
Optimal Transportation Theory and
Computation

Euclidean Geometry

David Gu
Computer Science Department

Stony Brook University

Reference Book 2

图: 教课书《最优传输理论和计算》.

Computational Geometric Algorithms

File Format 4

▶ The target measure (Ω∗, ν) is represented as a triangle
mesh (obj format), each vertex has both (x, y, z)
coordinates and (u, v) parameters. Each vertex vi
represents a sample yi = (ui, vi), (ui, vi) specify the planar
position in Ω∗. The summation of the areas of all triangular
faces adjacent to vi is treated as νi, (after normalization).

▶ The source measure (Ω, µ) is represented as another
triangle mesh (obj format), its boundary gives the
boundary of Ω. For current version, µ is the uniform
distribution.

File Format 5

(a) Y and ν (b) planar positions {yi} (c) convex Ω

图: Input files.

Data Structure & Algorithms 6

1. The combinatorial data structure to represent the weighted
Delaunay triangulation and the power diagram is either
half-edge or Dart data structure;

2. The linear numerical solver is Eigen library;
3. The geometric predicate is based on adaptive (or exact)

arithmetic method.
4. The weighted Delaunay is based on Lawson’s edge flip

algorithm.
5. The polygon clipping is based on Sutherland–Hodgman

algorithm.
6. The optimization of Alexandrov energy is based on

damping algorithm.

Edge Local Power Delaunay 7

Given an edge e in a planar triangulation T , find the two neighboring faces,
lift the four vertices to the convex hull φ, suppose vertex vi is represented
as pi(ui, vi, φ(ui, vi)), compute the volume of the tetrahedron [p0, p1, p2, p3].
If the volume is positive, then e is locally powerd Delaunay, if the volume is
negative, then e is non-locally-power-Delaunay.

v0 v1

v2

v3

p0

p1p2

p3

Edge Flippable 8

Given an edge e = [v0, v1] in a planar triangulation T , if
[v0, v3, v2] or [v1, v2, v3] is clockwise, then the edge is not
flippable.

v0 v1

v2

v3

v0 v1

v2

v3

Lawson Edge Flip Algorithm 9

Input is a set of points S on the plane with the powers, the output is the
power Delaunay triangulation.

1. Construct an arbitrary triangulation of the point set S;
2. Push all non-locally intrior edges of T on stack and mark them;

3. While the stack is non-empty do

3.1 e← pop();
3.2 unmark e;
3.3 if e is locally power Delaunay then continue;
3.4 if e can’t be flipped then continue;
3.5 flip edge e;
3.6 push other four edges of the two triangles adjacent to e into

the stack if unmarked;
4. If there is an edge e, which is not local power Delaunay, then there is

some point pi that is not on the convex hull of all pk’s.

Lawson Edge Flip for Convex Hull 10

图: Construct convex hull of the graph of φ, using Lawson Edge Flip
algorithm.

Legendre Dual 11

Given a convex hull, which is the graph of a convex function φ,
we compute its Legendre dual φ∗. Each point pi = (ai, bi, ci) on
the convex hull represents a plane πi,

π(x, y) = aix + biy− ci.

Each face [pi, pj, pk] is dual to a point (x, y, z) satisfying the
linear equation group, ci

cj
ck

 =

 ai bi −1
aj bj −1
ak bk −1

 x
y
z

Upper Envelope-Brenier Potential 12

Given the convex hull {p1, p2, · · · , pk}, where pi(ui, vi, φ(ui, vi)),
add one more point as infinity point (0, 0,−h), h is big enough
to be above all other points. Each face fα is dual to a point f∗α;
each vertex vi is dual to a supporting plane v∗i .

图: Legendre dual of the convex hull is the upper envelope.

Sutherland–Hodgman algorithm 13

Given a subject polygon S and a convex clipping polygon C, we
use C to clip S. Each time, we use one edge e of C to cut off a
corner of S.

Sutherland–Hodgman algorithm 14

foreach Edge clipEdge in clipPolygon do
List inputList ← outputList;
outputList.clear();
foreach Edge [pk−1, pk] in inputList do

Point q ← ComputeIntersection(pk−1, pk, clipEdge);
if pk inside clipEdge then

if pk−1 not inside clipEdge then
outputList.add(q);

end
outputList.add(pk);

end
else if pk−1 inside clipEdge then

outputList.add(q)
end

end
end

Upper Envelope - Brenier Potential 15

图: Brenier potential obtained by clipping the Legendre dual.

Cell Clipping 16

图: Boundary cell clipping.

Power Diagram Algorithm 17

1. Compute the convex hull using Lawson edge flipping, add
the infinity vertex (0, 0,−h); project the convex hull to
power Delaunay triangulation T ;

2. Compute the upper envelope using Legendre dual
algorithm and project to the power diagram D ;

3. Clip the power cells using Sutherland-Hodgman algorithm;

Damping Algorithm 18

1. Initialize the step length λ;
2. φ← φ+ λd;
3. Compute the convex hull using Lawson edge flipping, add

the infinity vertex (0, 0,−h); project the convex hull to
power Delaunay triangulation T ;

4. If the convex hull misses any vertex, then λ← 1
2λ, repeat

step 2 and step 3;
5. Compute the upper envelope using Legendre dual

algorithm, project to the power diagram D ;
6. Clip the power cells using Sutherland-Hodgman algorithm;
7. If any power cell is empty, then λ← 1

2λ, repeat step 5 and
step 6;

Newton’s Method 19

1. Initialize ϕ as ϕ(u, v) = 1
2(u

2 + v2);
2. Call the power diagram algorithm;
3. Compute the gradient ∇E, the target area minus the

current power cell area;
4. Compute the Hessian matrix H, using the power diagram

edge length;
5. Compute the update direction Hd = ∇E;
6. Call the damping algorithm, set ϕ← ϕ+ λd, such that ϕ is

admissible;
7. Repeat step 2 through step 6, until the gradient is close to

0.

Optimal Transportation Map 20

图: Optimal transportation map.

Optimal Transportation Map 21

图: Optimal transportation map.

Optimal Transportation Map 22

图: Optimal transportation map.

Optimal Transportation Map 23

图: Optimal transportation map.

Transportation Map 24

图: The worst transportation map.

Instruction

Dependencies 26

1. ‘DartLib‘ or ’MeshLib’, a general purpose mesh library
based on Dart data structure.

2. ’Eigen’, numerical solver.
3. ‘freeglut‘, a free-software/open-source alternative to the

OpenGL Utility Toolkit (GLUT) library.

Commands and Hot keys 27

▶ Command: -target target_mesh -source source_mesh
▶ ’!’: Newton’s method
▶ ’m’: Compute the mass center of power cells
▶ ’W’: output the Legendre dual mesh and the optimal

transportation map mesh
▶ ’L’: Edit the lighting
▶ ’d’: Show convex hull or upper envelope; power Delaunay

or diagram
▶ ’g’: Show 3D view or 2D view
▶ ’e’: Show edges
▶ ’c’: Show cell centers
▶ ’o’: Take a snapshot
▶ ’?’: Help information

PowerDynamicMesh class 28

Compute the Power Delaunay and Power Diagram.
1. CPDMesh :: _Lawson_edge_swap Lawson edge swap

algorithm to compute convex hull u∗
h, Power Delaunay

triangulation;
2. CPDMesh :: _Legendre_transform Legendre dual

transformation compute upper envelope uh, Power voronoi
diagram;

3. CPDMesh :: _power_cell_clip Clip power cells, based on
Sutherland-Hodgman algorithm;

COMTDynamicMesh class 29

Compute the Optimal Mass Transportation Map.
1. COMTMesh :: _update_direction compute the update

direction, based on Newton’s method;
2. COMTMesh :: _calculate_gradient calculate the gradient

of the Alexandrov energy;
3. COMTMesh :: _calculate_hessian calculate the Hessian

matrix of the Alexandrov energy;
4. COMTMesh :: _edge_weight calculate the edge weight

Coding Assignment 30

Compute the Optimal Mass Transportation Map.
1. Implement Lawson’s edge flipping algorithm to compute

weighted Delaunay triangulation,
CPDMesh :: _Lawson_edge_swap;

2. Implement Sutherland-Hodgman algorithm for convex
polygon clipping, Polygon2D :: Sutherland_Hodgman;

3. Implement Computing the Wasserstein distance.

Directory Structure 31

▶ 3rdparty/DartLib or 3rdparty/MeshLib, header files for
mesh;

▶ MeshLib/algorithms/OMT, the header files for Power
Diagram Mesh and Optimal Mass Transportation Map
Mesh;

▶ OT/src, the source files for optimal transportation map;
▶ CMakeLists.txt, CMake configuration file;

Configuration 32

Before you start, read README.md carefully, then go three
the following procedures, step by step.

1. Install [CMake](https://cmake.org/download/).
2. Download the source code of the C++ framework.
3. Configure and generate the project for Visual Studio.
4. Open the .sln using Visual Studio, and complie the

solution.
5. Finish your code in your IDE.
6. Run the executable program.

Configure and generate the project 33

1. open a command window
2. cd ot-homework3_skeleton
3. mkdir build
4. cd build
5. cmake ..
6. open OTHomework.sln inside the build directory.

Thanks 34

For more information, please contact gu@cs.stonybrook.edu

Thank You!

