the induced quad-mesh metric is gQ, which satisfies
the following four conditions:

1 Gauss-Bonnet condition;

2 Holonomy condition;

3 Boundary Alignment condition;

4 Finite geodesic lamination condition.
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1. Gauss-Bonnet Condition

Theorem (Gauss-Bonnet)

Given a quad-mesh Q, the induced metric is gQ, the total curvature
satisfies ∑

vi∈∂Q
K (vi ) +

∑
vi ̸∈∂Q

K (vi ) = 2πχ(Q).

Namely ∑
vi∈∂Q

(2− k(vi )) +
∑

vi ̸∈∂Q
(4− k(vi )) = 4χ(Q).
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2. Holonomy Condition

Theorem (Holonomy Condition)

Suppose Q is a closed quad-mesh, then the holonomy group induced by

gQ is a subgroup of the rotation group {e i
k
2
π, k ∈ Z}.

π
2

σ0
γ

Figure: Parallel transportation along a face loop.David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 30 / 48



3. Boundary Alignment Condition

Definition (Boundary Alignment Condition)

Given a quad-mesh Q, with induced metric gQ, one can define a global
cross field by parallel transportation, which is aligned with the boundaries.

Figure: Aligned and mis-aligned with the inner boundaries.
David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 31 / 48



3. Boundary Alignment Condition

Definition (Boundary Alignment Condition)

Given a quad-mesh Q, with induced metric gQ, one can define a global
cross field by parallel transportation, which is aligned with the boundaries.

Figure: Aligned and mis-aligned with the inner boundaries.
David Gu (Stony Brook University) Computational Conformal Geometry August 17, 2022 32 / 48



4. Finite Geodesic Lamination Condition

Definition (Finite Geodesic Lamination Condition)

The stream lines parallel to the cross field are finite geodesic loops. This is
the finite geodesic lamination condition.
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Genus One Polycube Surface Example

A genus one closed surface S , which is a polycube surface (union of
canonical unit cubes). The holomorphic one form ω ∈ Ω1(S).
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Genus One Polycube Surface Example

The homology basis is {a, b}, the surface is sliced along {a, b} to get a
fundamental domain D, ∂D = abab−1b−1. The conformal mapping
µ : D → C is given by

µ(q) =

∫ q

p
ω,

where p is a base point and the integration path is arbitrarily chosen.

a
b

a

b

b−1

a−1
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Genus One Polycube Surface Example

Suppose qi ’s are poles (degree 3), pj ’s are zeros (degree 5), then we have
found that the number of poles equals to that of the zeros, furthermore,

22∑
j=1

µ(pj)−
22∑
i=1

µ(qi ) = 0.
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Genus Two Polycube Surface Example

la Suppose S is a genus two polycube surface, ω is a holomorphic
one-form. The red circles show the poles (degree 3), the blue circles show
the zeros (degree 5), the purple circles the zeros of ω.

(a). front view (b). back view
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Genus Two Polycube Surface Example

The surface is sliced along a1, b1, a2, b2, τ , and integrate ω to obtain
µ : S → C

µ(q) =

∫ q

p
ω,

it branch covers the plane, the branching points are zeros of ω, c1, c2.

a1

b1

a2

b2

τ

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2 c1

c2
τ

(a). cuts (b). conformal fattening
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Genus Two Polycube Surface Example

Suppose pi ’s are zeros (degree 5), qj ’s are poles (degree 3), ck ’s are
branch points, then we have

16∑
i=1

µ(pi )−
8∑

j=1

µ(qj) = 4
2∑

k=1

µ(ck).
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Genus Two Polycube Surface Example

Suppose S is a genus two polycube surface, ω is a holomorphic one-form.
The red circles show the poles (degree 3), the blue circles show the zeros
(degree 5), the purple circles the zeros of ω.

(a). front view (b). back view
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Algorithm Pipeline

Figure: Step 1. Compute the singularities by optimizing Abel-Jacobi condition.
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Algorithm Pipeline

Figure: Step 2. Compute the flat cone metric using surface Ricci flow, and
compute the motorcycle graph.
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Algorithm Pipeline

Figure: Step 3. Partition the surface into patches, each patch is conformally
flattened onto a quadrilateral.
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T-Meshes

Figure: Step 4. Construct quad-meshes on each patch, with consistent boundary
condition and adjust the width and the height of each quadrilateral.
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Algorithm Pipeline

Figure: Step 3. Partition the surface into patches, each patch is conformally
flattened onto a quadrilateral.
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T-Meshes

Figure: Step 4. Construct quad-meshes on each patch, with consistent boundary
condition and adjust the width and the height of each quadrilateral.
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