Optimal Transportation Theory and Computation Euclidean Geometry

David Gu

Computer Science Department Stony Brook University

Reference Book

图:教课书《最优传输理论和计算》.

Computational Geometric Algorithms

The target measure (Ω*, ν) is represented as a triangle mesh (obj format), each vertex has both (x, y, z) coordinates and (u, v) parameters. Each vertex v_i represents a sample y_i = (u_i, v_i), (u_i, v_i) specify the planar position in Ω*. The summation of the areas of all triangular faces adjacent to v_i is treated as ν_i, (after normalization).

• The source measure (Ω, μ) is represented as another triangle mesh (obj format), its boundary gives the boundary of Ω . For current version, μ is the uniform distribution.

File Format

- 1. The combinatorial data structure to represent the weighted Delaunay triangulation and the power diagram is either half-edge or Dart data structure;
- 2. The linear numerical solver is Eigen library;
- 3. The geometric predicate is based on adaptive (or exact) arithmetic method.
- 4. The weighted Delaunay is based on Lawson's edge flip algorithm.
- 5. The polygon clipping is based on Sutherland–Hodgman algorithm.
- 6. The optimization of Alexandrov energy is based on damping algorithm.

Edge Local Power Delaunay

Given an edge e in a planar triangulation \mathcal{T} , find the two neighboring faces, lift the four vertices to the convex hull φ , suppose vertex v_i is represented as $p_i(u_i, v_i, \varphi(u_i, v_i))$, compute the volume of the tetrahedron $[p_0, p_1, p_2, p_3]$. If the volume is positive, then e is locally powerd Delaunay, if the volume is negative, then e is non-locally-power-Delaunay.

Given an edge $e = [v_0, v_1]$ in a planar triangulation \mathcal{T} , if $[v_0, v_3, v_2]$ or $[v_1, v_2, v_3]$ is clockwise, then the edge is not flippable.

Input is a set of points S on the plane with the powers, the output is the power Delaunay triangulation.

- 1. Construct an arbitrary triangulation of the point set S;
- 2. Push all non-locally intrior edges of \mathcal{T} on stack and mark them;
- 3. While the stack is non-empty do
 - 3.1 $e \leftarrow \operatorname{pop}();$
 - 3.2 unmark e;
 - 3.3 if e is locally power Delaunay then continue;
 - 3.4 if $e \operatorname{can't}$ be flipped then continue;
 - 3.5 flip edge e;
 - 3.6 push other four edges of the two triangles adjacent to e into the stack if unmarked;
- 4. If there is an edge e, which is not local power Delaunay, then there is some point p_i that is not on the convex hull of all p_k 's.

Lawson Edge Flip for Convex Hull

Given a convex hull, which is the graph of a convex function φ , we compute its Legendre dual φ^* . Each point $p_i = (a_i, b_i, c_i)$ on the convex hull represents a plane π_i ,

$$\pi(x, y) = a_i x + b_i y - c_i.$$

Each face $[p_i, p_j, p_k]$ is dual to a point (x, y, z) satisfying the linear equation group,

$$\left(\begin{array}{c} c_i \\ c_j \\ c_k \end{array}\right) = \left(\begin{array}{c} a_i & b_i & -1 \\ a_j & b_j & -1 \\ a_k & b_k & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right)$$

Given the convex hull $\{p_1, p_2, \dots, p_k\}$, where $p_i(u_i, v_i, \varphi(u_i, v_i))$, add one more point as infinity point (0, 0, -h), h is big enough to be above all other points. Each face f_{α} is dual to a point f_{α}^* ; each vertex v_i is dual to a supporting plane v_i^* .

Given a subject polygon S and a convex clipping polygon C, we use C to clip S. Each time, we use one edge e of C to cut off a corner of S.

 $Sutherland-Hodgman\ algorithm$

```
foreach Edge clipEdge in clipPolygon do
List inputList \leftarrow outputList;
outputList.clear();
foreach Edge [p_{k-1}, p_k] in inputList do
    Point q \leftarrow ComputeIntersection(p_{k-1}, p_k, clipEdge);
    if p_k inside clipEdge then
        if p_{k-1} not inside clipEdge then
            outputList.add(q);
        end
        outputList.add(p_k);
    end
    else if p_{k-1} inside clipEdge then
        outputList.add(q)
    end
end
```

Upper Envelope - Brenier Potential

Cell Clipping

图: Boundary cell clipping.

- 1. Compute the convex hull using Lawson edge flipping, add the infinity vertex (0, 0, -h); project the convex hull to power Delaunay triangulation \mathcal{T} ;
- Compute the upper envelope using Legendre dual algorithm and project to the power diagram D;
- 3. Clip the power cells using Sutherland-Hodgman algorithm;

Damping Algorithm

- 1. Initialize the step length λ ;
- 2. $\varphi \leftarrow \varphi + \lambda d;$
- 3. Compute the convex hull using Lawson edge flipping, add the infinity vertex (0, 0, -h); project the convex hull to power Delaunay triangulation \mathcal{T} ;
- 4. If the convex hull misses any vertex, then $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 2 and step 3;
- 5. Compute the upper envelope using Legendre dual algorithm, project to the power diagram \mathcal{D} ;
- 6. Clip the power cells using Sutherland-Hodgman algorithm;
- 7. If any power cell is empty, then $\lambda \leftarrow \frac{1}{2}\lambda$, repeat step 5 and step 6;

Newton's Method

- 1. Initialize ϕ as $\phi(u, v) = \frac{1}{2}(u^2 + v^2);$
- 2. Call the power diagram algorithm;
- 3. Compute the gradient ∇E , the target area minus the current power cell area;
- 4. Compute the Hessian matrix *H*, using the power diagram edge length;
- 5. Compute the update direction $Hd = \nabla E$;
- 6. Call the damping algorithm, set $\phi \leftarrow \phi + \lambda d$, such that ϕ is admissible;
- 7. Repeat step 2 through step 6, until the gradient is close to 0.

Transportation Map

图: The worst transportation map.

Instruction

- 1. 'DartLib' or 'MeshLib', a general purpose mesh library based on Dart data structure.
- 2. 'Eigen', numerical solver.
- 3. 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

Commands and Hot keys

- \blacktriangleright Command: -target target_mesh -source source_mesh
- ▶ '!': Newton's method
- ▶ 'm': Compute the mass center of power cells
- ▶ 'W': output the Legendre dual mesh and the optimal transportation map mesh
- ▶ 'L': Edit the lighting
- 'd': Show convex hull or upper envelope; power Delaunay or diagram
- ▶ 'g': Show 3D view or 2D view
- ▶ 'e': Show edges
- ▶ 'c': Show cell centers
- ▶ 'o': Take a snapshot

Compute the Power Delaunay and Power Diagram.

- 1. $CPDMesh :: _Lawson_edge_swap$ Lawson edge swap algorithm to compute convex hull u_h^* , Power Delaunay triangulation;
- 2. *CPDMesh* :: <u>Legendre_transform</u> Legendre dual transformation compute upper envelope u_h , Power voronoi diagram;
- 3. *CPDMesh* :: _*power_cell_clip* Clip power cells, based on Sutherland-Hodgman algorithm;

Compute the Optimal Mass Transportation Map.

- 1. *COMTMesh* :: _*update_direction* compute the update direction, based on Newton's method;
- 2. *COMTMesh* :: _*calculate_gradient* calculate the gradient of the Alexandrov energy;
- 3. *COMTMesh* :: _*calculate_hessian* calculate the Hessian matrix of the Alexandrov energy;
- 4. $COMTMesh :: _edge_weight$ calculate the edge weight

Compute the Optimal Mass Transportation Map.

- Implement Lawson's edge flipping algorithm to compute weighted Delaunay triangulation, *CPDMesh* :: _Lawson_edge_swap;
- 2. Implement Sutherland-Hodgman algorithm for convex polygon clipping, *Polygon2D*:: *Sutherland_Hodgman*;
- 3. Implement Computing the Wasserstein distance.

- 3rdparty/DartLib or 3rdparty/MeshLib, header files for mesh;
- MeshLib/algorithms/OMT, the header files for Power Diagram Mesh and Optimal Mass Transportation Map Mesh;
- ▶ OT/src, the source files for optimal transportation map;
- ► CMakeLists.txt, CMake configuration file;

Before you start, read README.md carefully, then go three the following procedures, step by step.

- 1. Install [CMake](https://cmake.org/download/).
- 2. Download the source code of the C++ framework.
- 3. Configure and generate the project for Visual Studio.
- 4. Open the .sln using Visual Studio, and complie the solution.
- 5. Finish your code in your IDE.
- 6. Run the executable program.

- 1. open a command window
- 2. cd ot-homework3_skeleton
- 3. mkdir build
- 4. cd build
- 5. cmake ..
- 6. open OTHomework.sln inside the build directory.

For more information, please contact gu@cs.stonybrook.edu

Thank You!