
Dynamic Path Reduction for
Software Model Checking

Zijiang Yang1, Bashar Al-Rawi2, Karem Sakallah2, Xiaowan Huang3, Scott
Smolka3, and Radu Grosu3

1 Western Michigan University, Kalamazoo, MI, USA
2 University of Michigan, Ann Arbor, MI, USA

3 Stony Brook University, Stony Book, NY, USA

Abstract. We present the new technique of dynamic path reduction
(DPR), which allows one to prune redundant paths from the state space
of a program under verification. DPR is a very general technique which
we consider here in the context of the bounded model checking of sequen-
tial programs with nondeterministic conditionals. The DPR approach is
based on the symbolic analysis of concrete executions. For each explored
execution path π that does not reach an abort statement, we repeat-
edly apply a weakest-precondition computation to accumulate the con-
straints associated with an infeasible sub-path derived from π by taking
the alternative branch to an if-then-else statement. We then use an SMT
solver to learn the minimally unsatisfiable core of these constraints. By
further learning the statements in π that are critical to the sub-path’s
infeasibility as well as the control-flow decisions that must be taken to
execute these statements, unexplored paths containing the same unsat-
isfiable core can be efficiently and dynamically pruned. Our preliminary
experimental results show that DPR can prune a significant percentage
of execution paths, a percentage that grows with the size of the instance
of the problem being considered.

1 Introduction

There are two approaches to software model checking. The first, as typified
by [2], applies traditional model-checking techniques [12, 10] to a finite-state
model automatically extracted from the software system in question. The use
of abstraction techniques [4, 9] leads to a model with more behaviors than the
original program and consequently an analysis that is conservative in nature.
This form of software model checking allows one to prove the absence of certain
types of errors without actually executing the program. Its success hinges on
recent advances in symbolic techniques. Performance can be further improved
by exploiting software-specific features [16, 18].

The second approach is based on the dynamic execution of the actual pro-
gram; see, for example, [7]. It differs from testing in that it explores exhaustively
the program’s state space. This approach allows for the detection of subtle im-
plementation errors that are usually missed by abstraction-based software model

checkers. In the case of concurrent systems, partial-order reduction [15, 13, 6] can
be used to reduce the size of the state space by exploiting the commutativity of
concurrently executed transitions that result in the same state when executed
in different orders.

In this paper, we present the new technique of dynamic path reduction (DPR),
which allows one to prune redundant paths from the state space of a program
under verification. DPR is a very general technique which we consider here in the
context of the bounded model checking of sequential programs with nondeter-
ministic conditionals. Such programs arise naturally as a byproduct of abstrac-
tion during verification as well as being inherent in nondeterministic program-
ming languages. Nondeterministic choice also arises in the modeling of random-
ized algorithms. The key idea behind DPR is to learn from each explored path
so that unexplored paths exhibiting the same behavior can be avoided (pruned).

To illustrate the DPR approach to model checking, consider the C program of
Figure 1(a). Its first two conditional statements are nondeterministic, denoted
by placing an asterisk in the condition position. The property we would like
to check is whether the program can reach the abort statement. The initial
values of variables x, y, z are 5, 8, 20, respectively. Suppose the first executed
path is π = 〈0, 1, 2, 5, 6, 7, 10, 13〉. Executing the program along this path avoids
the abort statement and ends with the halt statement. After executing this
path, most existing model checkers will backtrack to Line 6 and explore the
else-branch in the next execution. Since there are two nondeterministic choices
in the program, four executions are required to prove that it cannot be aborted.

This is where DPR comes into play. Analyzing the execution trace π allows us
to learn that the assignments x = 5 and x = 2*x falsify the predicate x>10 which
forces the third conditional to choose its else-branch. We also learn that none
of the assignments within the branches of the nondeterministic conditionals can
make the predicate true. This allows us to prune all the remaining paths from
the search space. A DPR-based model checker would therefore stop after the
first execution and report that abort is not reachable.

The rest of the paper is organized as follows. Section 2 presents our execution-
based, bounded model-checking algorithm with dynamic path reduction. Sec-
tion 3 discusses our space-efficient, symbolic representation of execution paths.
Section 4 contains our experimental results, while Section 5 considers related
work. Section 6 offers our concluding remarks and directions for future work.

2 DPR-Based Model Checking Algorithm

In this section, we present DPR-MC, our bounded model-checking algorithm with
dynamic path reduction. Our presentation is carried out in stages, starting with
a simplified but transparent version of the algorithm, and with each stage incre-
mentally improving the algorithm’s performance. The model-checking algorithm
we propose is tunable to run either as a randomized Las Vegas algorithm or as
a guided-search algorithm.

foo() {
0 x=5,y=8,z=10;
1 if (*)
2 y = y-1;
3 else
4 y = y+1;
5 x = 2*x;
6 if (*)
7 z = z-1;
8 else
9 z = z+1;
10 if (x>10)
11 abort;
12 else
13 halt;
}

foo SSA(){
0 x1=5,y1=8,z1=10;
1 if (*)
2 y2 = y1-1;
3 else
4 y3 = y1+1;
5 y4 = ϕ(y2,y3);
6 x2 = 2*x1;
7 if (*)
8 z2 = z1-1;
9 else
10 z3 = z1+1;
11 z4 = ϕ(z2,z3);
12 if (x2 >10)
13 abort;
14 else
15 halt;
}

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z2=z1-1 z3=z1+1

z4=ϕ(z2,z3)

haltabort

T E

T

T

E

E

x2>10

x1=5,y1=8,z1=20

Fig. 1. A sample C program (left), its SSA form (middle), and SSA graph representa-
tion (right).

As defined formally below, a k-oracle is a bit string of length k representing
a sequence of nondeterministic choices a program might make during execu-
tion. Suppose we want to perform bounded model checking on a program up to
search depth D, such that within this D-bounded search space, each execution
path contains at most k nondeterministic choices. In this case, the DPR-MC algo-
rithm repeats the following three steps until the entire D-bounded search space
has been explored: (1) Ask the constraint (SAT) solver to provide a k-oracle.
(2) Execute the program on that oracle; stop if an abort statement is reached.
(3) Use the constraint solver again to prune from the search space all paths that
are equivalent to the one just executed.

2.1 Global Search Algorithm

The core language we use for analysis is a subset of C, extended with one state-
ment type not present in C: nondeterministic conditionals. To simplify the anal-
ysis undertaken by DPR-MC, we use the static single assignment (SSA) represen-
tation of programs. For example, the SSA representation of the C program of
Figure 1 (left) is shown in Figure 1 (middle). By indexing (versioning) variables
and introducing the so-called ϕ function at join points, this intermediate repre-
sentation ensures that each variable is statically assigned only once. We leverage
the SSA representation to interface with the satisfiability modulo theory (SMT)
solver Yices [5]. In this context, every statement (excepting statements within
loops) can be conveniently represented as a predicate. Looping statements are
handled by unfolding them up so that every execution path has at most k non-
deterministic choices; i.e., a k-oracle is used to resolve the choices. We refer to
the SSA representation obtained after such a k-unfolding as the dynamic single
assignment (DSA) representation.

Suppose the program C to be analyzed has at most k nondeterministic con-
ditionals on every execution path. We call a resolution of these k conditionals
a k-oracle. Obviously, each k-oracle uniquely determines a finite concrete exe-
cution path of C. Let R be the set of all k-oracles (resolvents) of C. R can be
organized as a decision tree whose paths are k-oracles.

Algorithm 1 DPR-MC(Program C, int k)

1: R = all k-oracles in C;
2: while R 6= ∅ do
3: Remove an oracle R = 〈r1r2 . . . rk〉 from R;
4: ExecuteFollowOracle(R,R, k);
5: end while
6: exit(“No bug found up to oracle-depth k”);

Algorithm 1 is the main loop of our DPR-MC algorithm. It repeatedly removes a
k-oracle R from R and executes C as guided by R. The algorithm terminates
if: (1) execution reaches abort within ExecuteFollowOracle, indicating that a
bug is found; or (2) R becomes empty after all oracles have been explored, in
which case the program is bug-free to oracle-depth k.

Note that Algorithm 1 employs a global search strategy. If the oracle removal
is random, it corresponds to a randomized Las Vegas algorithm. If the oracle
removal is heuristic, it corresponds to a guided-search algorithm. Obviously, the
number of oracles is exponential in the depth k of the decision tree R. Hence,
the algorithm is unlikely to work for nontrivial programs. We subsequently shall
show how to efficiently store the decision tree and how to prune oracles by
learning from previous executions.

2.2 Weakest Precondition Computation

An execution path π = 〈s1, s2, . . . , sn〉 is a sequence of program statements,
where each si is either an assignment or a conditional. We write cT and cE
for the then and else branches respectively of a conditional statement c. For
brevity, we sometimes refer to an execution path simply as a “path”.

Definition 1. Let x be a variable, e an expression, c a Boolean expression, P
a predicate, and P [e/x] the simultaneous substitution of x with e in P . The
weakest precondition wp(π,P) of π with respect to P is defined inductively as
follows:

Assignment: wp(x = e,P) = P[e/x].
Conditional: wp(if(c)T ,P) = P∧ c; wp(if(c)E,P) = P ∧ ¬c.
Nondeterminism: wp(if(*)T ,P) = wp(if(*)E,P) = P .
Sequence: wp(s1; s2,P) = wp(s1, wp(s2, P)).

Given an execution path π = 〈s1, s2, . . . , sn〉, we use πi = si to denote the
i-th statement of π, and πi,j = si, . . . , sj to denote the segment of π between

i and j. Assume now that πn, the last statement of π, is either cT or cE . If
πn = cT , then it is impossible for any execution path with prefix π1,n−1 to take
the else-branch at πn. That is, any execution path that has ρ as a prefix, where
ρi = πi(1 ≤ i < n) and ρn 6= πn, is infeasible. Because of this, we say that ρ is
an infeasible sub-path.

Let ρ be an infeasible sub-path of length m where ρm is a conditional c. We
use wp(ρ) to denote wp(ρ1,m−1, c), and wp(ρ) = false as ρ is infeasible. According
to Definition 1, assuming that ρ contains t < m conditionals in addition to c, we
have:

wp(ρ) = c′ ∧ (c′1 ∧ c′2 . . . ∧ c′t) = false

where c′ is ρn transformed through transitive variable substitutions, and simi-
larly each c′l is a transformed deterministic predicate in sl: (cl)T/E (1 ≤ l ≤ t).
More formally, given a formula F , we use F ′ to denote the formula in wp that is
transformed from F . The definition is transitive in that both F ′ = F (e/v) and
F ′(e2/v2) are transformed formulae from F .

2.3 Learning From Infeasible Sub-paths

Upon encountering a new execution path, the DPR-MC algorithm collects informa-
tion about infeasible sub-paths at deterministic predicates by using the weakest
precondition computation presented in the previous section. We now analyze the
reasons behind the infeasibility of such paths in order to provide useful informa-
tion for pruning unexplored execution paths.

Since wp(ρ) is unsatisfiable, there must exist an unsatisfiable subformula
wpus(ρ) that consists of a subset of clauses {c′, c′1, c′2 . . . , c′t}.

Definition 2. A minimally unsatisfiable subformula of wp(ρ), denoted by mus(ρ),
is a subformula of wp(ρ) that becomes satisfiable whenever any of its clauses is
removed. A smallest cardinality MUS of wp(ρ), denoted by smus(ρ), is an MUS
such that for all mus(ρ), |smus(ρ)| ≤ |mus(ρ)|.

In general, any unexplored paths that contain mus(ρ) are infeasible and can
be pruned. wp(ρ) can have one or more MUSes; as a matter of succinctness, we
keep track of smus(ρ) for pruning purposes.

Next, we need to identify which statements are responsible for ρ’s infeasibility
and thus smus(ρ).

Definition 3. A transforming statement of a predicate c is an assignment state-
ment s: v = e such that variable v appears in the transitive support of c.

For example, the statement s1:x = y+1 is a transforming statement of the
condition c : (x > 0), since wp(s1, c) produces c′ : (y+1 > 0). Statement s2:y =
z*10 is also a transforming statement of c, since wp(s2, c′) produces (z ∗10+1 >
0). During weakest precondition computations, only assignment statements can
transform an existing conjunct c into a new conjunct c′. Branching statements
can only add new conjuncts to the existing formulae, but cannot transform
them. Given an execution path πi,j = si, . . . , sj , we use ts(πi,j , c) ⊆ {si, . . . , sj}
to denote the transforming statements for c.

Definition 4. We define the explanation of the infeasibility of ρ to be the set
of transforming statements explain(ρ) = {s | s ∈ ts(ρ, smus(ρ))}.

2.4 Pruning Unexplored Paths

In this section we use examples to illustrate how to prune the path search space
based on information obtained after learning.

The SSA form of the program of Figure 1 is represented graphically to its
right. Assume the first explored execution π (highlighted in the figure) takes the
then-branches at the two nondeterministic if statements. We would like to learn
from π to prove unexplored paths. In the example, π = 〈x1 = 5, y1 = 8, z1 =
20, ∗, y2 = y1 − 1, y4 = y2, x2 = 2x1, ∗, z2 = z1 − 1, z4 = z2,¬(x2 > 10), halt〉,
which implies the infeasible sub-path ρ = 〈x1 = 5, y1 = 8, z1 = 20, ∗, y2 = y1 −
1, y4 = y2, x2 = 2x1, ∗, z2 = z1 − 1, z4 = z2, x2 > 10〉. According to Definition 1,
we have:

wp(ρ) = (x1 = 5) ∧ (y1 = 8) ∧ (z1 = 20) ∧ (true) ∧ (true) ∧ (2x1 > 10) = false

The first three conjuncts come from the initial variable assignments and the next
two (true) come from the nondeterministic conditionals. The last conjunct 2x1 >
10 is due to the deterministic conditional x2 > 10 and the assignment x2 = 2x1.
With a decision procedure, we can decide smus(ρ) = (2x1 ≤ 10) ∧ (x1 = 5).
The explanation for ρ’s infeasibility is explain(ρ) = {x1 = 5, x2 = 2 ∗ x1}.
Therefore, we learned that any path containing these two assignments will not
satisfy x2 > 10; that is, any execution that contains explain(ρ) can only take
the else-branch to the conditional x2 > 10. Since all the four possible paths
contain explain(ρ), none can reach the abort statement, which requires a path
through the then-branch of the conditional x2 > 10. Therefore, with SMT-based
learning, a proof is obtained after only one execution.

A question that naturally arises from the example is what happens if a vari-
able assigned in explain(ρ) is subsequently reassigned? The answer is that if a
variable is reassigned at si, then si will be included in explain(ρ) if it is con-
sidered part of the explanation to ρ’s infeasibility. For example, consider the
program foo2 which is the same as program foo of Figure 1 except for an
additional assignment x = x + 1. The SSA form of foo2 and its graphical rep-
resentation is shown in Figure 2. Due to the new assignment x = x + 1 on
Line 11, we need to add x4 = ϕ(x2, x3) on Line 12 to decide which version of
x to use on Line 14. Assume the first execution, as highlighted in Figure 2, is
π2 = 〈0 : x1 = 5, y1 = 8, z1 = 10, 1T : ∗, 2 : y2 = y1 − 1, 5 : y4 = y2, 6 : x2 =
2x1, 7T : ∗, 8 : z2 = z1 − 1, 12 : x4 = x2, 13 : z4 = z2, 14E : ¬(x4 > 10), 15 : halt〉.
From this, we can infer the infeasible execution segment ρ2 = 〈0 : x1 = 5, y1 =
8, z1 = 10, 1T : ∗, 2 : y2 = y1 − 1, 5 : y4 = y2, 6 : x2 = 2x1, 7T : ∗, 8 : z2 =
z1 − 1, 12 : x4 = x2, 13 : z4 = z2, 14T : x4 > 10〉. Based on an analysis similar to
that used in the previous example, we have:

wp(ρ2) = ((x1 = 5)∧ (y1 = 8)∧ (z1 = 10)∧ (true)∧ (true)∧ (2x1 > 10)) = false

foo2 SSA(){
0 x1=5,y1=8,z1=10;
1 if (*)
2 y2 = y1-1;
3 else
4 y3 = y1+1;
5 y4 = ϕ(y2,y3);
6 x2 = 2*x1;
7 if (*)
8 z2 = z1-1;
9 else
10 z3 = z1+1;
11 x3= x2+1;
12 x4 = ϕ(x2,x3);
13 z4 = ϕ(z2,z3);
14 if (x4 >10)
15 abort;
16 else
17 halt;
}

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z2=z1-1
z3=z1+1

x4=ϕ(x2,x3)

T E

x2>10

x3=x2+1

z4=ϕ(z2,z3)

y2=y1-1 y3=y1+1

y4=ϕ(y2,y3)

x2=2*x1

z3=z1+1

x4=x3

x2>10

x3=x2+1

z4=z3

x1=5,y1=8,z1=20x1=5,y1=8,z1=20

haltabort
T E

haltabort
T E

T

T E

E

E

Fig. 2. A C program in SSA form (left), its graphical representation with a highlighted
execution path (middle), and the remaining paths after learning from the highlighted
path.

Although it results in the same smus(ρ2) = (2x1 ≤ 10) ∧ (x1 = 5) as smus(ρ1),
the explanation to smus(ρ2) is different: explain(ρ2) = {x1 = 5, x2 = 2x1, x4 =
x2}. As a result, we can prune fewer paths than in the previous example of
Figure 1. Figure 2(right) shows the remaining paths after pruning. Both of the
remaining paths take the else-branch at the second nondeterministic if state-
ment, which will go through x4 = x3. They cannot be pruned because neither
path contains the statement x4 = x2 of explain(ρ2).

2.5 Path Reduction Algorithm

Algorithm 2 gives the pseudo-code that our DPR-MC algorithm uses in order to
drive the execution of the program under verification along the path determined
by a given k-oracle R. If the current statement si is an abort statement (Lines
3-4), an execution with a bug is found and the algorithm terminates. If si is a
halt statement (Lines 5-6), the current execution is completed. An assignment is
performed if si is an assignment statement (Lines 7-8). If si is a nondeterministic
conditional (Lines 9-12), the algorithm checks if the threshold k has already been
reached. If not, the algorithm follows the branch specified by oracle R[j] and
increase the value of j by 1; otherwise the algorithm breaks from the loop. If
si is a deterministic conditional c (Lines 13-17), the value of c is computed and
the corresponding branch is taken. Meanwhile, SMT-based learning is performed
on the branch not taken, as shown in Algorithm 3, if the taken branch cannot
reach the abort statement. Finally, the completed execution is removed from
the unexplored oracle set (Line 20).

Algorithm 2 ExecuteFollowOracle(k-Oracle R, Set R, int k)

1: i = j = 0;
2: while true do
3: if si== abort then
4: exit(“report bug trace 〈s1, . . . , si〉”);
5: else if si == halt then
6: break;
7: else if si is an assignment then
8: Perform the assignment;
9: else if si is a nondeterministic conditional then

10: if j == k break;
11: follow oracle R[j];
12: j + +;
13: else if si is deterministic conditional c with value true then
14: LearnToPrune(〈s1, . . . , si−1,¬c〉, R) if then-branch cannot reach abort;
15: else if si is deterministic conditional c with value false then
16: LearnToPrune(〈s1, . . . , si−1, c〉, R) if else-branch cannot reach abort;
17: end if
18: i+ +;
19: end while
20: R = R− {R};

The SMT-based learning procedure is given in Algorithm 3. The meaning of,
and reason for, each statement, i.e., weakest-precondition computation, SMUS
and transforming statements, have been explained in previous sections.

Algorithm 3 LearnToPrune(InfeasibleSubPath ρ, Set R)

1: w = wp(ρ); // Perform weakest precondition computation
2: s = smus(w) // Compute smallest cardinality MUS
3: e = explain(s); // Obtain transforming statements
4: R = prune(R, e); //Remove all oracles in R that define paths containing e

3 Implicit Oracle Enumeration using SAT

One problem with Algorithm 1 is the need to save in R all k-oracles when model
checking commences, the number of which can be exponential in k. In order to
avoid this complexity, we show how Boolean formulae can be used to symbolically
represent k-oracles.

Our discussion of the symbolic representation of k-oracles will be centered
around loop-unrolled control flow graphs (CFGs), which can be viewed as di-
rected acyclic graphs whose nodes are program statements and whose edges
represent the control flow among statements. We shall assume that every loop-

unrolled CFG has a distinguished root node. The statement depth of a loop-
unrolled CFG is the maximum number of statements along any complete path
from the root. The oracle depth of a loop-unrolled CFG is the maximum number
of nondeterministic conditional nodes along any complete path from the root.

2

1

3 4

5 6

8 9

13

10

15

20

14

18 19

22

26

12

7

11

1716

21

b1

b2

b3

b4

24 25
23

Fig. 3. An example control flow graph.

Figure 3 depicts a typical loop-unrolled CFG, where each node in the CFG
has a unique index. Diamond-shaped nodes correspond to nondeterministic con-
ditionals and rectangles are used for other statement types. The statement depth
of this CFG is 10. As for its oracle depth, there are 7 nondeterministic condi-
tionals divided into 4 levels (indicated by dotted lines); i.e., its oracle depth
is 4.

To encode the choice made along a particular execution path at each level,
we introduce the Boolean variables b1, b2, b3 and b4, with positive literal bi indi-
cating the then-branch and negative literal ¬bi indicating the else-branch. For
example, path 〈1, 2, 4, 6, 9, 13, 19, 22, 25, 26〉 is captured by ¬b1 ∧ b2 ∧ b3 ∧ ¬b4.

In general, a loop-unrolled CFG will have k levels of nondeterministic con-
ditionals, and we will use k-oracles to explore its path space, with each k-oracle
represented as a bit vector of the form R = 〈b1, b2, . . . , bk〉. As such, the valua-
tion of Boolean variable bi indicates an oracle’s choice along an execution path
at level i, and we call bi an oracle choice variable (OCV). Such considerations
lead to a symbolic implementation of the oracle space in which we use Boolean
formulae over bi(1 ≤ i ≤ k) to encode k-oracles. For example, the Boolean
formula b1b2b3b4 + ¬b1b2¬b3 encodes two paths through the CFG of Figure 3:
〈1, 2, 3, 5, 7, 11, 16, 21, 24, 26〉 and 〈1, 2, 4, 6, 9, 14, 22, 25, 26〉. In order to use mod-
ern SAT solvers, we maintain such Boolean formulae in conjunctive normal form
(CNF).

Algorithm 4 presents a SAT-based implementation of Algorithm 1. It main-
tains a CNF B over k OCVs {b1, b2, . . . , bk}. Initially, B is a tautology; the while-
loop continues until B becomes unsatisfiable. Inside the while-loop, we first use
a SAT solver to find a k-oracle that is a solution of B, and then perform the

program execution determined by the oracle. Algorithm 4 is essentially the same
as Algorithm 1 except that: 1) oracle R and set R are represented symbolically
by b̂ and B, respectively; and 2) function calls to LearnToPrune (in algorithm
ExecuteFollowOracle) are replaced by function calls to SATLearnToPrune, whose
pseudo-code is given in Algorithm 5.

Algorithm 4 DPR-SATMC(Program C, int k)

1: Let bi(1 ≤ i ≤ k) be k OCV variables, where k is C’s oracle depth;
2: CNF B = true;
3: while B is satisfiable do
4: Obtain a k-oracle b̂ = 〈̂b1b̂2 . . . b̂k〉 which is a solution of B;

5: ExecuteFollowOracle(̂b,B, k);
6: end while
7: exit(“No bug found up to oracle-depth k”);

Let s be an assignment statement in an infeasible sub-path ρ. We define
OCVs to be the conjunction of those signed (positive or negative) OCVs within
whose scope s falls. Also, given ρ’s set of transforming statements explain(ρ) =
{s1, . . . , st}, OCV (explain(ρ)) = ∧t

i=1OCVsi
. Note that OCV (ρ) 6= false as all

statements in explain(ρ) are along a single path. Further note that explain(ρ)
and OCV (explain(ρ)) can be simultaneously computed with one traversal of ρ:
if a transforming statement s in explain(ρ) is within the scope of a nondeter-
ministic conditional, then the conditional’s associated OCV variable is in OCVs.

To illustrate these concepts, assume explain(ρ) = {1, 4, 22} in the loop-
unrolled CFG of Figure 3. Since node 1 can be reached from root node without
going through any conditional branches, OCV1 = true. Node 4 on the other hand
is within the scope of the else-branch of nondeterministic conditional node 2
and thus OCV4 = ¬b1. Similarly, OCV22 = ¬b1b2. Notice that the scopes of b3
and b4 close prior to node 22 and are therefore not included in OCV22. Finally,
OCV (ρ) = OCV1 ∧OCV4 ∧OCV22 = ¬b1b2.

Algorithm 5 is our SAT-based implementation of Algorithm 3. OCV (e) de-
termines the set of paths containing all statements in explain(ρ), and thus all
paths that can be pruned. Let OCV (e) = l1 ∧ l2 ∧ . . . ∧ lm, where li is a literal
denoting bi or ¬bi. Adding ¬OCV (e) = ¬l1∨¬l2∨ . . .∨¬lm to the CNF formula
B will prevent the SAT solver from returning any solution (k-oracle) that has
been pruned. We refer to ¬OCV (e) as a conflict clause.

Note that the added conflict clause may prune multiple oracles, including the
one just executed. Further note that when exploring a path by virtue of a given
k-oracle, not all OCVs may be executed. For example, if the k-oracle in question
is b1¬b2b3b4 in Figure 3, the actual execution path terminates after ¬b2. In this
case, the added conflict clause is (¬b1 ∨ b2) instead of (¬b1 ∨ b2 ∨ ¬b3 ∨ ¬b4).

To further illustrate Algorithms 4 and 5, consider once again the program
of Figure 1. Suppose that the first path π1 to be explored is the highlighted
one in the figure. In this case, the infeasible sub-path ρ1 to be considered is the

Algorithm 5 SATLearnToPrune(InfeasibleSubPath ρ, CNF B)
1: w = wp(ρ); // Perform weakest precondition computation
2: s = smus(w); // Compute smallest cardinality MUS
3: e = explain(s); // Obtain transforming statements
4: b = OCV (e); //Obtain OCV on which e depends
5: let b = l1 ∧ l2 ∧ . . . ∧ lm where li is a literal for bi or ¬bi;
6: B = B ∧ (¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lm);

same as π1 except that the then-branch of the final deterministic conditional is
taken leading to the abort statement. We then have that smus(ρ1) = (2x1 ≤
10) ∧ (x1 = 5) and the explanation for ρ1’s infeasibility is explain(ρ1) = {x1 =
5, x2 = 2 ∗ x1}. Moreover, OCV (e1) = true as neither of the statements in
e1 = explain(ρ) are in the scope of a nondeterministic conditional. The resulting
conflict clause is false and adding (conjoining) it to B renders B unsatisfiable;
i.e., all remaining paths can be pruned.

Consider next the program of Figure 2 and its highlighted execution π2.
As explained in Section 2, smus(ρ2) = smus(ρ1), where ρ2 is the infeasible sub-
path corresponding to π2. However, the explanation for smus(ρ2), explain(ρ2) =
{x1 = 5, x2 = 2x1, x4 = x2}, is different. Furthermore, OCV (e2) = b2, where
e2 = explain(ρ2), since the assignment x4 = x2 is within the scope of the then-
branch of the second nondeterministic conditional. We thus add conflict clause
¬b2 to B, which results in the two remaining paths after pruning illustrated in
Figure 2(right), both of which take the else-branch at the second nondetermin-
istic conditional.

Theorem 1. (Soundness and Completeness). Let C be a CFG that is loop-
unrolled to statement depth D, and let φ be a safety property, the violation of
which is represented by an abort statement in C. Then algorithm DPR-MC re-
ports that the abort statement is reachable if and only if C violates φ within
statement depth D.

4 Experimental Evaluation

In order to assess the effectiveness of the DPR technique in the context of
bounded model checking, we conducted several case studies involving well-known
randomized algorithms. All results were obtained on a PC with a 3 GHz Intel
Duo-Core processor with 4 GB of RAM running Fedora Core 7. We set a time
limit of 500 seconds for each program execution.

In the first case study, we implemented a randomized algorithm for the MAX-
3SAT problem. Given a 3-CNF formula (i.e., with at most 3 variables per clause),
MAX-3SAT finds an assignment that satisfies the largest number of clauses. Ob-
taining an exact solution to MAX-3SAT is NP-hard. A randomized approxima-
tion algorithm independently sets each variable to 1 with probability 0.5 and
to 0 with probability 0.5, and the number of satisfied clauses is then determined.

Table 1. Bounded model checking with DPR of Randomized MAX-3SAT.

vars clauses paths explored pruned time w DPR(s) time w/o DPR(s)

9 349 512 44 468 5.44 3.86
10 488 1024 264 760 13.77 7.61
11 660 2048 140 1908 9.67 15.58
12 867 4096 261 3835 14.53 30.59
13 1114 8192 1038 7154 49.61 70.10
14 1404 16384 965 15419 54.05 150.32
15 1740 32768 337 32431 25.58 300.80
16 2125 65536 2369 63167 49.32 Timeout
17 2564 131072 2024 129048 184.91 Timeout
18 3060 262144 1344 260800 175.34 Timeout
19 3615 524288 669 523619 110.14 Timeout

In our implementation, we inserted an unreachable abort statement; as such,
all paths have to be explored to prove the absence of any reachable abort state-
ment. Table 1 presents our experimental results for the randomized MAX-3SAT
algorithm. Each row of the table contains the data for a randomly generated
CNF instance, with Columns 1 and 2 listing the number of variables and clauses
in the instance, respectively. Columns 3-5 respectively show the total number of
execution paths, the number explored paths, and the number of pruned paths,
with the sum of the latter two equal to the former. Finally, Columns 6-7 present
the run time with DPR and the run time of executing all paths without DPR.
From these results, we can observe that DPR is able to prune a significant num-
ber of the possible execution paths. Furthermore, the larger the CNF instance,
the more effective dynamic path reduction is.

In our second case study, we implemented an algorithm that uses a Nondeter-
ministic Finite Automaton (NFA) to recognize regular expressions for floating-
point values of the form [+]?[0 − 9] + \.[0 − 9]+. We encoded the accept state
as an abort statement and verified whether it is reachable. Table 2 contains our
experimental results on nine input sentences, among which five are valid floating-
point expressions and four are not. Columns 1 and 2 give the length of the input

Table 2. Bounded model checking with DPR of NFA for floating-point expressions.

Benchmark With DPR Without DPR

length valid paths explored pruned time(s) explored time(s)

13 yes 8192 22 8166 0.707 2741 0.085
14 yes 16384 28 16356 0.845 10963 0.144
18 yes 262144 39 262105 2.312 175403 7.285
20 yes 1048576 29 1048542 4.183 350806 6.699
21 yes 2097152 26 2097097 4.202 175403 4.339
11 no 2048 15 2033 1.69 2048 10.027
13 no 4096 13 4083 0.52 4096 16.607
14 no 16384 8 16376 0.84 16384 53.358
20 no 1048576 28 1048548 3.32 - Timeout

and whether or not it is accepted by the NFA. Column 3 lists the total number
of execution paths Columns 4-6 contain the results using DPR, i.e. the number
explored paths, the number of pruned paths and the run time. Columns 7 and 8
list the number of explored paths and run time without DPR. Note that in the
case of a valid floating-point expression, the number of explored paths without
DPR may not be the same as the number of total paths since the accept state is
reached before exploring the remaining paths. As in the MAX-3SAT case study,
we can again observe a very high percentage of pruned paths, a percentage that
grows with the instance size.

5 Related Work

With dynamic path reduction, we perform symbolic analysis on program ex-
ecutions in order to learn and subsequently prune infeasible executions. Con-
colic testing and related approaches [8, 3, 11] also uses symbolic analysis of pro-
gram executions—in conjunction with random testing—to generate new test
inputs that can systematically direct program execution along alternative pro-
gram paths. While these approaches can handle nondeterminism by introducing
a Boolean input variable for each nondeterministic choice, they do not attempt
to learn and prune infeasible paths. In fact, these testing procedures generate
all possible paths and, for each such path, pass to a constraint solver the rele-
vant constraints to determine the path’s feasibility. Consequently, DPR can be
beneficially used to reduce the path space these procedures explore.

We use weakest-precondition and minimally-unsatisfiable-core computations
to identity interesting (transforming) statements along an execution path. Pro-
gram slicing [17] also attempts to identify interesting program statements. There
exists “precise” dynamic slicing algorithms that give the exact slice to any vari-
able in an execution path [1, 19]. Here we use an example to show that dynamic
slicing is less precise than DPR. Figure 4 shows a simple C program and its

1 read (x);
2 int y = 5;
3 int z = 3;
4 int w = 0;
5 if (x == 10)
6 w = w ∗ y;
7 else
8 w = w + z;
9 assert (w! = 0);

1

2

5

6

3

4 9

8

Fig. 4. A simple C program and its dependence graph.

dependence graph. The solid and dotted lines denote data and control depen-
dencies, respectively. The static slice with respect to w on Line 9 is obtained
by a forward traversal from Node 9 in the dependence graph: {1, 2, 3, 4, 5, 6, 8}.
Assume the user input value to x is 10, the execution path π = 〈1, 2, 3, 4, 5, 6, 9〉

will report an assertion failure on Line 9. A dynamic analysis based on the
dependence graph will give the “precise” slice that is responsible for the as-
sertion failure: {1, 2, 4, 5, 6}. The dynamic slice is more precise than static slice
because Line 8 is not in the execution and no statement is data- or control-
dependent on Line 3. Finally, in our approach, we have wp(π,w! = 0) ≡ (x =
10) ∧ (y = 5) ∧ (z = 3) ∧ (w = 0) ∧ (x = 10) ∧ (w ∗ y! = 0) = false. Apparently,
smus(π,w! = 0) ≡ (w = 0)∧(w∗y! = 0), and explain(π,w! = 0) = {4, 6}, which
is much smaller than the dynamic slice. The main reason that our approach is
more precise than dynamic slicing is that dynamic slicing ignores values, and in-
stead relies on analyzing the dependence graph. Although the dependence graph
captures the dependence relation among statements, it contains no information
about values and therefore cannot offer precise answer to questions involving
values. In order to address this problem, we use decision procedures that can
handle values. Since the pruning made possible by DPR is essential to its perfor-
mance, the learned core obtained after each explored path needs to be as small
as possible.

DPR achieves similar optimizations as non-chronological backtracking (NCB)
[14] used in modern SAT and SMT solvers. In case of a conflict during, normal
backtracking flips most recent open decision. However, such approach leads to
redundant search (the same conflict will happen) if the most recent open de-
cision does not cause the conflict. NCB avoids the redundant search by flips
the most recent open decision contributing to conflict. NCB is made possible
by maintaining a decision level for each variable and perform a learning when
conflict happens. On the other hand, our learning is performed at the program
language level. Although the objective (prune search space) is the same, the
DPR algorithms have to be completely re-designed.

6 Conclusions

We have presented the new technique of dynamic path reduction (DPR) for
software model checking. SMT-based learning techniques allow DPR to prune
infeasible execution paths while model checking sequential software systems
with nondeterministic conditionals. Our approach uses weakest-precondition and
minimally-unsatisfiable-core computations to reveal the interesting (transform-
ing) statements behind infeasible sub-paths. By determining the oracle control
variables associated with these statements, unexplored paths containing the same
unsatisfiable core can be efficiently and dynamically pruned. Our preliminary ex-
perimental results show that DPR can prune a significant percentage of execution
paths, a percentage that grows with the instance size.

The language we currently handle is a subset of C allowing only one pro-
cedure and assignments, loops and (and possibly nondeterministic) conditional
statements. There are no constraints placed on conditionals, but the constraint
solver is able to handle linear constraints only. While we can analyze certain
applications, future work will seek to extend the DPR technique to more general
programs, including those with input statements.

References

1. H. Agrawal and J. R. Horgan. Dynamic program slicing. In Proceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design and Implementation,
volume 25, pages 246–256, White Plains, NY, June 1990.

2. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 203–213, 2001.

3. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: automatically
generating inputs of death. In ACM conference on Computer and communications
security (CCS), 2006.

4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification, pages 154–169, 2000.

5. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for dpll(t).
In International Conference on Computer Aided Verification (CAV), 2006.

6. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, volume 1032 of LNCS. 1996.

7. P. Godefroid. Model checking for programming languages using VeriSoft. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 174–186, New York, NY, USA, 1997. ACM.

8. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random test-
ing. In ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI), 2005.

9. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Symposium on Principles of Programming Languages, pages 58–70, 2002.

10. G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279–295,
1997.

11. R. Majumdar and K. Sen. Hybrid concolic testing. In International Conference
on Software Engineering (ICSE), 2007.

12. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
MA, 1994.

13. D. Peled. All from one, one for all: on model checking using representatives. In
Computer Aided Verification (CAV’93), pages 409–423, 1993.

14. Joao P. Marques Silva and Karem A. Sakallah. GRASP—a new search algorithm
for satisfiability. In ICCAD ’96: Proceedings of the 1996 IEEE/ACM international
conference on Computer-aided design, pages 220–227, 1996.

15. A. Valmari. Stubborn sets for reduced state generation. In APN 90: Proceedings on
Advances in Petri nets 1990, pages 491–515, New York, NY, USA, 1991. Springer-
Verlag New York, Inc.

16. C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Disjunctive image computation
for software verfication. ACM Transactions on Design Automation of Electronic
Systems, 12(2), 2007.

17. M. Weiser. Program slicing. IEEE Transactions on Software Engineering (TSE),
(4), 1982.

18. Z. Yang, C. Wang, F. Ivancic, and A. Gupta. Mixed symbolic representations for
model checking software programs. In ACM/IEEE International Conference on
Formal Methods and Models for Codesign (Memocode’06), 2006.

19. X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. In
IEEE/ACM International Conference on Software Engineering, pages 319–329,
2003.

