Introduction to Computational Conformal Geometry

David Gu

Computer Science Department State University of New York at Stony Brook

Administration

- Time: Every Lecture 8:30-10:00am EST time
- Starting Date: July 4th, 2022
- Link: Voov Meeting ID: 933-8415-7259
- Live Streaming: http://online.conformalgeometry.org
- Instructor: David Gu
- Email: gu@cs.stonybrook.edu
- Wechat ID: davidxgu
- Web Link: http://www3.cs.stonybrook.edu/~gu/lectures/2022/

Textbook Computational Conformal Geometry

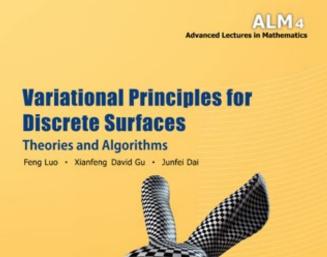
Textbook Optimal Transportation Theory and Computation

References Books

ALM 3 Advanced Lectures in Mathematics

Computational Conformal Geometry

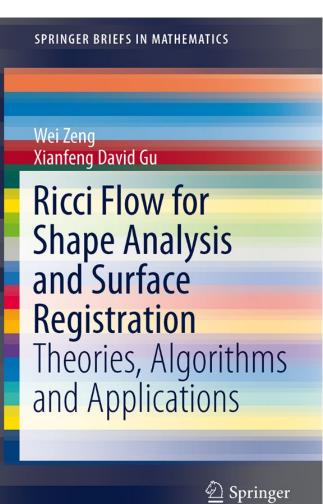
Xianfeng David Gu + Shing-Tung Yau



<complex-block>

高等教育出版社 HIGHER EDUCATION PRESS

Reference Books



Miao Jin Xianfeng Gu Ying He Yalin Wang

Conformal Geometry

Computational Algorithms and Engineering Applications

☑ Springer

Abstract

- Concepts and Theorems : algebraic topology, differential topology, surface differential geometry, Riemann surface theory and geometric partial differential equations, optimal transportation;
- Computational Methods: fundamental group, homology/cohomology groups, harmonic maps, meromorphic differentials, foliation, conformal mappings, quasi-conformal mapping and Ricci flow, optimal transportation maps.
- Applications : Computer Graphics, Computer Vision, CAD/CAE, Visualization, Geometric Modeling, Networking, Medical Imaging and Deep learning

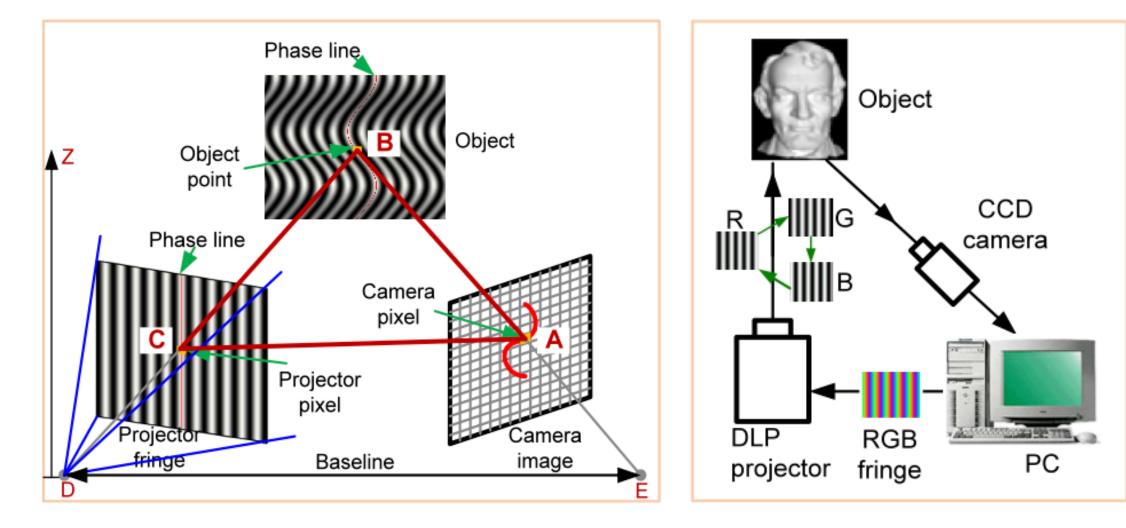
3D Data Aquiition

Dynamic 3D Scanning System

Problem: How to capture dynamic 3D data in real time with high quality?

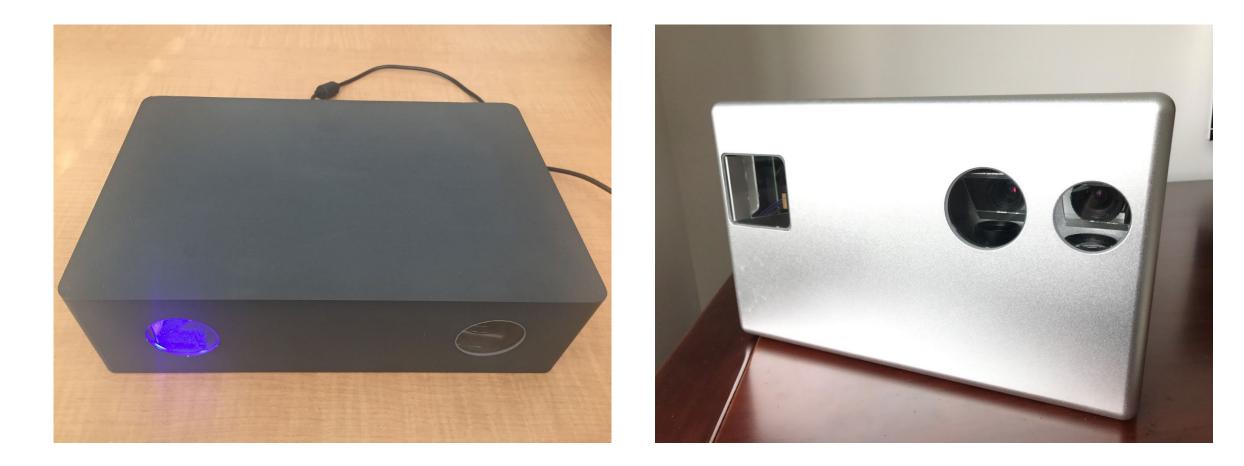
Answer: 3D scanning system based on phase shifting structure light !

- Hand made 3D scanning system
- High speed, high depth accuracy, high resolution 3D camera
- Based on multi-wavelength phase shifting structured light principle



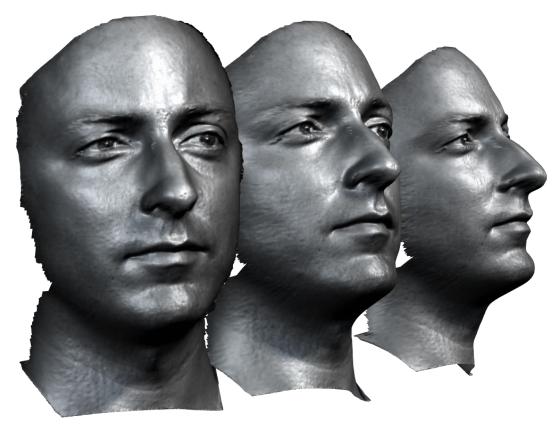
Dynamic 3D Scanner (first generation)

Dynamic 3D Scanner (2nd, 3rd generations)

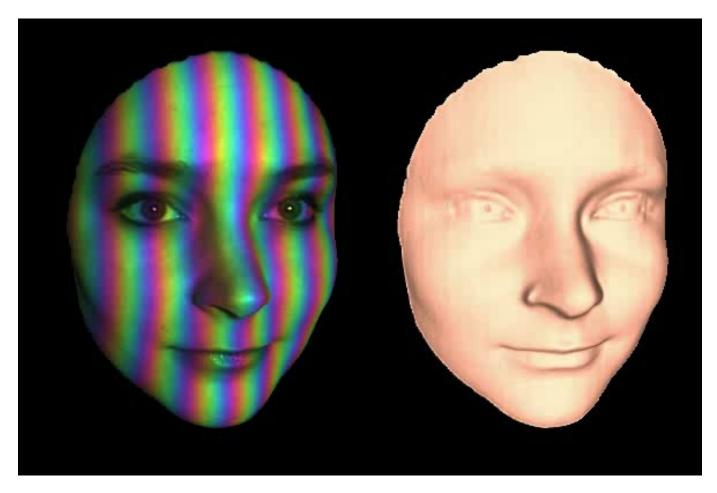


3D Data Acquisition

• Capture 3D human face with high speed and high accuracy.



Multi-wavelength Phase Shifting Structured Light



Capture 3D facial geometry with Dynamic Expression

- High speed (60fps)
- High resolution
- High accuracy (0.2mm depth)

Capture High Resolution Skin Color & Texture

Capture High Resolution Skin Color & Texture

• Texture, albedo

Conformal Geometry

Conformal Geometry

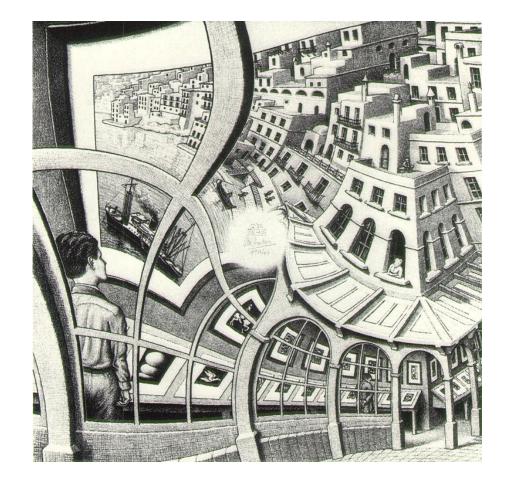
Problem: How to handle huge amount of dynamic 3D geometric data with large deformations ?

Answer: Computational conformal geometry !

- Combine differential geometry, algebraic topology, partial differential equations with computational geometry, numerical PDEs
- Good at shape classification, surface registration, dynamic geometric tracking, shape analysis and so on
- (Collaborated with Prof. Shing-Tung Yau, Prof. Feng Luo et al)

M.C. Escher Gallery 1956

• The virtual world and the real word are mixed together.

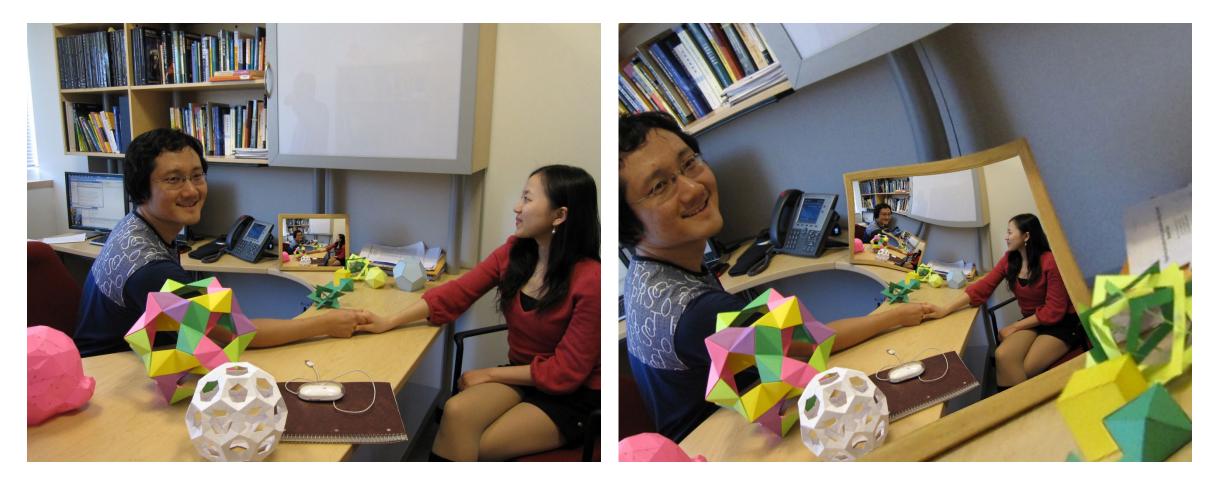


Planar Conformal Mapping

• Preserves local shapes, changes the global topology.

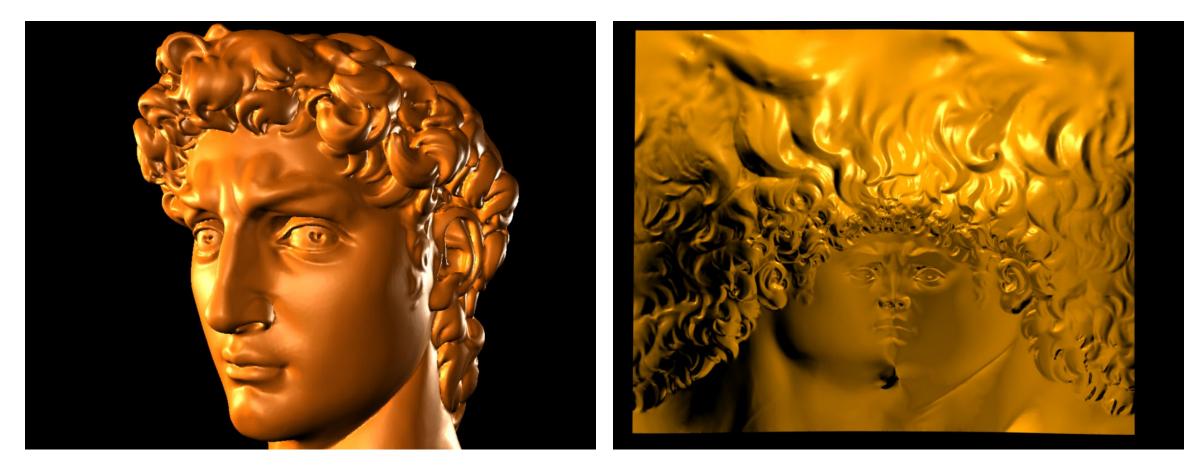
Planar Conformal Mapping

• Preserves local shapes, changes the global topology.



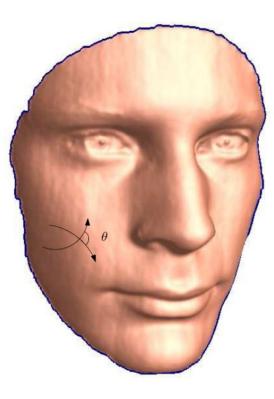
Surface Conformal Mapping

• Convert 3D geometry to 2D image, curved surfaces to flat plane.



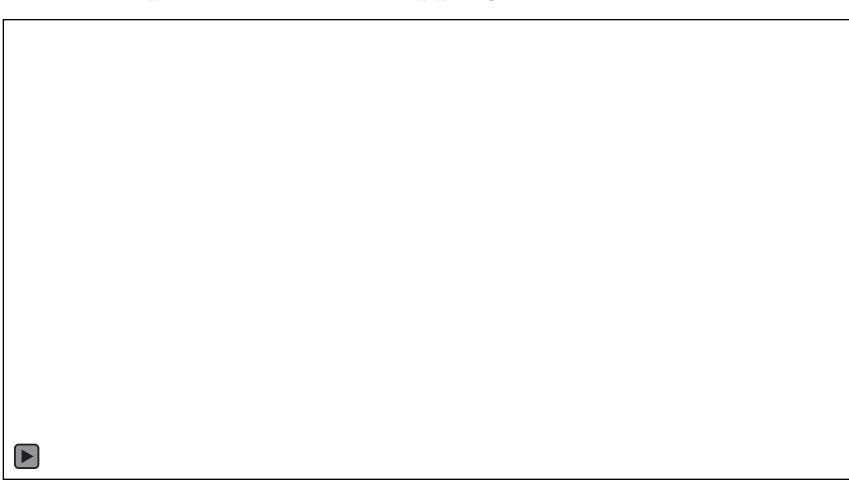
Conformal Mapping

• Angle preserving



Conformal Mapping

• Preserve local shapes, conformal mapping.



Quasi-Conformal Mapping

• Maps infinitesimal ellipses to infinitesimal ellipses

Discrete Surface Ricci Flow

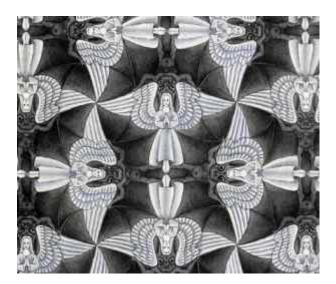
Problem: How to compute conformal mappings ?

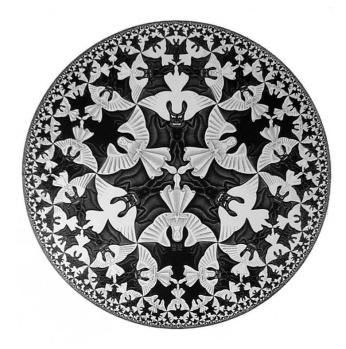
Answer: Harmonic Map, Holomorphic Differential, Ricci flow

- Harmonic map minimizes the elastic deformation energy;
- Holomorphic differentials is based on Hodge theory, it finds harmonic vector fields on surfaces;
- Ricci flow is invented by Hamilton, used by Perelman et al. to prove Poincare conjecture. It can design Riemannian metrics from prescribed curvatures;

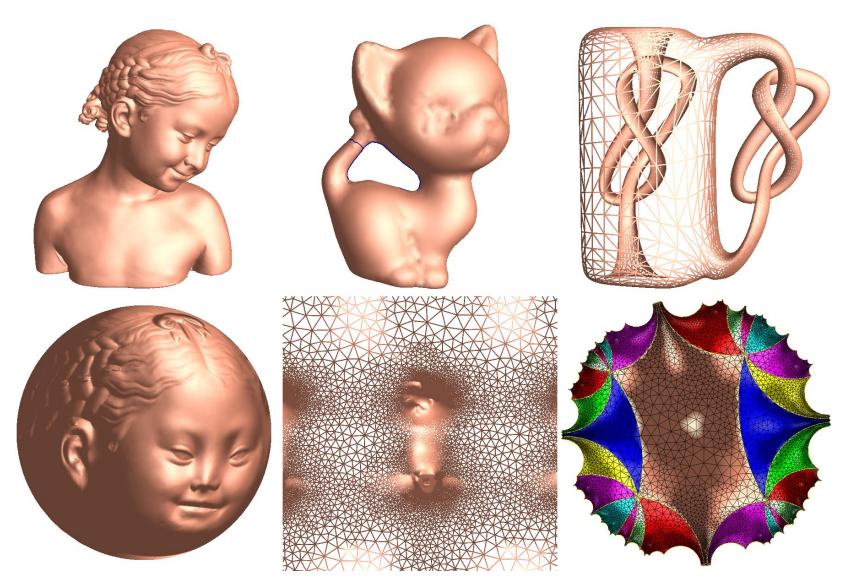
Escher Angels and Devils

• Spherical, Euclidean and Hyperbolic Geometry

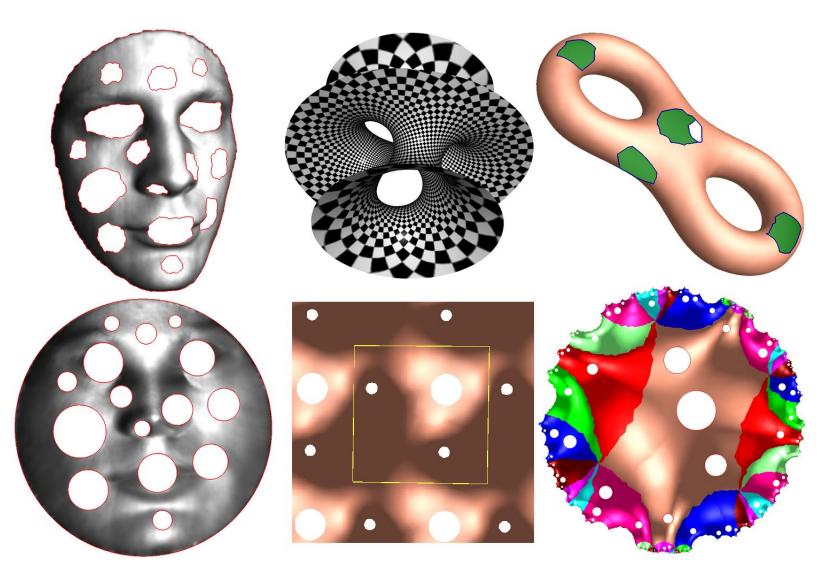




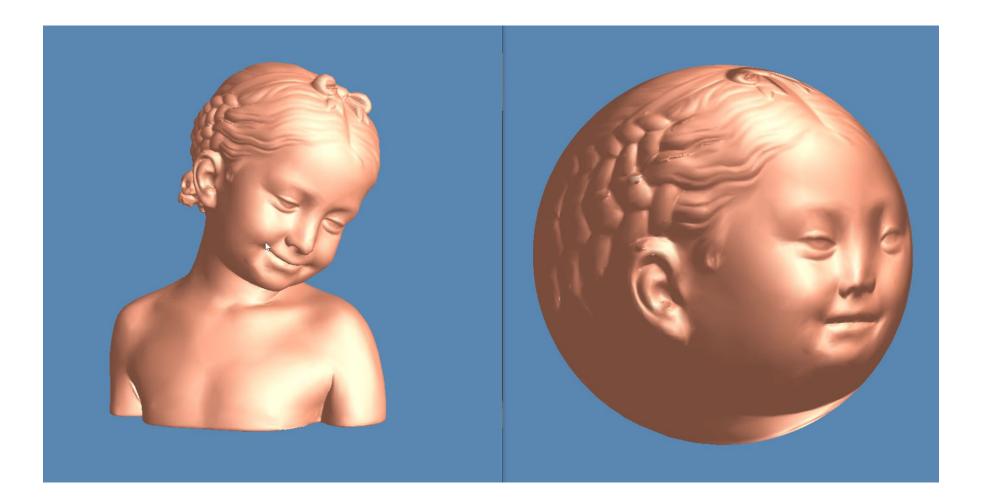
Surface Uniformization Theorem



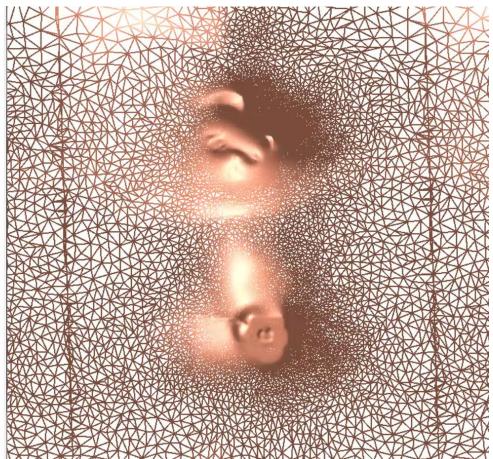
Surface Uniformization Theorem



Genus Zero Surface: Harmonic map method



Genus One: holomorphic differential method



High Genus: Ricci flow method



Computer Graphics

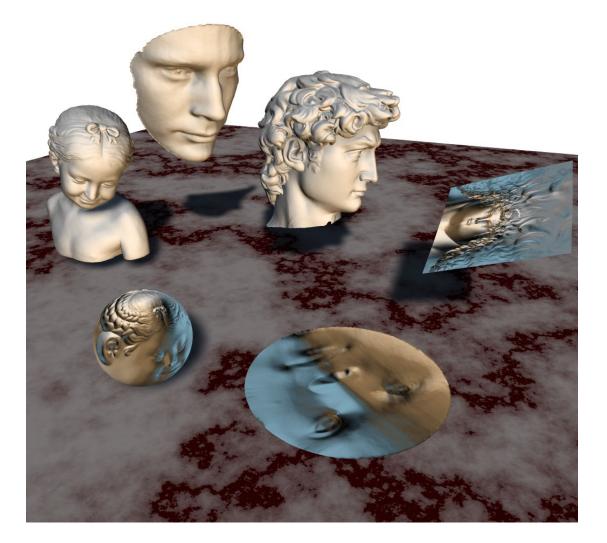
Global Surface Parameterization

Problem: How to parameterize general surfaces without partitioning and with minimal distortions ?

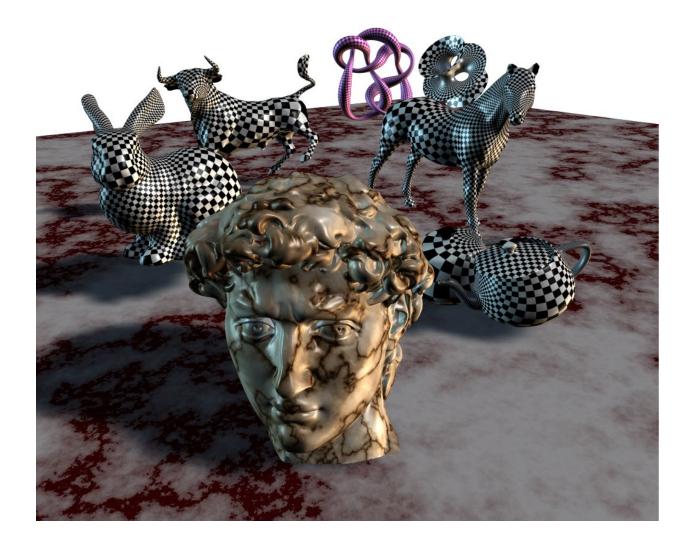
Answer: Global surface parameterization, angle preserving, area preserving

- Conventional methods are local parameterization, one has to decompose the surface into patches. Our method is global parameterization without decomposition
- Minimize the distortions induced by a parameterization, conformal parameterization preserves angle, optimal transportation maps preserve area-element.

Surface Texture Mapping - Parameterization

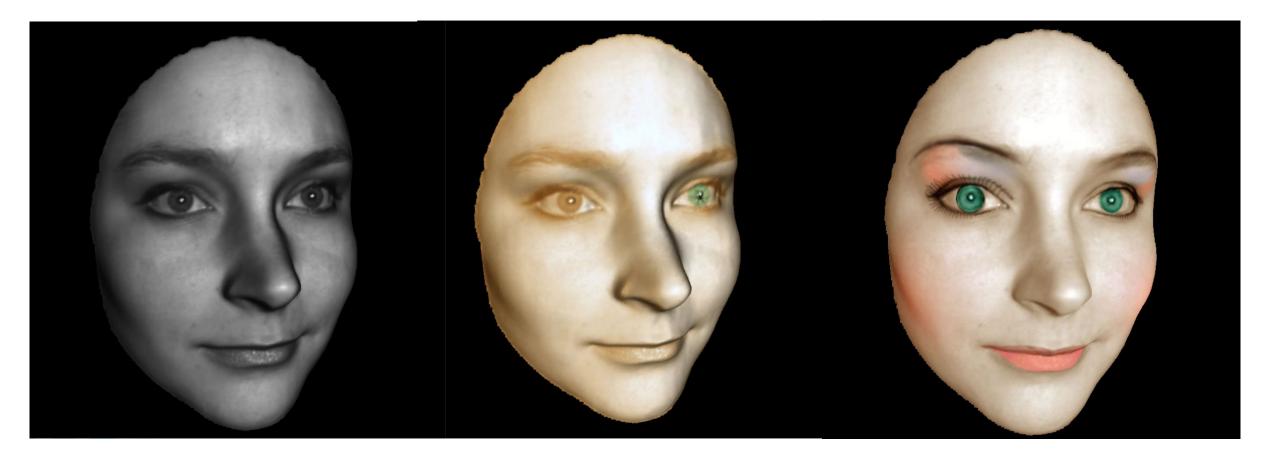


Surface Texture Mapping - Parameterization

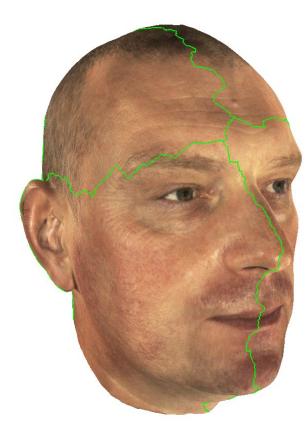


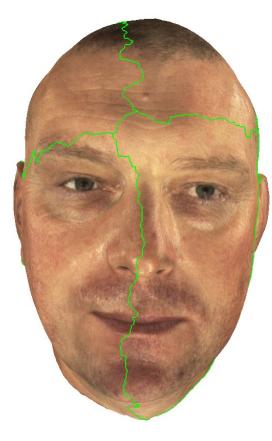
Virtual Makeup

• Dynamic change makeup.



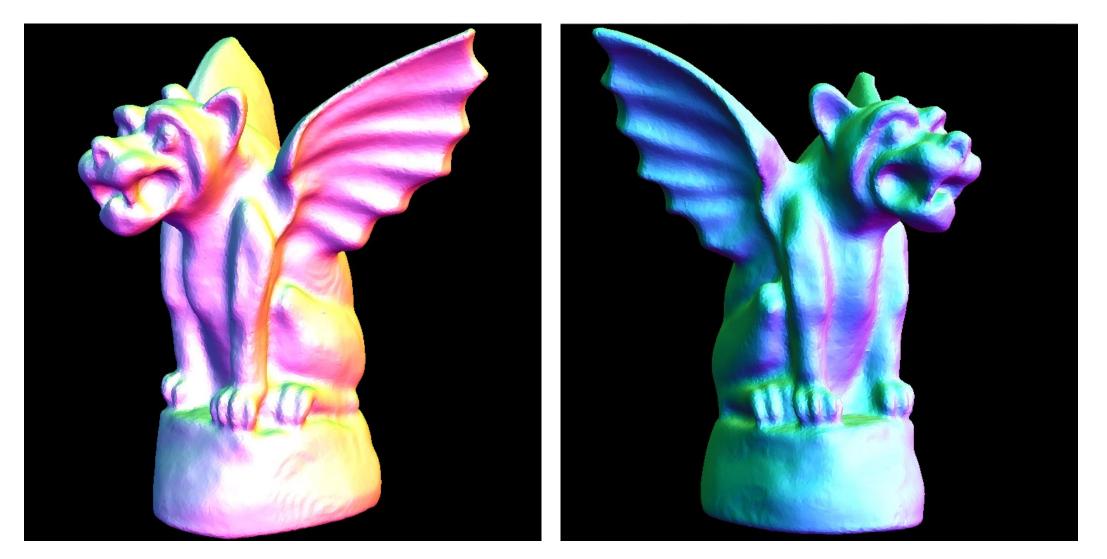
Traditional Local Parameterization



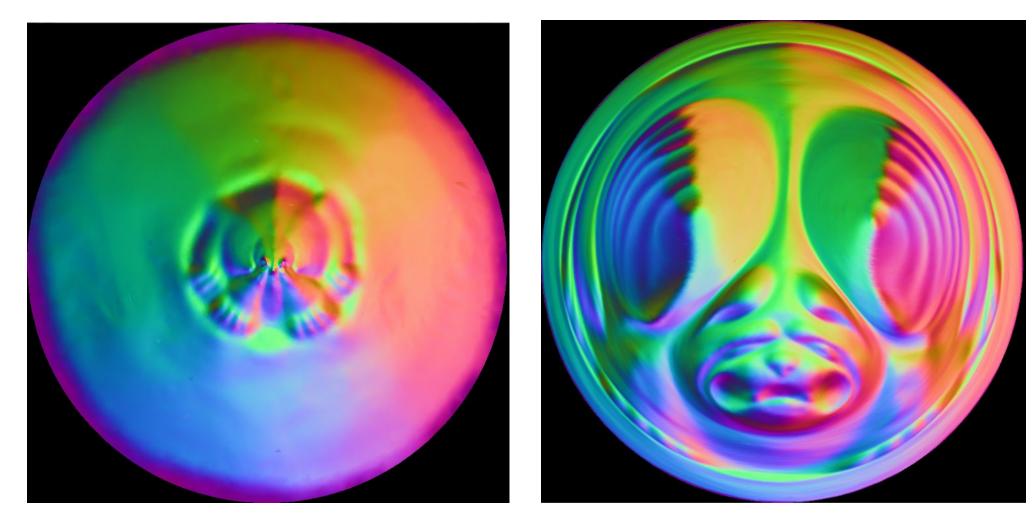


Gobal Surface Parameterization

Surface Normal Mapping



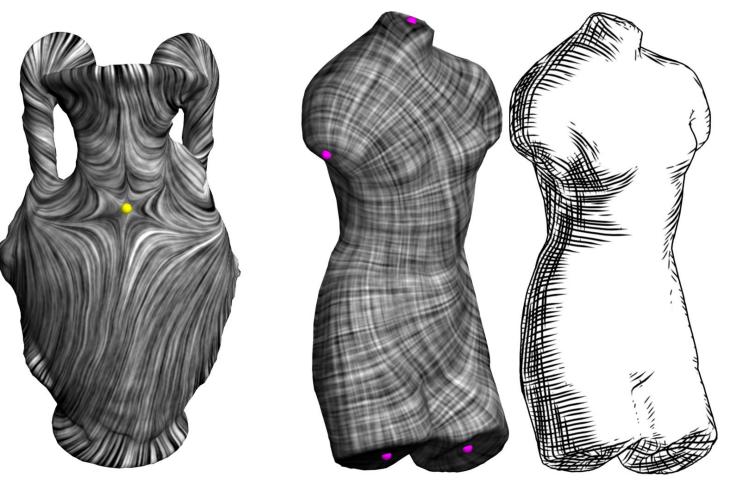
Angle-preserving vs. Area-preserving



Global conformal surface parametrization

Smooth vector field design

• by prescribed singularities, with positions and indices.



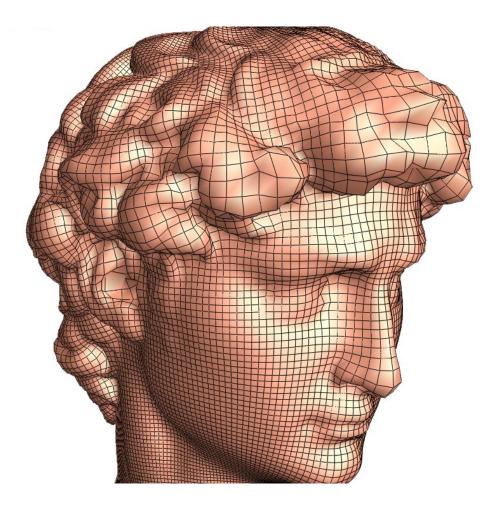
Geometry Image

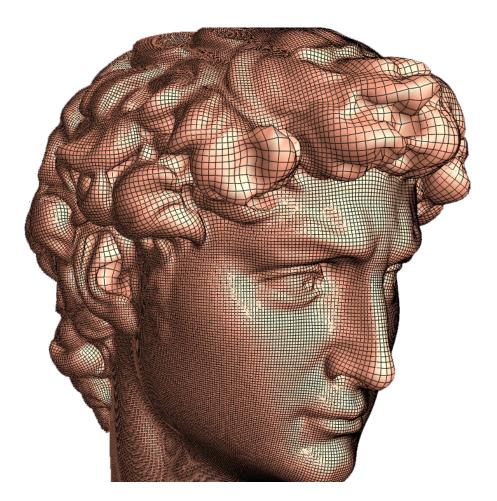


Geometry Image



Geometry Image





Unreal 5 Nanite virtual micropolygon geometry

Computer Vision

Surface registration and tracking

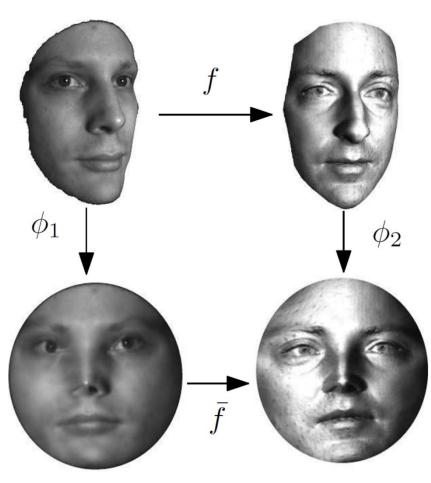
Problem: How to register 3D surfaces with large deformations, how to track dynamic surfaces with feature constraints and minimal distortions.

Answer: Conformal mapping, Teichmuller map based on Quasi-conformal geometry.

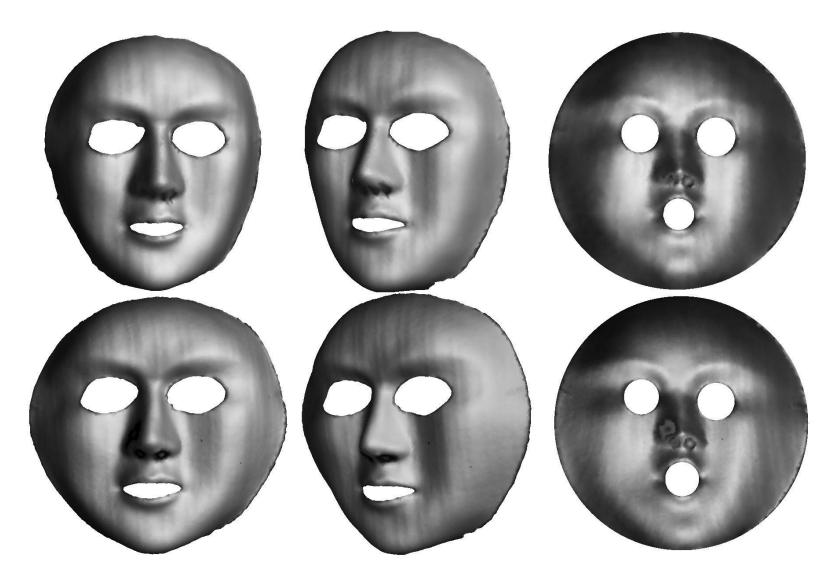
- Conformal mapping converts 3D surface registrations to 2D image registrations
- Teichmuller map minimizes local shape distortions

3D Surface Registration

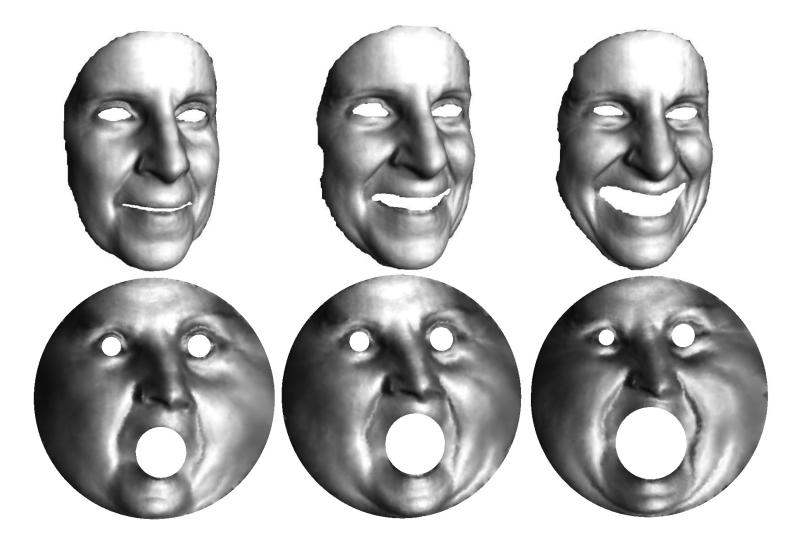
• 3D Matching is carried out by 2D matching.



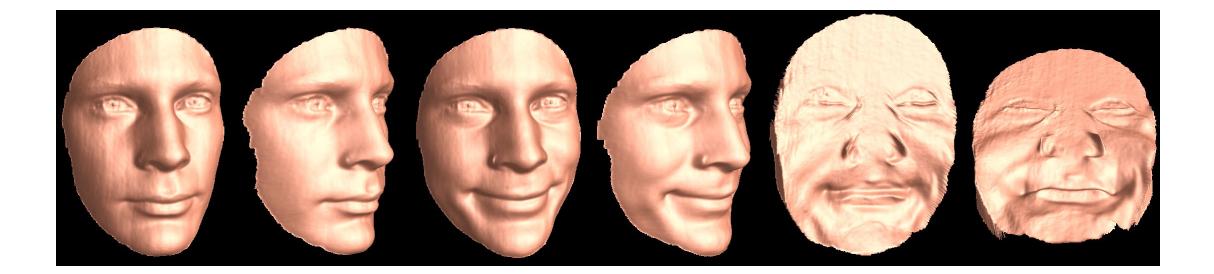
3D Facial Geometry Matching & Comparision



3D Facial Geometry Matching & Comparision

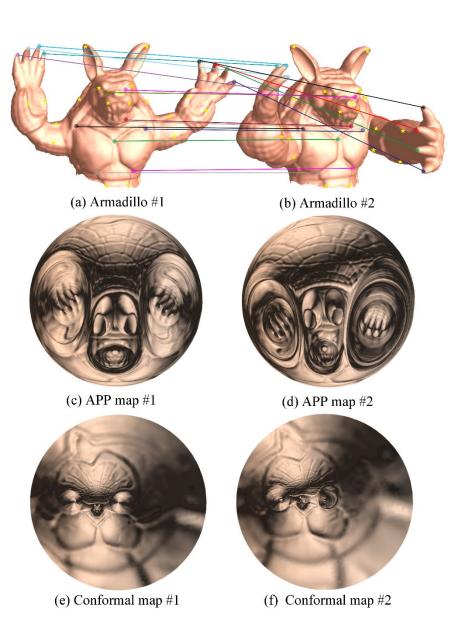


3D Facial Geometry Matching & Comparision



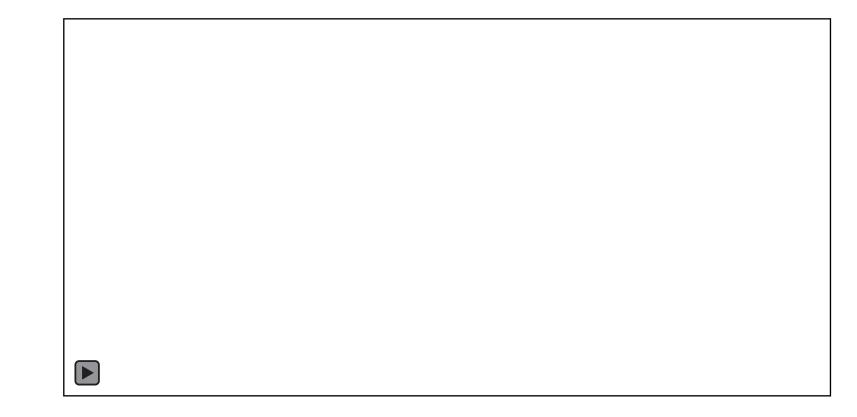
Surface Registration

- Non-rigid motion
- Complicated features
- Global optimality

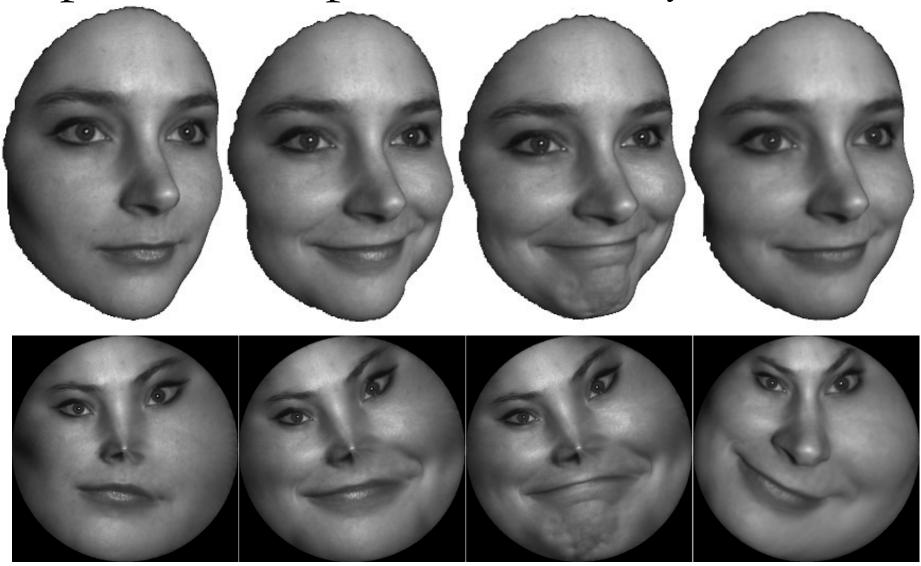


Teichmuller Map

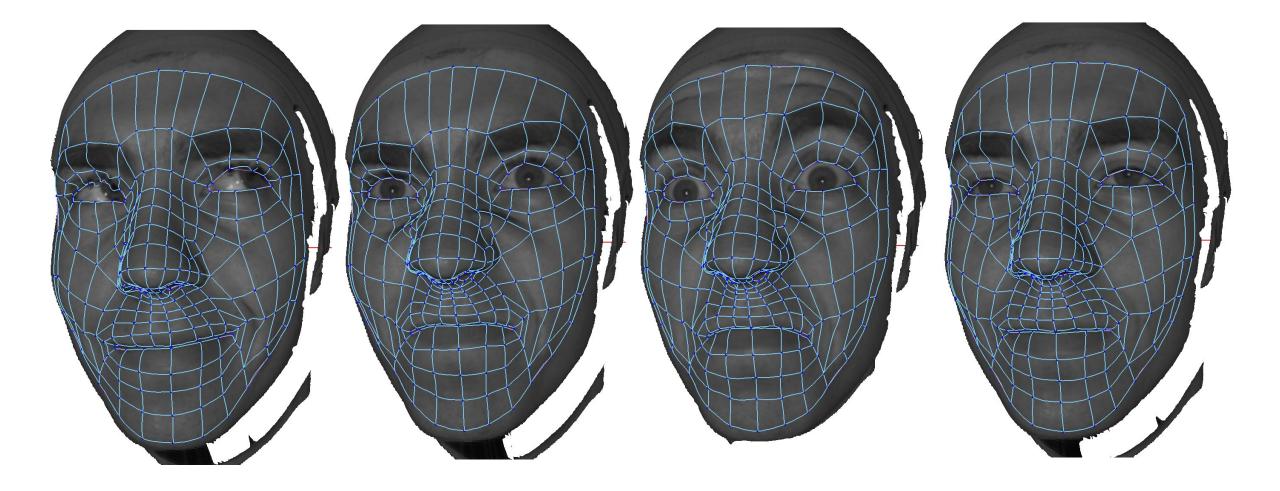
• Feature contraints; minimal angle distortion



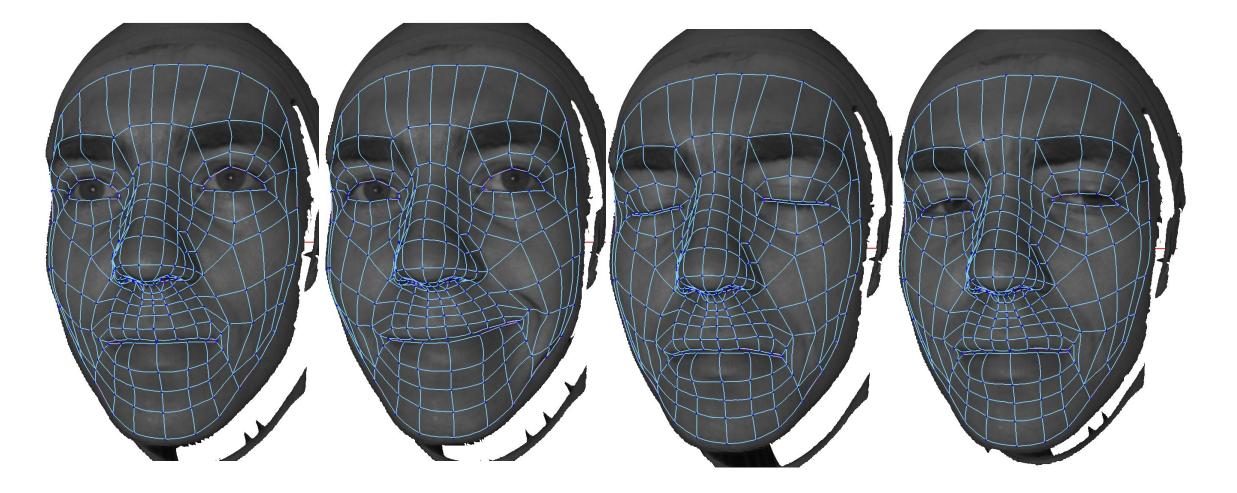
Expression Capture and Analysis



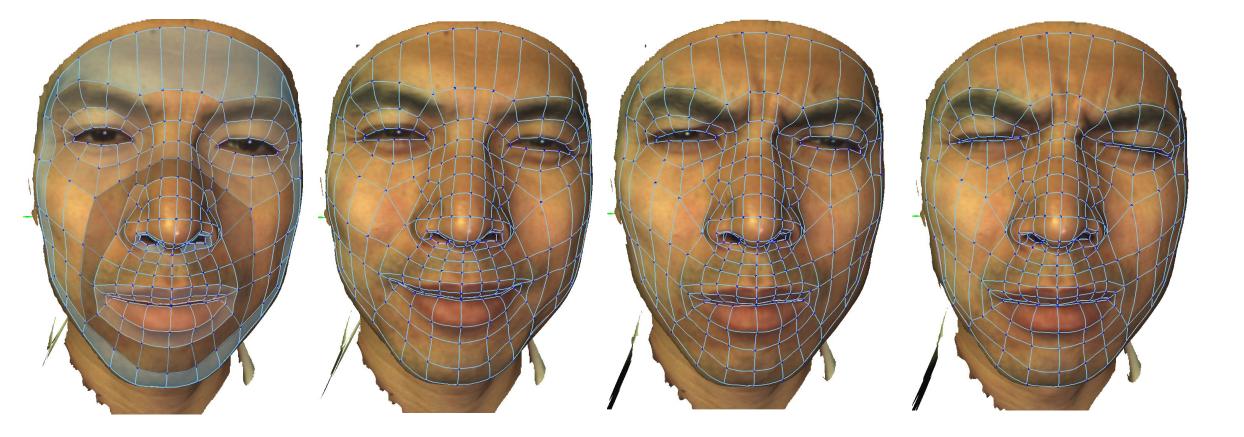
Expression Capture & Analysis



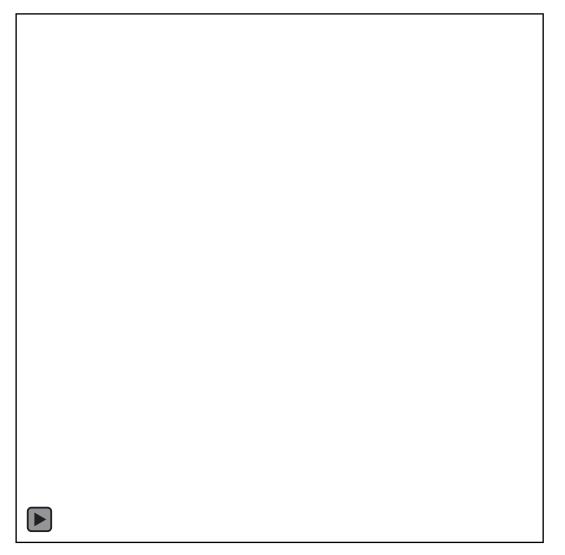
Expression Capture & Analysis



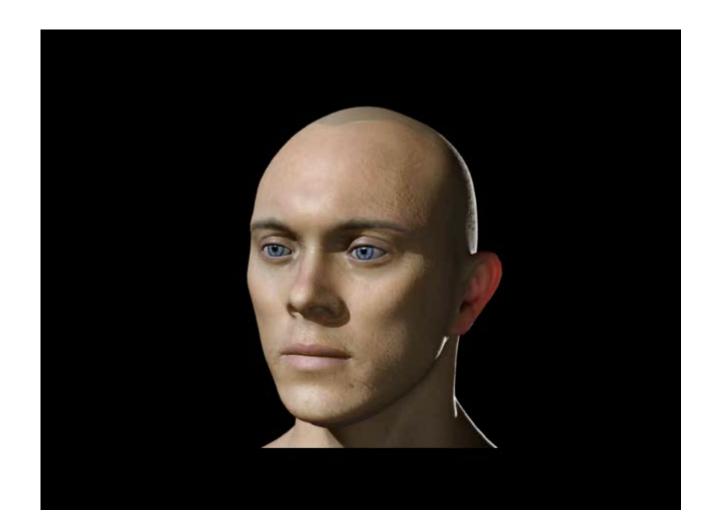
Facial Expression Tracking



Facial Expression Tracking



Virtual Actor



Virtual Actor

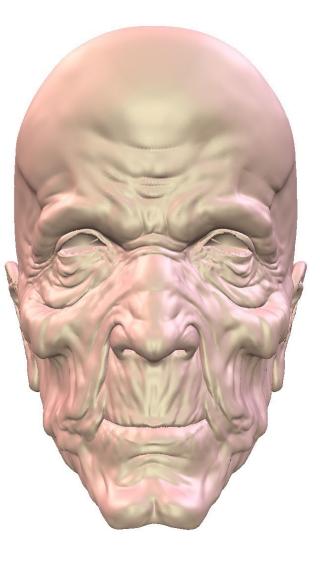
Digital Geometry Processing

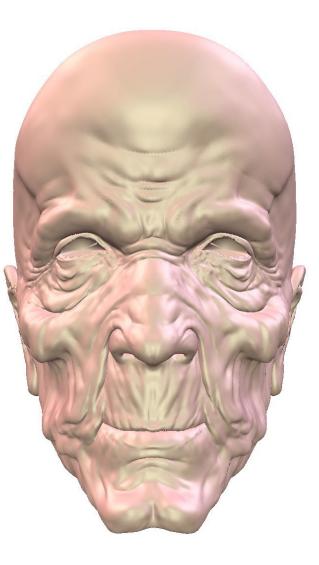
Geometric Approximation

Problem: How to use triangle mesh to approximate smooth surfaces ?

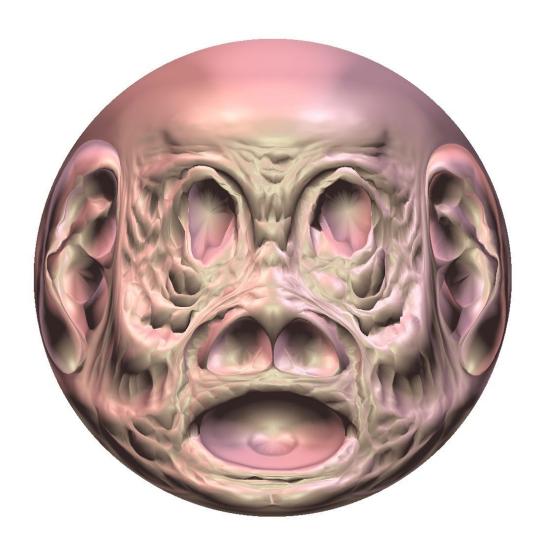
Answer: To approximate the normal cycle of the surface, not the surface itself using conformal mapping and optimal transportation map.

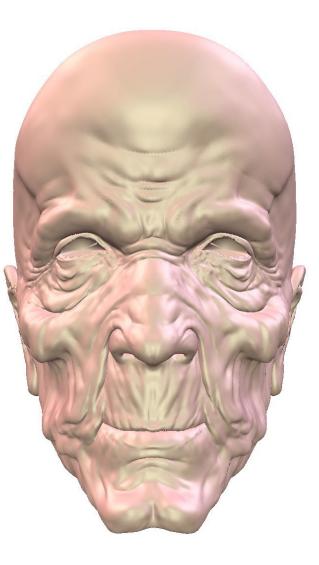
- Sampling on the image of the optimal transportation map
- Triangulation on the image of conformal mapping
- Guarantees the convergence of Hausdorff distance, normal field, Riemannian metric, Laplace-Beltrami operator, curvature measure

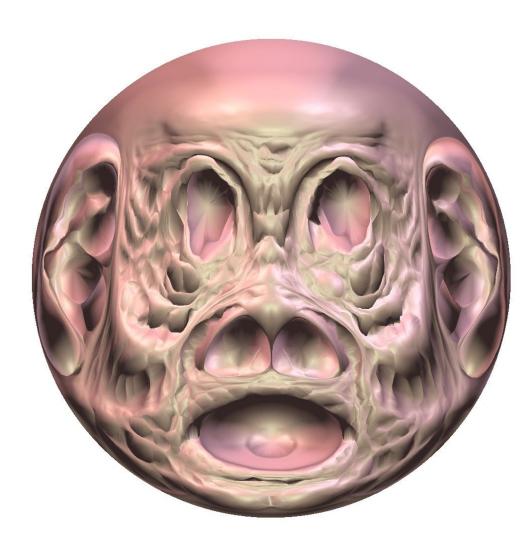






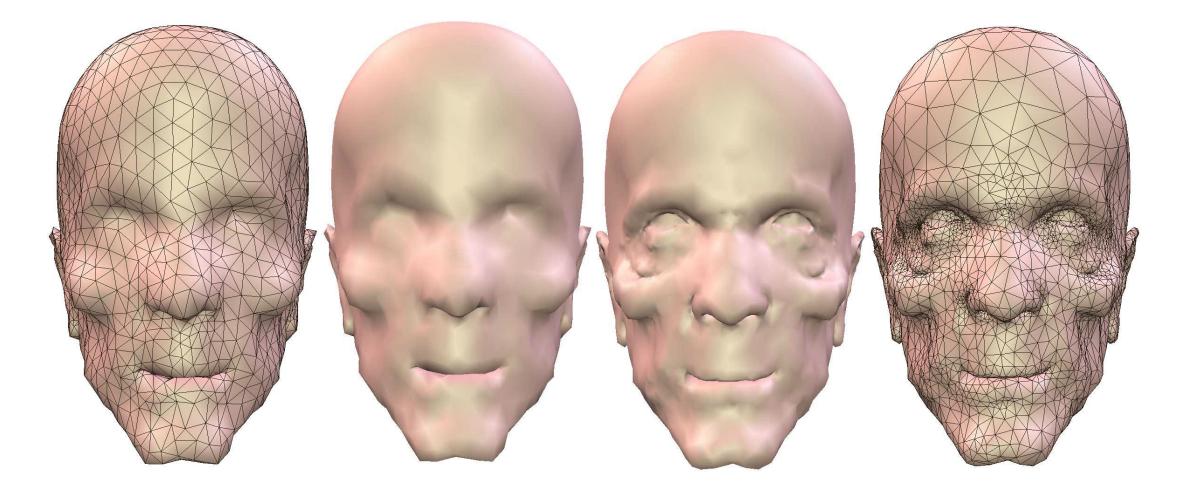




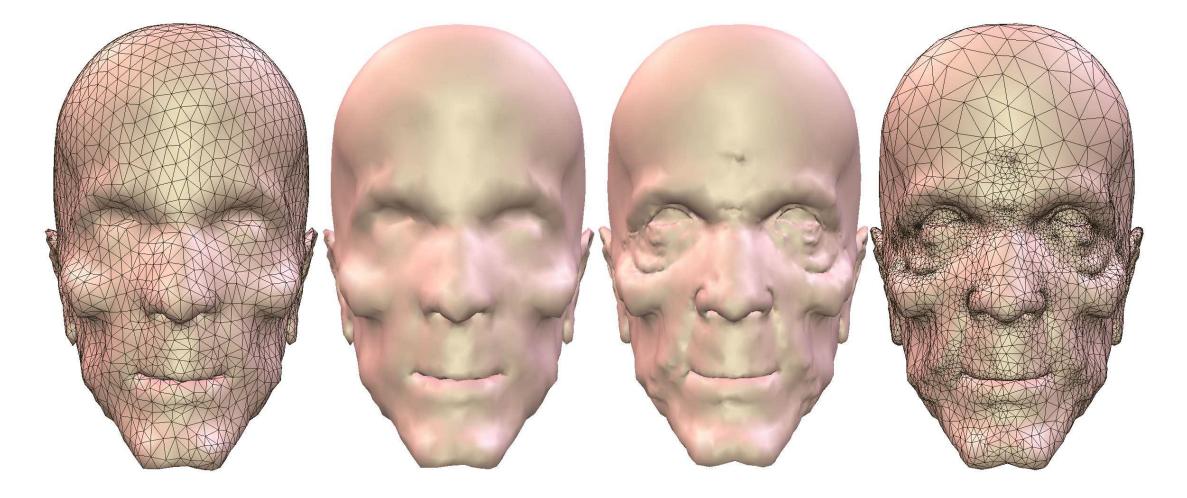


Curvature Sensitive Geometric Compression

Geometric Compression – 1k vertices



Geometric Compression – 2k vertices

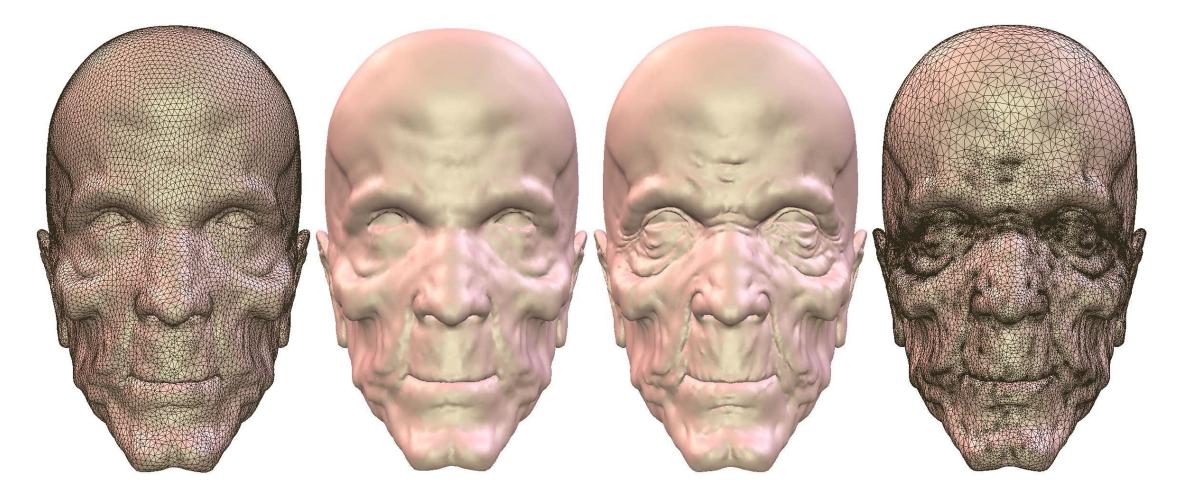


Geometric Compression – 4k vertices

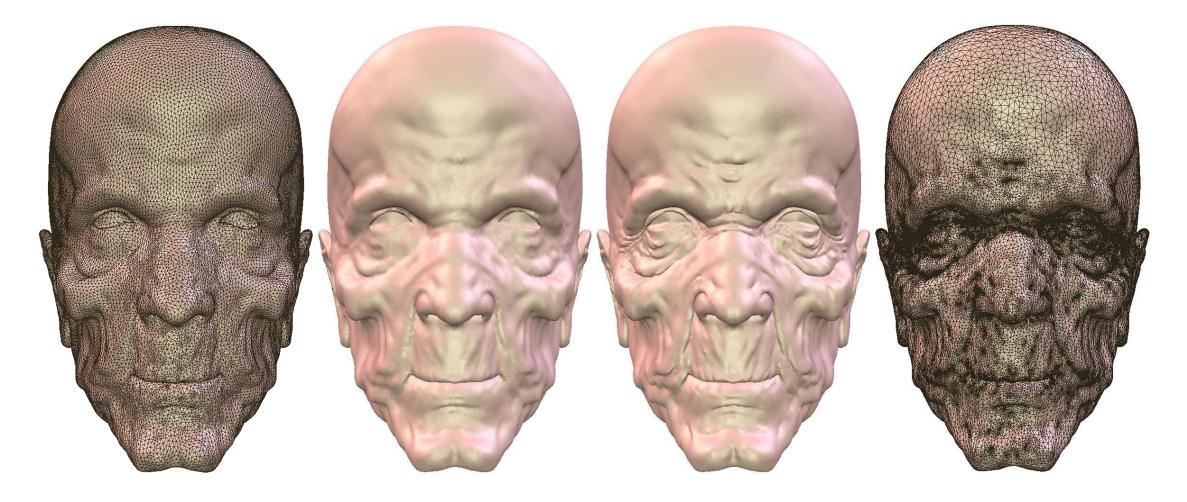
Geometric Compression – 8k vertices



Geometric Compression – 16k vertices



Geometric Compression - 32k vertices



Geometric Compression - 64k vertices

Wireless Sensor Network

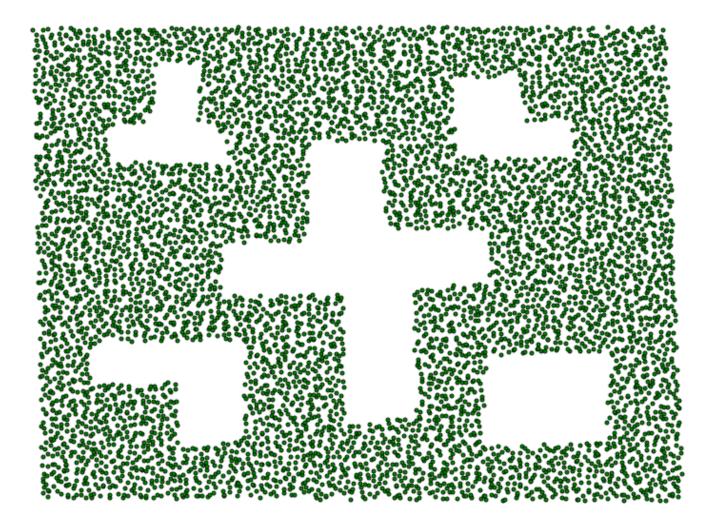
Geometric Routing

Problem: How to design a delivery guaranteed routing scheme? How to obtain load balancing?

Answer: Use canonical conformal mapping and topological covering map

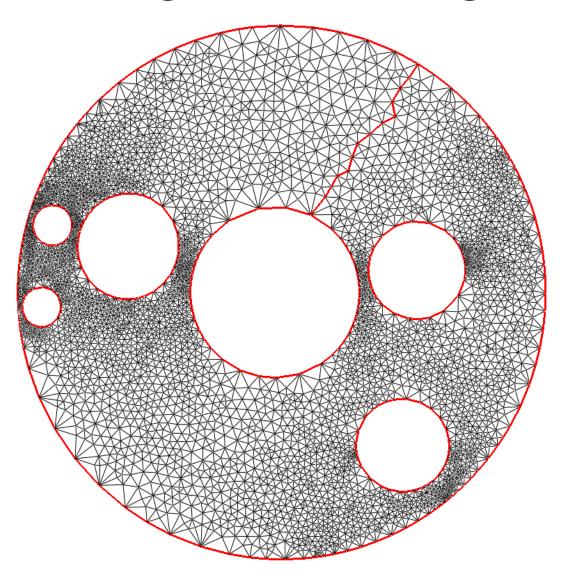
- Conformal mapping transforms all holes to circular holes, guarantees delivery
- Covering map fills all the holes, achieve load balancing

Delivery guaranteed greedy routing



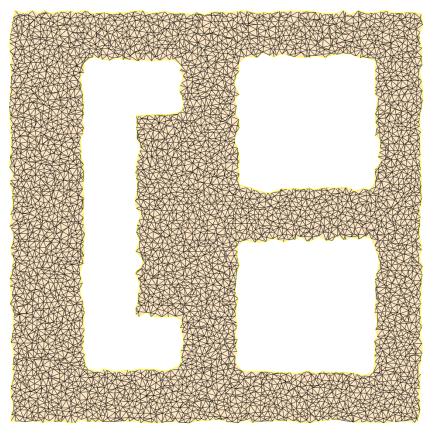
Delivery guaranteed greedy routing

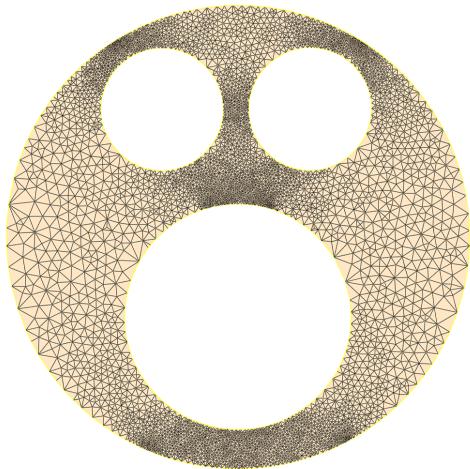
• virtual coordinates



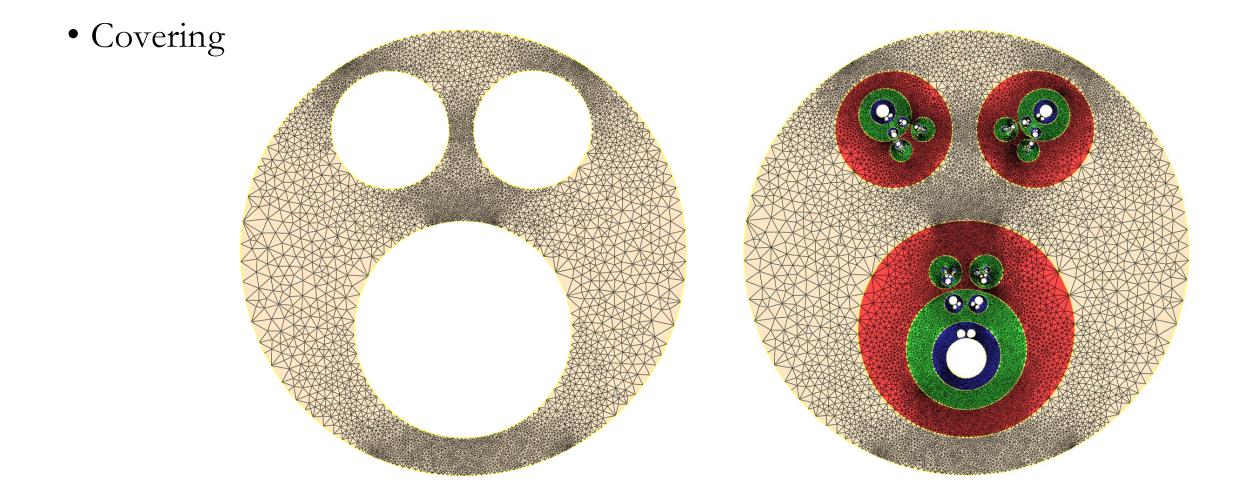
Load balancing

• Geodesics are along boundaries, sensors along the boundaries are overloaded.



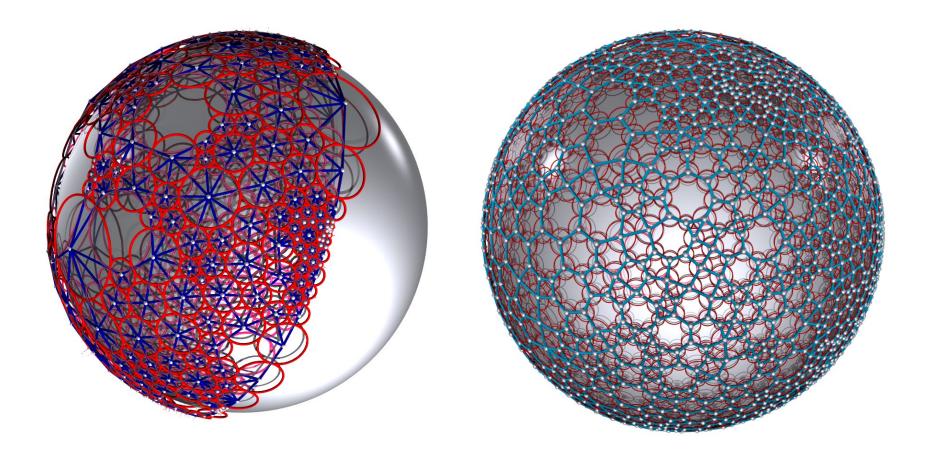


Load balancing



Wireless sensor network underwater

• Graph embedding



Medical Imaging

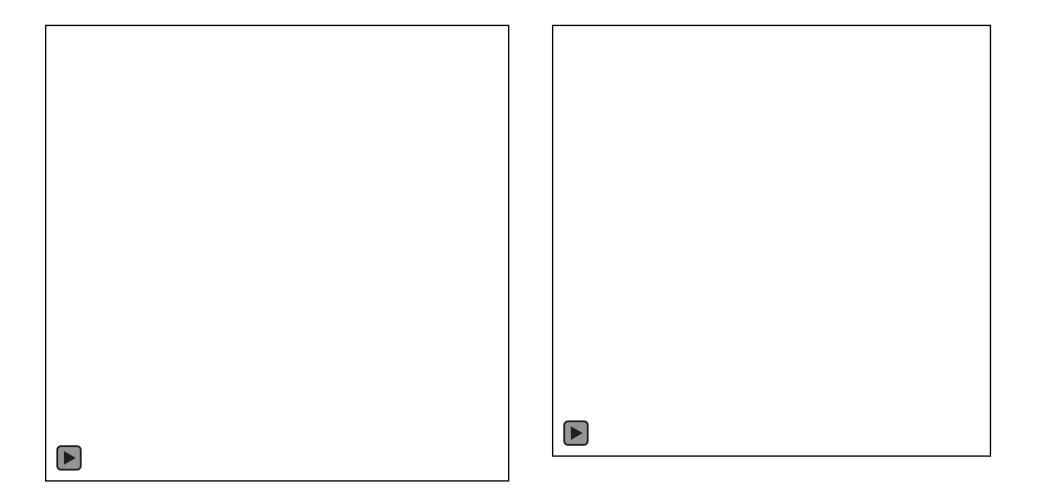
Medical Imaging

Problem: How to compare/analyze the shapes of human organs precisely?

Answer: Surface registration based on conformal geometry.

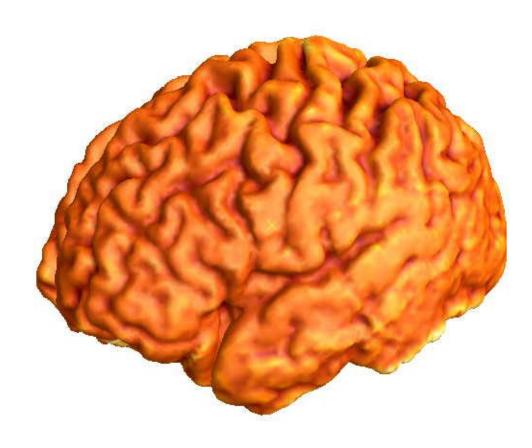
- Plastic surgery
- Conformal brain mapping
- Virtual colonoscopy

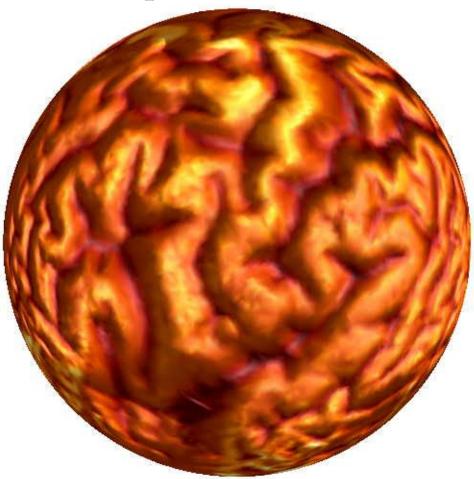
Plastic Surgery Analysis



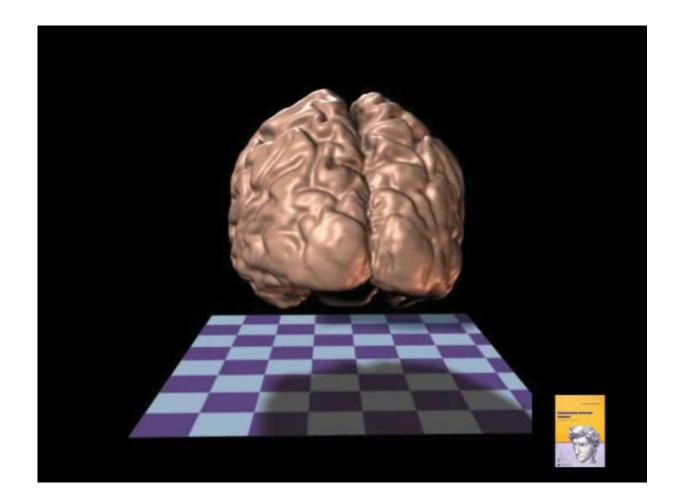
Brain mapping

• Map brain to the unit sphere, registration and comparison.



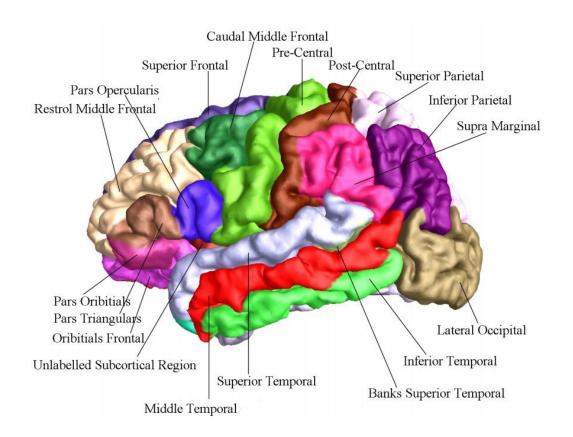


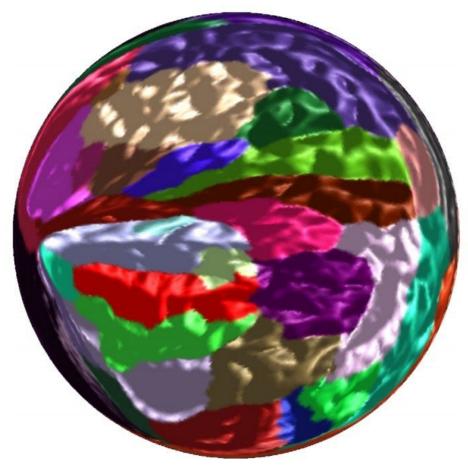
Conformal Brain Mapping



Brain Mapping

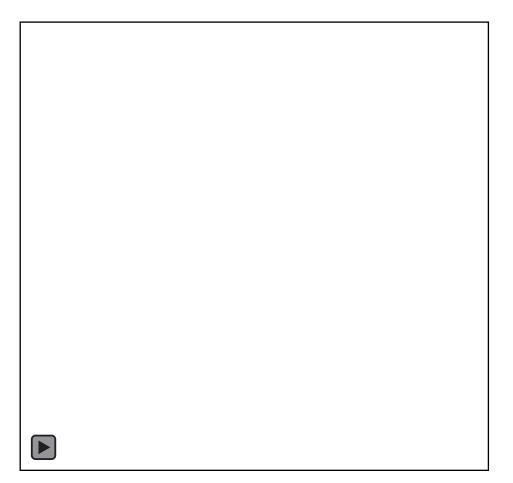
• Locate the illness, compare the deformation.





Virtual colonoscopy

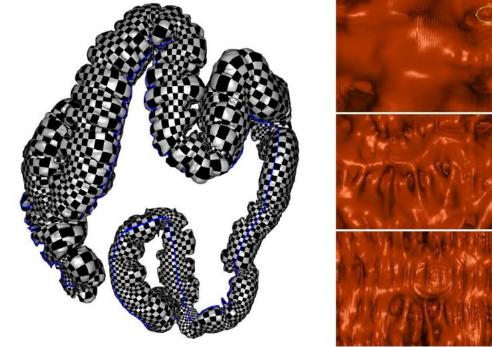
• Reconstruct colon wall surface from CT images.

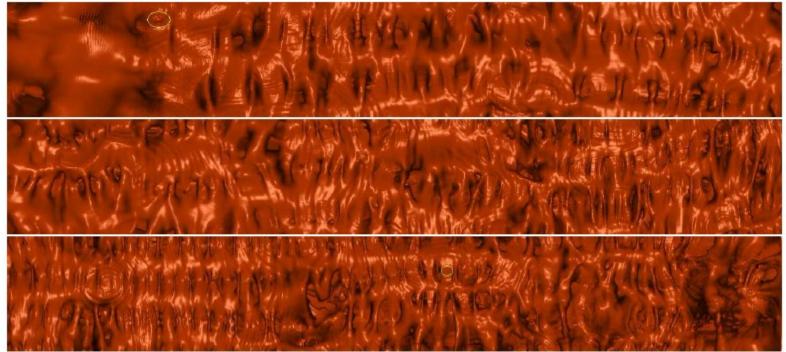


Virtual colonoscopy

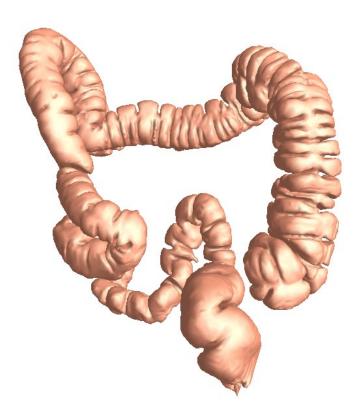
Virtual colonoscopy

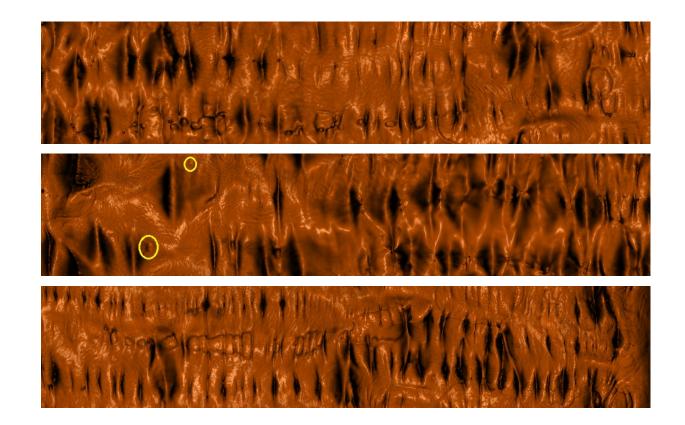
• Unfold all the foldings on the colon surface, preserving local shapes.





Virtual Colonoscopy





Computer Geometric Design

Geometric Modeling

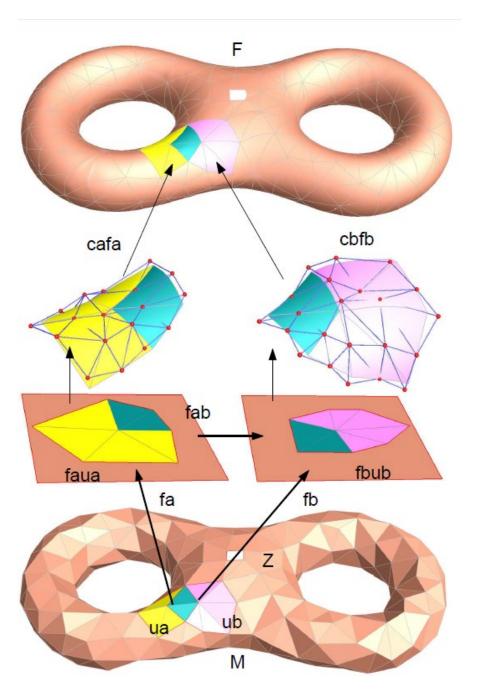
Problem: How to generalize Splines from planar domains to surface domains ? Can we avoid extraordinary points ? How to control extraordinary points?

Answer: It depends on the affine structure of the surface. Due to the topological obstruction, there is no affine structure in general.

- Compute flat metric with cone singularities
- Flat metric gives an affine structure
- Cone singularities give the extraordinary points

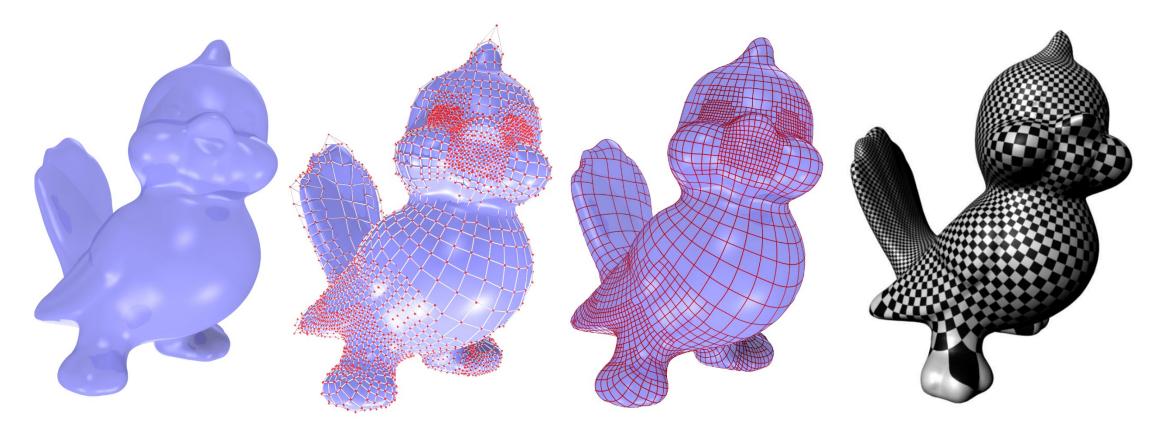
Manifold Splines

- Splines is based on Affine geometry
- Requires an Affine structure, an atlas with linear transitions
- Construct splines on each chart globally glued together
- Topological obstruction

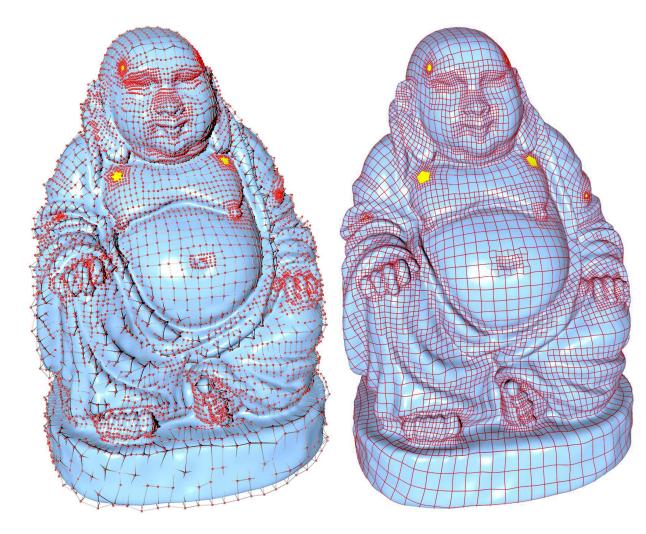


Manifold Splines

• Converting triangle meshes to manifold splines

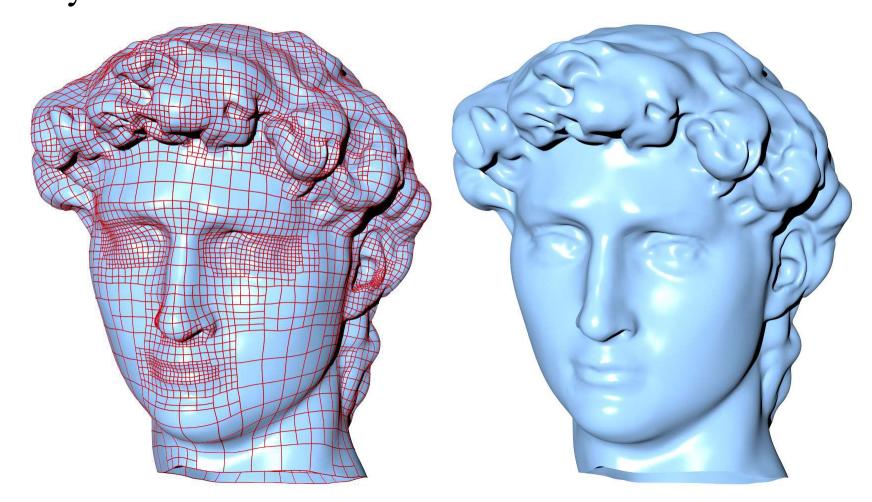


Manifold Splines – control singularities



Manifold Splines - control approximation

accuracy

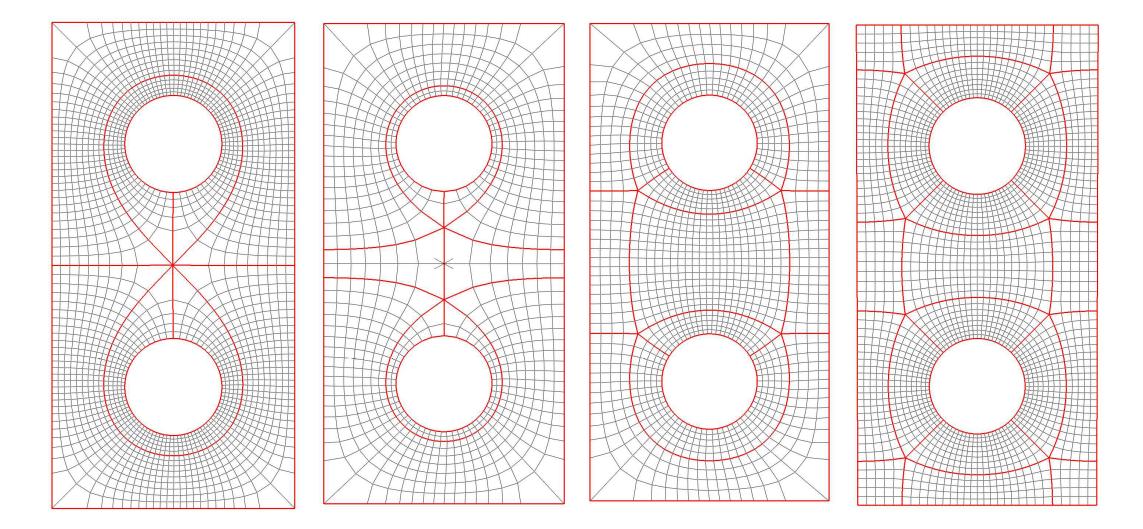


Surface quadrilateral meshing

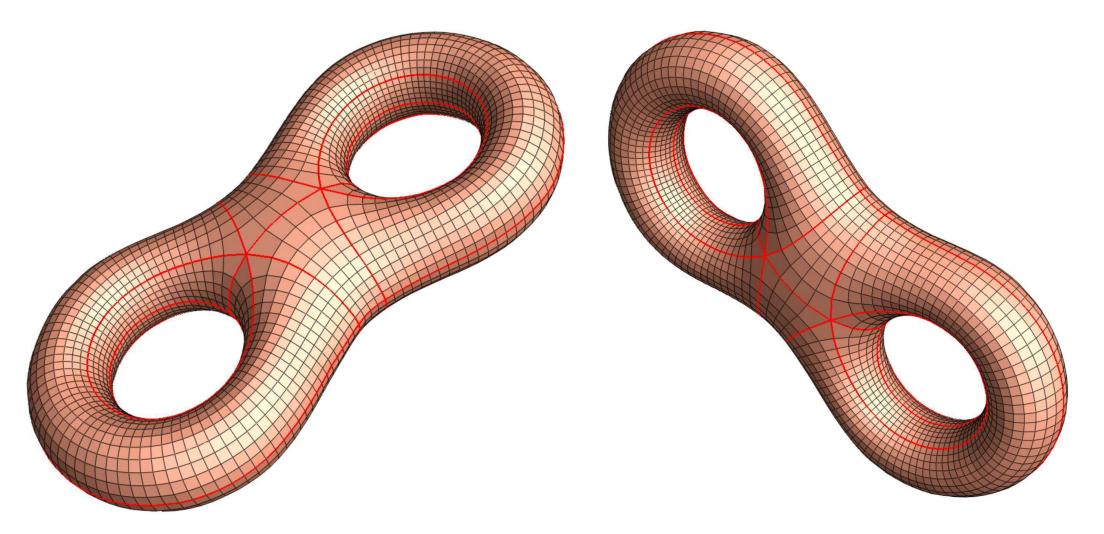
Problem: How to construct global regular quad-meshes ?

Answer: Use Abel-Jacobi theorem in Riemann surface.

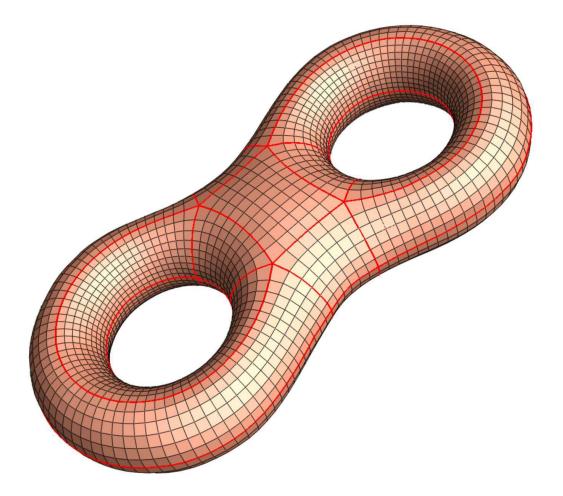
- The singularities satisfy the Abel-Jacobi condition
- Compute the flat cone metric using Ricci flow
- Trace the geodesics to generate the quad-mesh

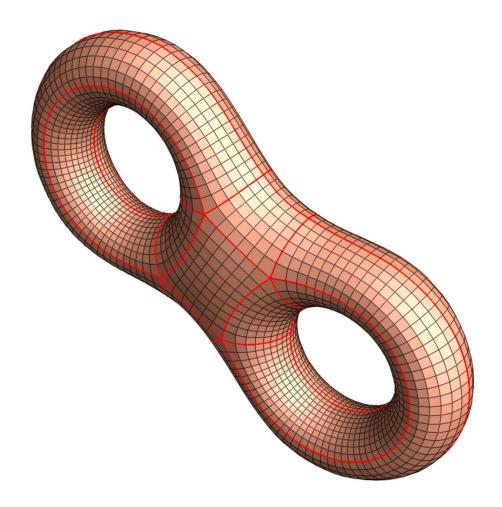


Quad-Mesh Theory



Quad-Mesh Theory





Holy Grid

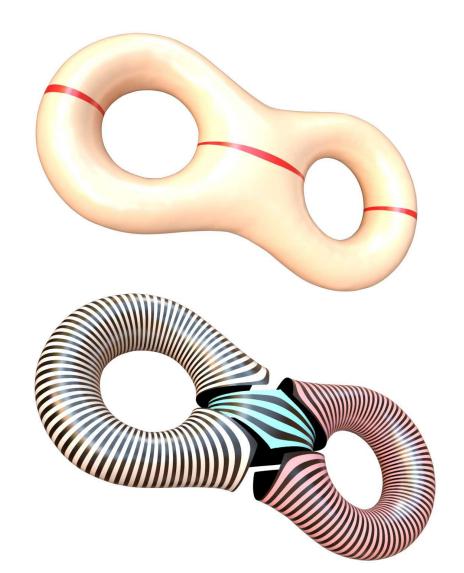
Problem: How to construct global regular hex-meshes ?

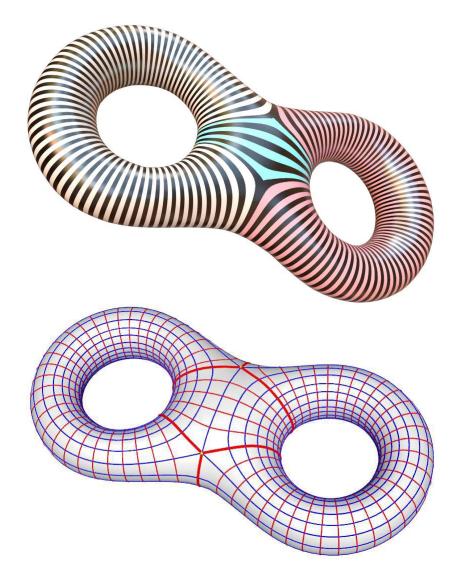
Answer: Use Strebel differential

- The Strebel differential induces a quad-mesh on the boundary surface
- The quad-mesh can be extended into the interior to form a hex-mesh

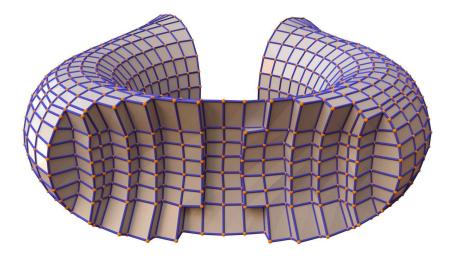
Foliation - Holomorphic Quadratic Differential

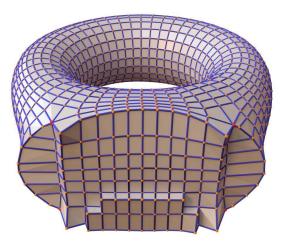
Holomorphic Quadratic Differential

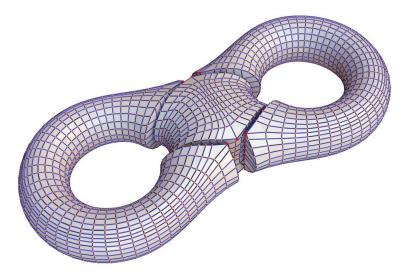


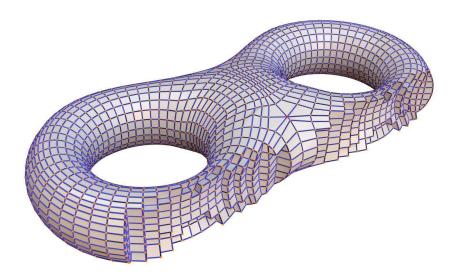


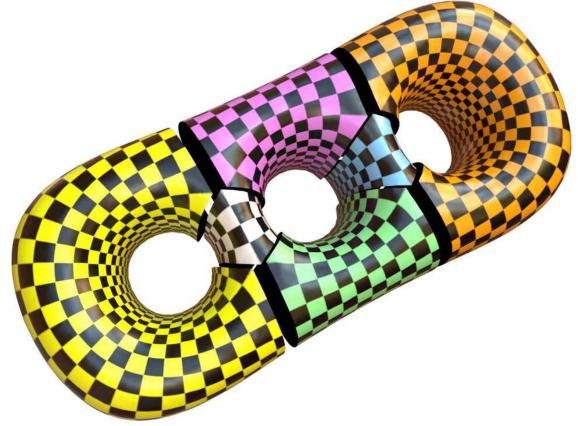
Hexahedral mesh generation



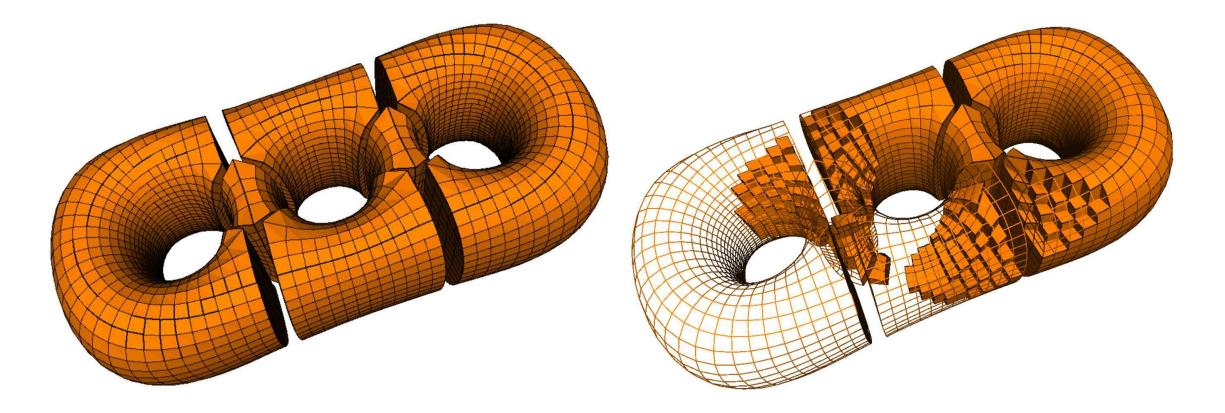




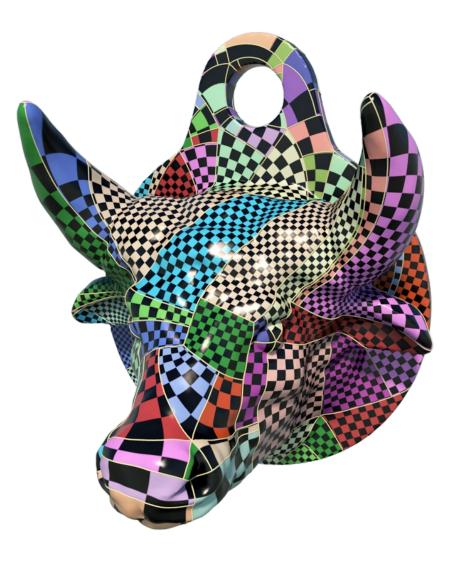


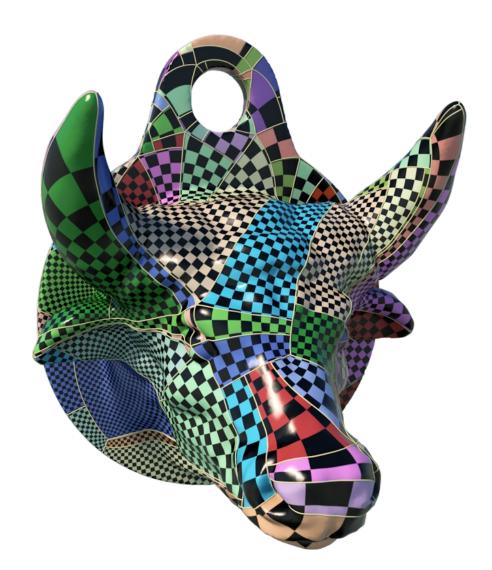


Quad-Mesh Theory



Quad-Mesh Theory





Mesh T-Spline

Mesh T-Spline

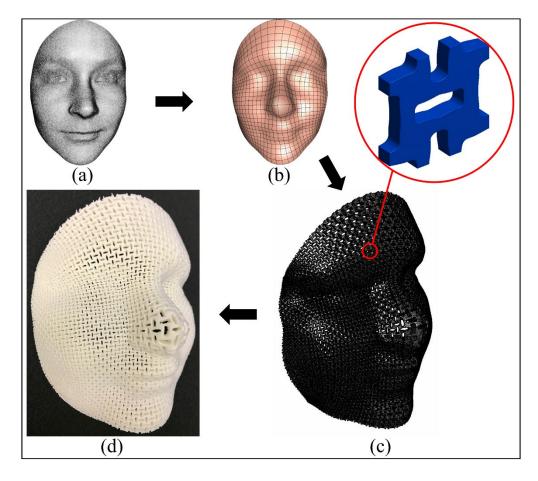
Digital Manufacture

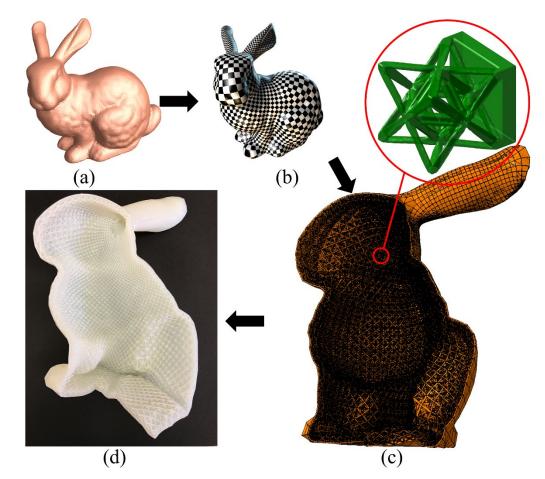
Problem: How to design meta-materials on surfaces?

Answer: Using conformal mapping to generalize planar design to surface domain, cell structures.

3D Metamaterial Design

• 3D print bullet proof mask, ultra light and ultra stiff material.

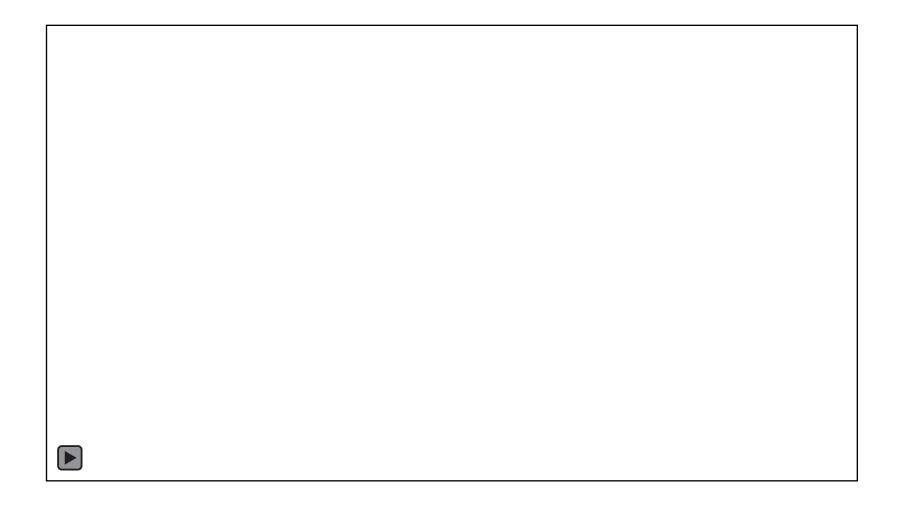




Fabrication

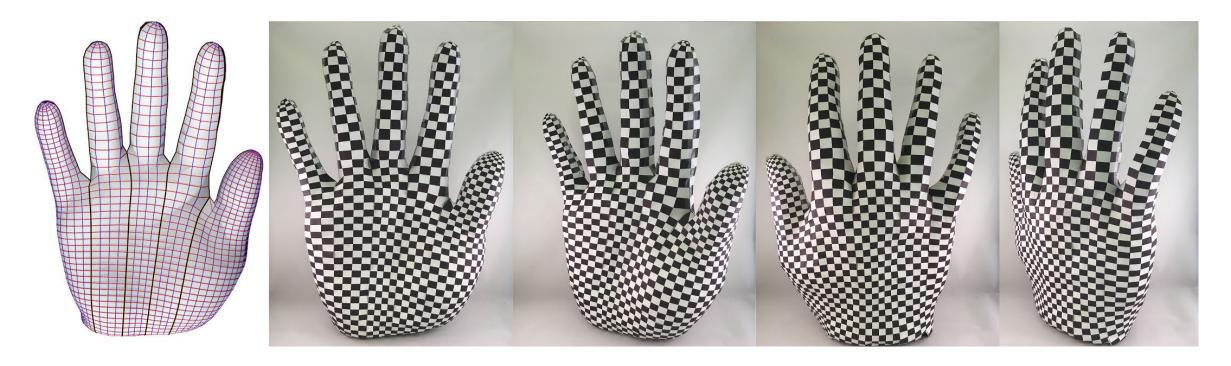
Fabrication

Fabrication by weaving

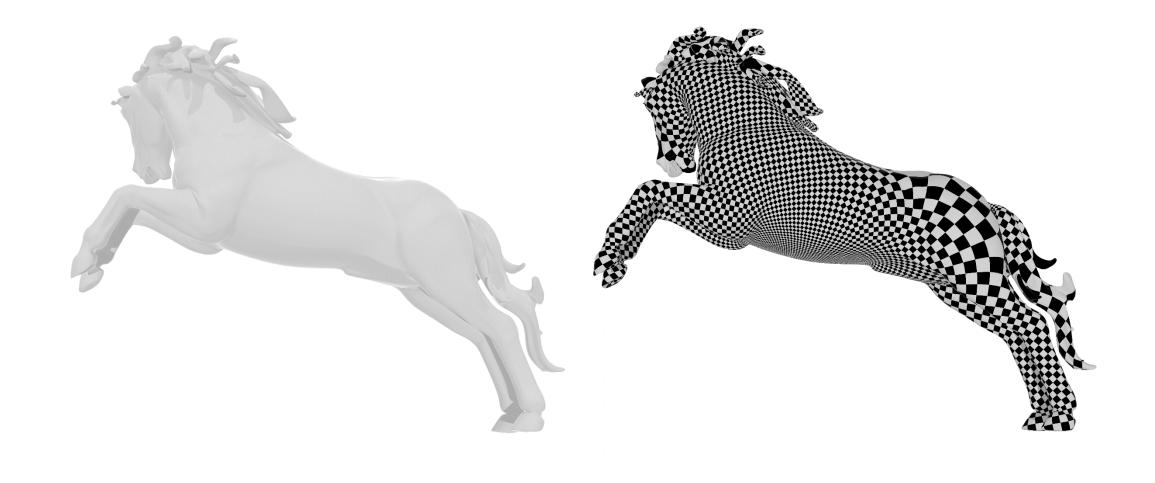


Fabrication

• Carbon fiber



Sculpture Design



Sculpture

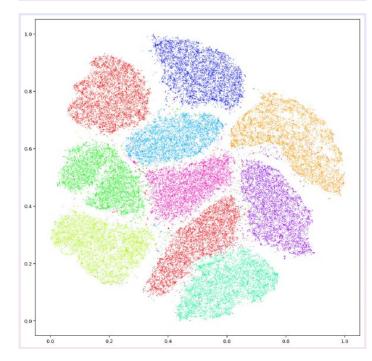
Geometric View to Deep Learning

A Geometric Framework for Deep Learning

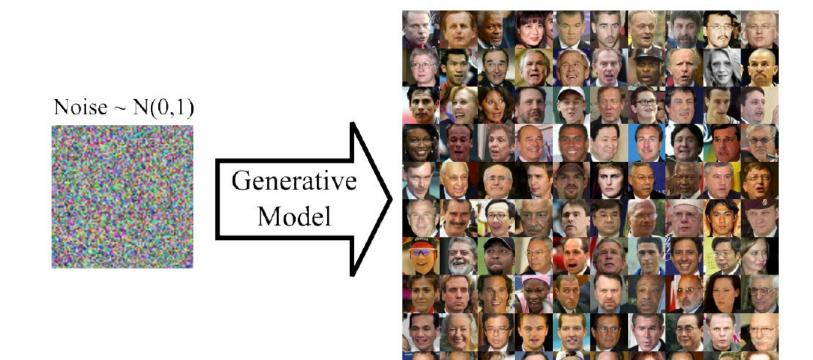
Our physical world is geometric in nature.

Manifold hypothesis:

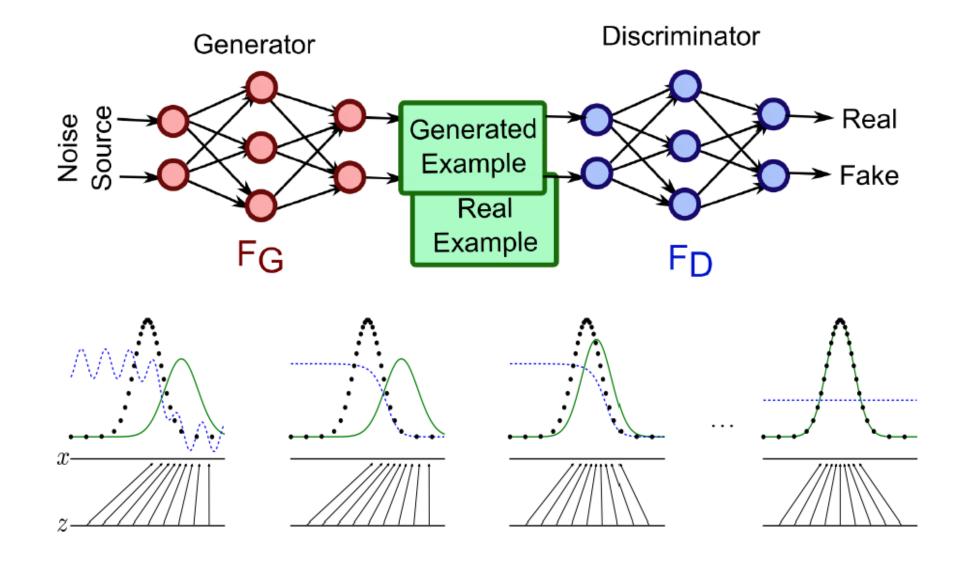
Real data concentrates near low dimensional manifolds, different classes correspond to disjoint manifolds separated by low density areas.



Deep Generative Models

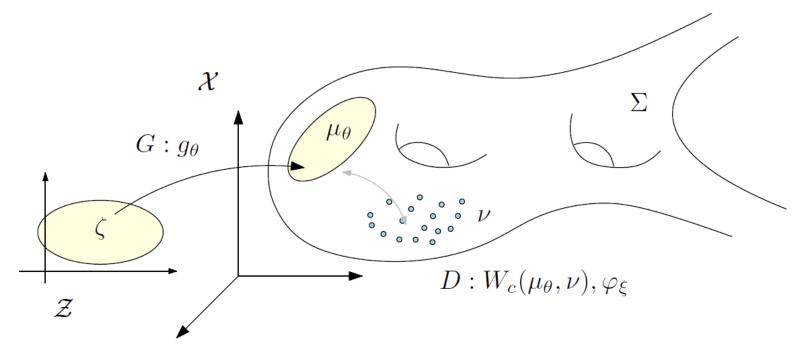


Generative Adversarial Networks



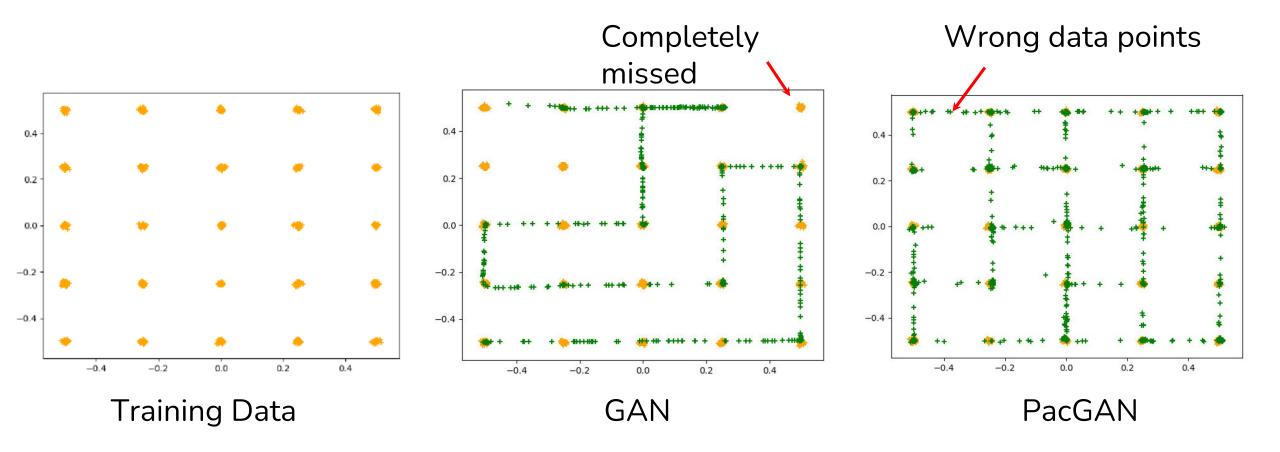
Generative Adversarial Networks

 \mathscr{X} -image space; Σ -supporting manifold; \mathscr{Z} -latent space;

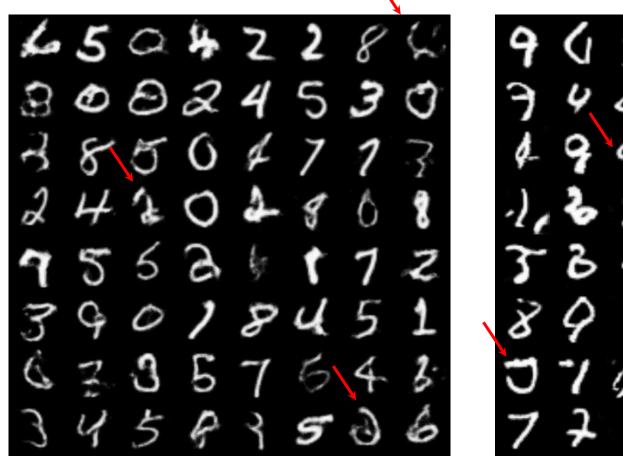


v-training data distribution; ζ -uniform distribution; $\mu_{\theta} = g_{\theta \#} \zeta$ -generated distribution; *G* - generator computes g_{θ} ; *D* -discriminator, measures the distance between *v* and μ_{θ} , $W_c(\mu_{\theta}, v)$.

Mode Collapse in Generative Adversarial Networks



Generated MNIST Samples



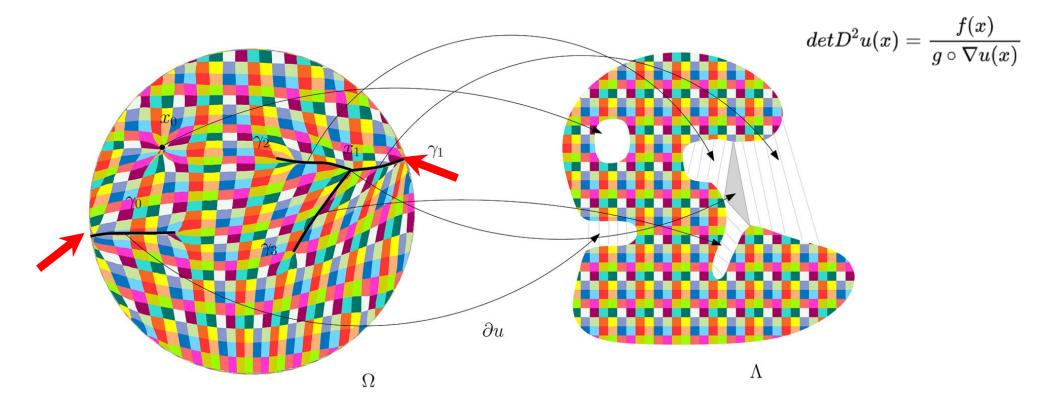
05 83 \sim Ь

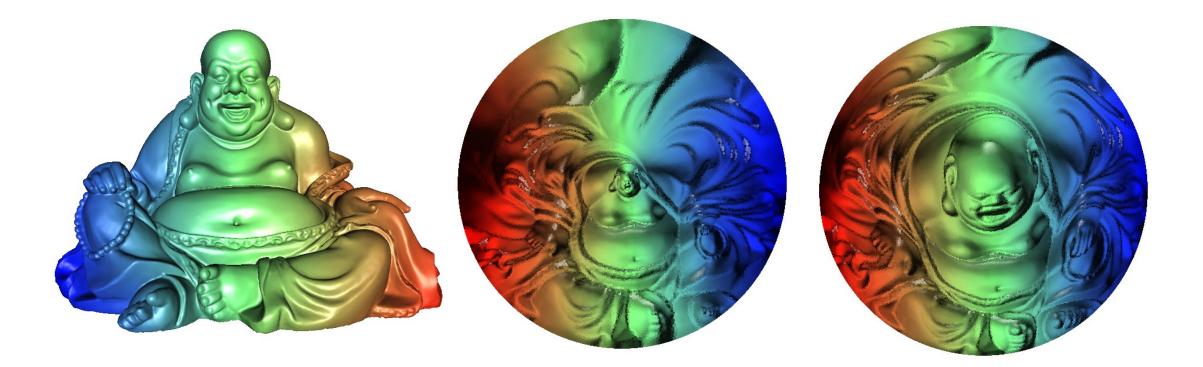
VAE

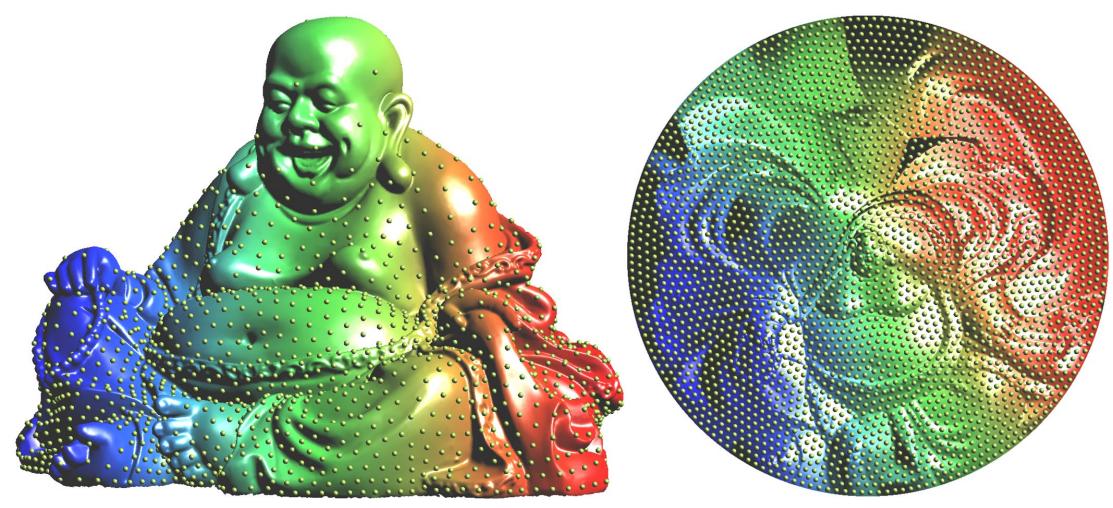
GAN

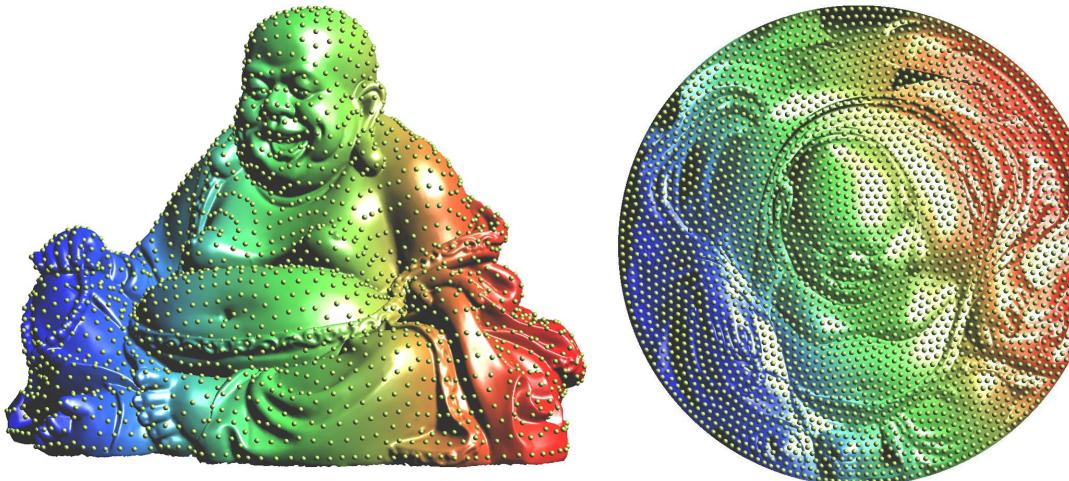
Regularity Theory

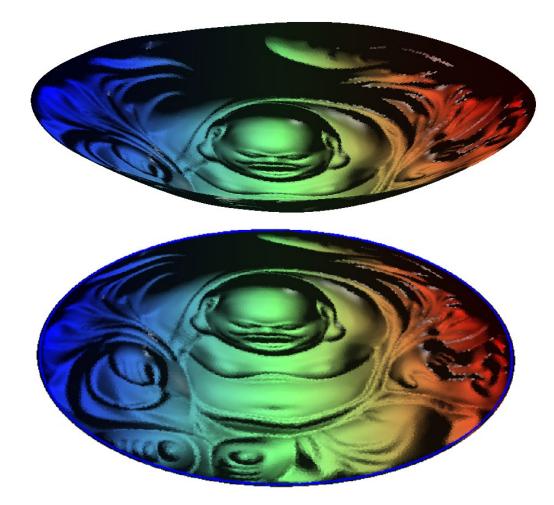
 <u>Alessio Figalli's theorem</u>: If the target support is nonconvex, the **optimal transport map** is discontinuous at some singularity sets.

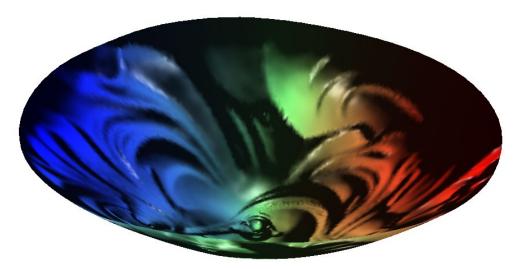


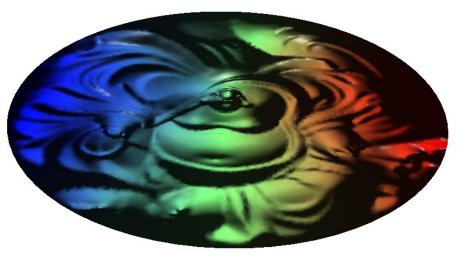


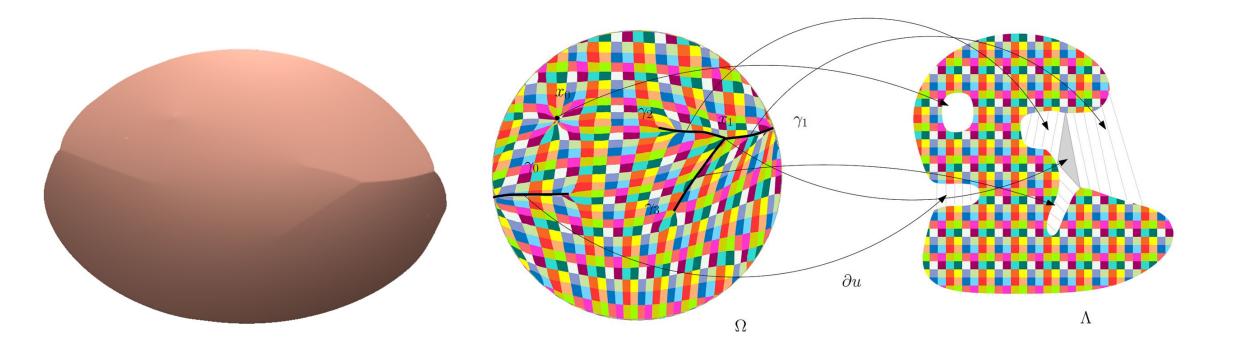


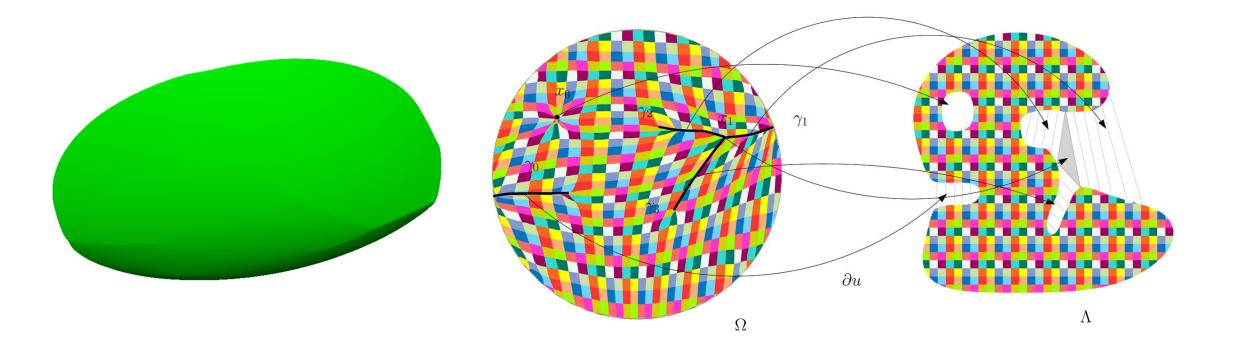


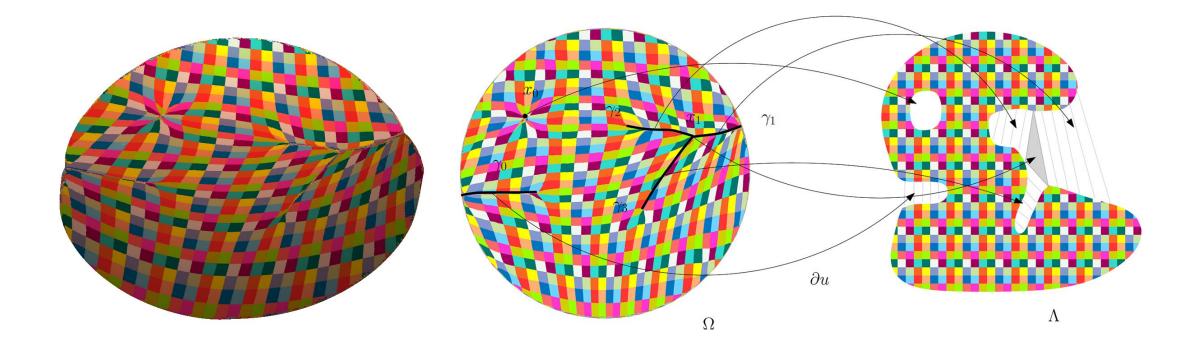


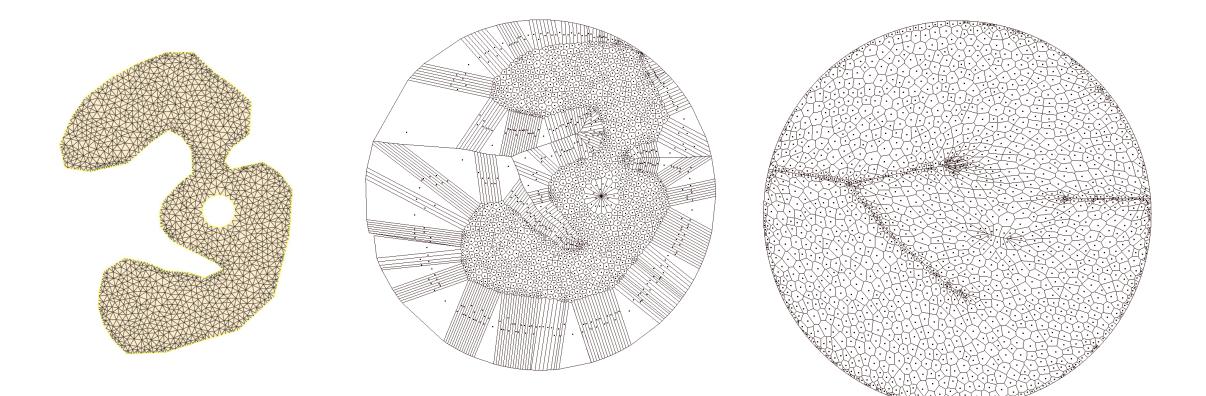




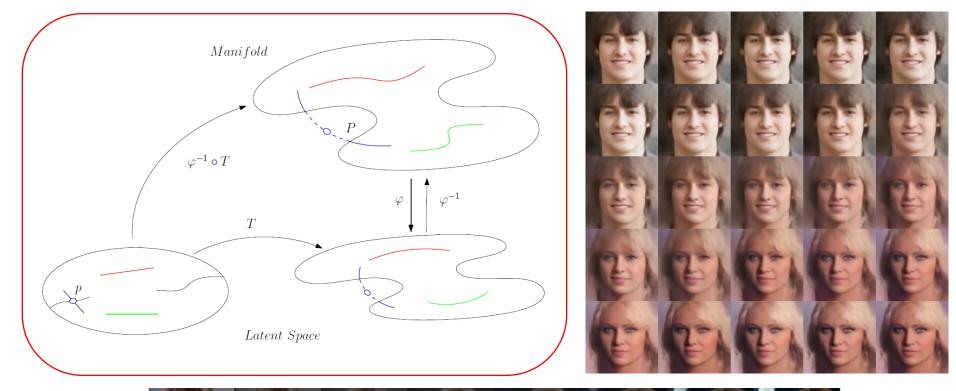








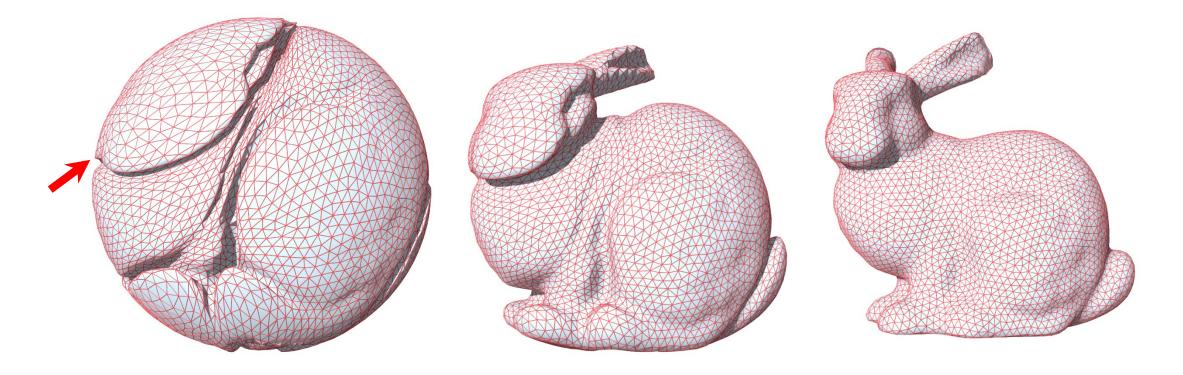
Regularity Theory and Mode Collapse



Paths on human facial photo manifold

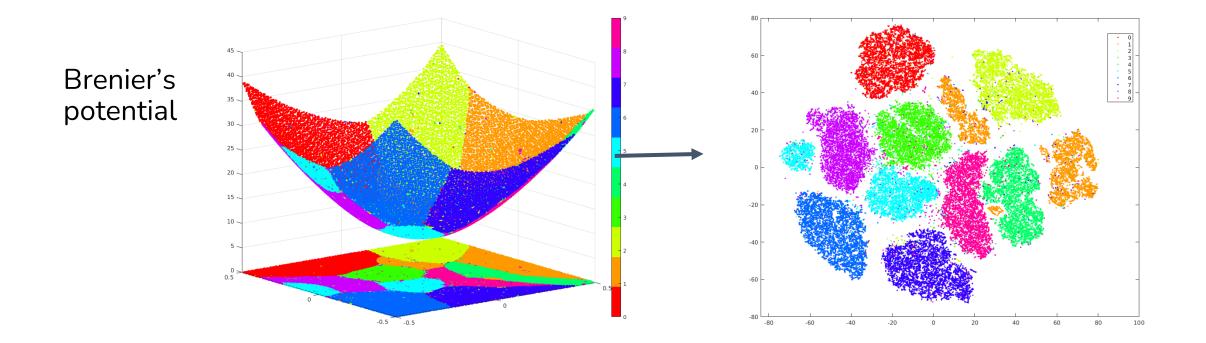
Implication of Figalli's Regularity Theorem

Deep neural networks can only represent **continuous** maps. This intrinsic conflict causes mode collapses and mode mixture.

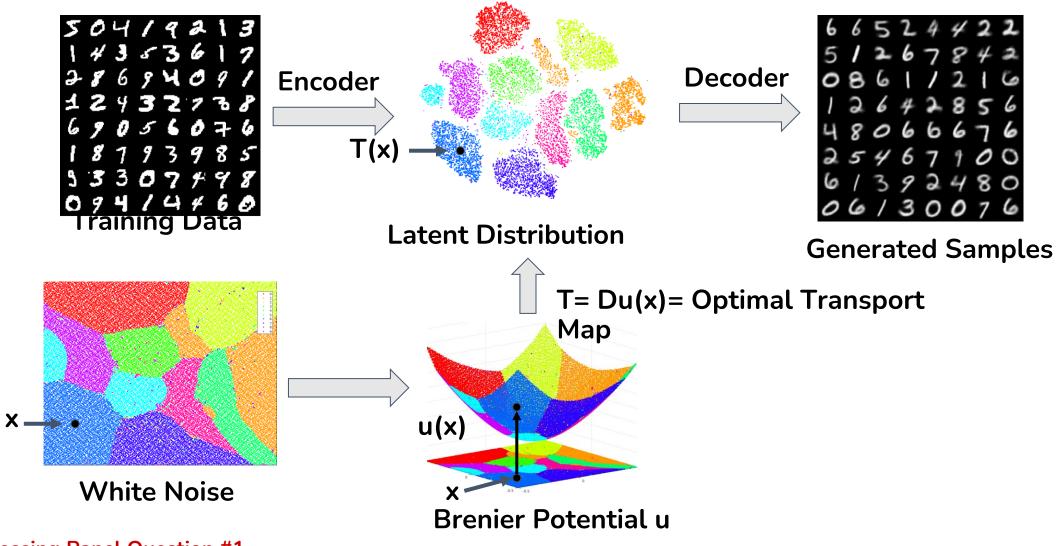


Eliminate Mode Collapse by Brenier Map

Compute Brenier's potential (continuous), whose gradient (possibly non-continuous) gives the optimal transport map.



Optimal Transport Generative Model



Addressing Panel Question #1

GAN based on Brenier Theory

Conclusion

Modern Geometry is essential to tackle fundamental problems in different fields in engineering and medicine.

- Computer Graphics
- Computer Vision
- Geometric Modeling (CAD/CAE)
- Wireless Sensor networks
- Medical Imaging
- Digital geometry processing
- Artificial Intelligence

Thank You