Assignment Four: Spherical Harmonic Map

David Gu

Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University

gu@cs.stonybrook.edu

August 4, 2020
Harmonic Maps
Figure: Harmonic map between topological disks.
Figure: Harmonic map between topological spheres.
Surface Double Covering Algorithm

Figure: Spherical harmonic map.
Surface Double Covering Algorithm

Figure: Spherical harmonic map.
Input: A topological disk \mathcal{M};
Output: A harmonic map $\varphi : \mathcal{M} \to \mathbb{D}^2$

1. Construct boundary map to the unit circle, $g : \partial \mathcal{M} \to S^1$, g should be a homeomorphism;
2. Compute the cotangent edge weight;
3. for each interior vertex $v_i \in \mathcal{M}$, compute Laplacian

$$\Delta \varphi(v_i) = \sum_{v_j \sim v_i} w_{ij}(\varphi(v_i) - \varphi(v_j)) = 0;$$

4. Solve the linear system, to obtain φ.
Computational Algorithm for Spherical Harmonic Map

Input: A genus zero closed mesh M;
Output: A spherical harmonic map $\varphi : M \to S^2$;

1. Compute Gauss map $\varphi : M \to S^2$, $\varphi(v) \gets \mathbf{n}(v)$;
2. Compute the cotangent edge weight, compute Laplacian
 \[
 \Delta \varphi(v_i) = \sum_{v_i \sim v_j} w_{ij}(\varphi(v_j) - \varphi(v_i)),
 \]
3. project the Laplacian to the tangent plane,
 \[
 D \varphi(v_i) = \Delta \varphi(v_i) - \langle \Delta \varphi(v_i), \varphi(v_i) \rangle \varphi(v_i)
 \]
4. for each vertex, $\varphi(v_i) \gets \varphi(v_i) - \lambda D \varphi(v_i)$;
5. compute the mass center $c = \sum_i A_i \varphi(v_i) / \sum_j A_j$; normalize $\varphi(v_i) \leftarrow (\varphi(v_i) - c) / |\varphi(v_i) - c|$;
6. Repeat step 2 through 5, until the Laplacian norm is less than ε.

David Gu (Stony Brook University)
Computational Conformal Geometry
August 4, 2020 8 / 16
Instruction
 Dependencies

1. ‘MeshLib‘, a mesh library based on halfedge data structure.
2. ‘freeglut‘, a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.
Directory Structure

- `spherical_harmonic_map/include`, the header files for Hodge decomposition;
- `spherical_harmonic_map/src`, the source files for Hodge decomposition algorithm.
- `data`, Some models.
- `CMakeLists.txt`, CMake configuration file.
- `resources`, Some resources needed.
- `3rdparty`, MeshLib and freeglut libraries.
Before you start, read README.md carefully, then go through the following procedures, step by step.

1. Install [CMake](https://cmake.org/download/).
2. Download the source code of the C++ framework.
3. Configure and generate the project for Visual Studio.
4. Open the .sln using Visual Studio, and compile the solution.
5. Finish your code in your IDE.
6. Run the executable program.
3. Configure and generate the project

1. open a command window
2. cd ccg_homework_skeleton
3. mkdir build
4. cd build
5. cmake ..
6. open CCGHomework.sln inside the build directory.
5. Finish your code in your IDE

- Modify

 double CSphericalHarmonicMap::step_one(int steps, double step_length)

1. compute vertex laplacian
2. get the normal component
3. get the tangent component
4. update u
5. normalize the vertex u() to the unit sphere
6. normalize the mapping, such that mass center is at the origin
7. compute the harmonic energy
5. Finish your code in your IDE

- Modify

  ```cpp
double CSphericalHarmonicMap::normalize()
```

1. compute the mass center of the image, using the vertex u() and vertex area();
2. move the mass center to the origin;
3. normalize vertex u() to be on the unit sphere.
Run the executable program

Command line:

```
spherical_harmonic_map.exe mesh.m
```

All the data files are in the data folder.