
MOCHA: A Model Checking Tool that Exploits Design Structure

R. Alur† L. de Alfaro∗ R. Grosu‡ T.A. Henzinger∗ M. Kang† R.
Majumdar∗ F. Mang∗ C.M. Kirsch∗ B.Y. Wang†

∗ Department of Electrical Engineering and Computer Science, University of California, Berkeley
†Department of Computer and Information Science, University of Pennsylvania
‡Department of Computer Science, State University of New York, Stony Brook

1 INTRODUCTION
Model checking is emerging as a practical tool for automated
debugging of embedded software (see [7] for a survey, and
[12, 11] for sample model checkers, and [8] for applications
to software analysis). In model checking, a high-level de-
scription of a system is compared against a logical correct-
ness requirement to discover inconsistencies. Since model
checking is based on exhaustive state-space exploration, and
the size of the state space of a design grows exponentially
with the size of the description, scalability remains a chal-
lenge. The goal of our research is to develop techniques
for exploiting modular design structure during model check-
ing, and the model checker MOCHA is based on this theme of
exploiting modularity. Instead of manipulating unstructured
state-transition graphs, it supports the hierarchical modeling
framework of Reactive Modules [3]. The hierarchy is ex-
ploited by the tool in three ways. First, verification tasks
such as refinement checking can be decomposed into sub-
goals using assume-guarantee rules [10]. Second, instead of
traditional temporal logics such as CTL, it uses Alternating
Temporal Logic (ATL), a game-based temporal logic that is
designed to specify collaborative as well as adversarial inter-
actions between different components [4]. Third, the MOCHA

algorithms incorporate optimizations based on the hierarchi-
cal reduction of sequences of internal transitions [5].

MOCHA is a growing interactive software environment for
specification, simulation, and verification, and is intended
as a vehicle for the development of new verification algo-
rithms and approaches. MOCHA is available in two versions,
CMOCHA (Version 1.0.1) and JMOCHA (Version 2.0). This pa-
per describes JMOCHA (for an introduction to CMOCHA, see
[2]). Like its predecessor, JMOCHA offers the following:
• Support for modular specification and reasoning about

heterogeneous systems with both synchronous and
asynchronous components.

• System execution by randomized or manual trace gen-
eration.

• Requirement verification by model checking. MOCHA

supports both symbolic and enumerative search.
• Implementation verification by checking trace contain-

ment between implementation and specification mod-
ules. For decomposing proofs, MOCHA supports an
assume-guarantee principle.

JMOCHA is written in Java and uses native C-code BDD li-
braries from VIS [6]. It provides the following improve-
ments over CMOCHA:

• A new graphical user interface written in Java that
looks familiar to Windows/Java users.

• A new simulator with a graphical user interface that dis-
plays traces in a message sequence chart fashion.

• A proof manager for managing verification proofs such
as assume-guarantee proofs.

• An new enumerative checker for invariant and refine-
ment checking with optimizations such as hierarchical
reduction of unobservable steps.

• A new scripting language called SLANG for the rapid
and structured development of new verification algo-
rithms.

2 The Modeling Language
The language REACTIVE MODULES [3] is a modeling and
analysis language for heterogeneous concurrent systems
with synchronous and asynchronous components. As a mod-
eling language it supports high-level, partial system descrip-
tions, rapid prototyping, and simulation. As an analysis lan-
guage it allows the specification of requirements either in
temporal logic or as abstract modules. Finally, as a language
for concurrent systems, it facilitates a modular description of
the interactions among the components of a system.

The basic structuring units, or the molecules of a system,
are reactive modules. The modules have a well-defined in-
terface given by a set of external (or input) variables and a
set of interface (or output) variables. A module may also
have a set of private variables. All variables are typed, and
MOCHA supports a standard set of finite and infinite types,
such as booleans and integers. A module is built from atoms,
each grouping together a set of controlled (interface or pri-
vate) variables with exclusive updating rights. Updating is
defined by two nondeterministic guarded commands: an ini-
tialization command and an update command. In these com-
mands unprimed variables, such as x, refer to the old value
of the corresponding variable, and primed variables, such as
x′, refer to the new value of the corresponding variable. An
atom is said to await another atom if its initialization or up-
date commands refer to primed variables that are controlled

1

by the other atom. The variables change their values over
time in a sequence of rounds. The first round consists of the
execution of the initialization command of each atom, and
the subsequent rounds consist of the execution of the update
command of each atom, in an order consistent with the await
dependencies. A round of an atom is therefore a subround
of the module. If no guard of the update command is en-
abled, then the atom idles, i.e., the values of the variables do
not change. If the update command of an atom has a branch
with a true guard and no updating action, then it may at any
time either take a transition or idle. Such an atom is called
lazy, and is useful for modeling asynchronous interaction.

For example, consider the specification of a village tele-
phone system that contains four telephones. The specifica-
tion consists of two modules: the first one models the envi-
ronment, i.e., the users, and the second one models the sys-
tem. A phone is either on-hook or off-hook, and the module
UserSpec nondeterministically toggles at most one tele-
phone between on-hook and off-hook.

type hookType is {on, off}
module UserSpec is

interface h1,h2,h3,h4: hookType;
lazy atom ToggleHook

controls h1,h2,h3,h4
reads h1,h2,h3,h4
init
[] true -> h1’ := on; h2’ := on; ...

update
[] h1 = on -> h1’ := off;
[] h1 = off -> h1’ := on;
...

Modules can be composed if they have disjoint sets of in-
terface variables, and their union of atom sets does not
contain a circular await dependency. Given a specification
SystemSpec of the telephone system, specification mod-
ule Spec is defined as:

module Spec is UserSpec || SystemSpec

For encapsulation REACTIVE MODULES allows the hiding of
interface variables, and for instantiation it allows the renam-
ing of interface and external variables. Hiding and paral-
lel composition permit hierarchical descriptions of complex
systems.

3 The Graphical User Interface
As in modern Windows or Java tools, the interaction between
the user and JMOCHA is controlled by a graphical user inter-
face. The GUI consists of five menus, three tool bars, a desk-
top, and a status text panel. The menus are File, Edit,
Simulate, Check, and Options. The tool bars are as-
sociated with File Edit, Simulate, and Check. The
menu items and the tool bar buttons are activated/deactivated
in a way consistent with the state of the proof manager.

One may use JMOCHA as a syntax-directed editor window for
the REACTIVE MODULES language. One may open more than
one file and the labels associated to their windows allow to
conveniently switch from one window to another. One may

edit the files by using the menu items in the Edit menu or
the associated toolbar. One can cut and paste from one edi-
tor window into another editor window. The editor windows
highlight the REACTIVE MODULES keywords and comments.
One can enable/disable parsing on the fly and a pop-up win-
dow prompting the user with the allowed next tokens.

Once one has edited and saved a tree of REACTIVE MODULES

files one may simulate and model check them in the project
mode. In this mode the proof manager expands all import
declarations that include modules from other files, and calls
the parser and the type checker on the expanded code. If
there are no syntactic errors, it generates a proof context (or
state) that is displayed in a separate Project window that
appears on the left-hand side of the desktop, as shown in Fig-
ure 1. The project window displays the MOCHA proof con-
text in a convenient tree notation. Each node in the tree may
be expanded or collapsed by clicking on it. The proof con-
text consists of several subcontexts: types, modules,
formulas, and judgments. A selected module and judg-
ment in the project window may be simulated and verified,
respectively.

4 The Simulator
The behavior (executions) of a reactive system can be vi-
sualized in a message sequence charts (MSC) like fashion
by using the simulator. To run the simulator, the user se-
lects a module, the display parameters, and the submod-
ules/variables to be traced. For each selected variable, a ver-
tical line shows its evolution in time. The vertical lines are
split into segments, each corresponding to a discrete time
unit or equivalently, to a round of the associated module. The
value of a variable is displayed only when it changes. Click-
ing on a box, which displays a change, shows which other
variables (and values) contributed to the change. The same
format is used to display the counter-examples generated by
the model checkers during failed verification attempts.

Figure 1: The simulator

The simulator can be used in automatic or manual mode.
In automatic simulation, in each round, MOCHA chooses one

state randomly out of all the possible next states. One can
stop the simulation temporarily by clicking the pause button,
or permanently by clicking the stop button. In manual simu-
lation, at each step, the user is requested to choose one state
from the set of possible next states, both for the module and
for its environment.

5 The Invariant Checkers
JMOCHA allows the specification of requirements in a rich
temporal logic called alternating temporal logic (ATL) [4].
By far the most common requirements are invariants, and
thus it is of utmost importance to implement invariant check-
ing efficiently. Whith this in mind, JMOCHA provides both
fine-tuned enumerative and symbolic state search routines
for invariant checking. The enumerative, state-based al-
gorithms are often preferable for asynchronous systems;
the symbolic, decision-diagram based algorithms, for syn-
chronous systems. More general ATL formulas can be
checked by defining algorithms using the scripting SLANG,
as shown in Section 7. These algorithms can call on both
enumerative and symbolic search as subroutines.

Enumerative Invariant Checking
The enumerative checker uses the standard on-the-fly algo-
rithm for detecting violations of invariants starting from the
initial states. We have implemented various features and op-
timizations in the JMOCHA enumerative search engine. Each
state is stored as bit string to save space using compression,
as in SPIN [11]. Variables that are only awaited, but not
read by any atoms (e.g., the unlatched variables of combi-
national circuits) are not stored. For modules that consist of
lazy atoms only, JMOCHA provides a heuristic called hierar-
chical reduction to reduce search space [5]. The basic idea is
to merge several internal steps into one, and this is applied in
a hierarchical manner. For well-structured architectures such
as rings and trees, this leads to significant savings.

Symbolic Invariant Checking
While the enumerative checker works directly on the internal
representation generated by the parser, the symbolic checker
works on a multi-valued decision diagram (MDD) encoding
of state sets provided by the VIS C-package from Berke-
ley [6]. MDDs are a generalization of binary decision dia-
grams (BDDs) to enumerated datatypes. The checker con-
sists of two components: a model generator and an invariant
checker. The model generator produces an MDD represen-
tation of the transition relation and of the set of initial states.
The transition relation is naturally partitioned by the atoms
in a conjunctive form. The invariant checker uses an im-
age computation routine from VIS which has a very efficient
early quantification heuristic. While most of the symbolic
model checker is written in Java, it calls the VIS MDD rou-
tines, written in C, to construct and manipulate MDDs ef-
ficiently. A main objective of this release of the symbolic
model checker was to support bit vectors and arrays effi-
ciently.
6 The Refinement Checkers

Refinement checking gives users the possibility to verify if
a module (the implementation) refines another module (the
specification). Typically, the specification is a more abstract,
nondeterministic version of the implementation. Formally,
a module P refines module P ′, denoted by P � P ′, if the
traces of P are contained in the set of traces of P ′. Due
to the high computational complexity of checking trace con-
tainment, the refinement checkers in JMOCHA check if the
specification module simulates the implementation module
assuming that (1) the specification contains no private vari-
ables, and (2) all variables of the specification appear in the
implementation as well. In this case, simulation checking
reduces to checking a transition invariant: first, each ini-
tial state of the implementation must be an initial state of
the specification, and second, each reachable transition of of
the implementation must satisfy the transition relation of the
specification [10]. This can be done efficiently using either
enumerative or symbolic search.

For example, for the telephone system, one can write a more
refined module UserImp modeling the users, and the in-
tended refinement relation can be stated as

judgment J1 is UserImp < UserSpec

There are several ways to circumvent the restrictions (1)
and (2) about the specification variables. For example, one
can make all private specification variables become interface
variables. If a specification variable is not included in the
implementation, a witness module can be constructed to as-
sign values to the variable. The witness is in turn composed
with the implementation and checked against the specifica-
tion [10, 1].

Assume-Guarantee Reasoning

module Spec is UserSpec || SystemSpec
module Imp is UserImp || SystemImp
judgment J0 is SystemImp < SystemSpec
judgment J1 is UserImp < UserSpec
judgment J2 is Imp < Spec

The lines above define the specification module Spec and
the implementation module Imp as the parallel composi-
tion of UserSpec and SystemSpec and respectively of
UserImp and SystemImp. We wish to verify the judg-
ment J2. While this can be proved directly, it can also
be reduced to simpler proof obligations. Typical compo-
sitional rules allow this goal to be reduced to the sub-
goals J0 and J1 asserting component-wise refinements.
It turns out that the implementation module SystemImp
is not a refinement of SystemSpec in an unconstrained
environment (so J0 fails). However, SystemImp re-
fines SystemSpec in the more restrictive context given
by the abstract module UserSpec. Therefore one can
use the assume-guarantee rule [3, 10] which states that J2
holds provided (1) UserImp || SystemSpec refines
UserSpec and (2) UserSpec || SystemImp refines
SystemSpec.

Given a refinement judgment, the proof manager (or prover)
of JMOCHA suggests all decompositions that are possible ac-
cording to a built-in database of proof rules, which includes
the above assume-guarantee rule. Once a rule is selected, the
premises are added to the proof manager as new proof goals,
and they are displayed in the judgment browser. The user can
then apply either further decomposition rules or discharge
each proof obligation by invoking the refinement checker.

Figure 2: Proof manager and assume/guarantee reasoning

7 The Scripting Language SLANG

SLANG is a Scripting LANGuage for the verification of
REACTIVE MODULES, designed with the goals of rapid pro-
totyping of verification algorithms and automation of ver-
ification tasks. SLANG is a structured imperative language
with run-time type checking. Upon request, JMOCHA pro-
vides a window for the interactive input and execution of
SLANG commands. In addition to the usual datatypes, such
as integers, strings, and arrays, SLANG provides access to
the datatypes specific to JMOCHA, including module expres-
sions, logical expressions (such as invariants), MDDs, and
module variables. The set of predefined operators of SLANG

includes the usual arithmetic, logical, and string operators.
In addition, SLANG provides several predefined functions
that implement various model-checking tasks. For exam-
ple, if P is a module expression and φ is a predicate on
module variables, then the function create mdd(P,φ)
returns the MDD that defines the states satisfying φ in the
state space of P . For MDDs Φ, Φ1, Φ2, and for a module P ,
the available functions include and(Φ1, Φ2), or(Φ1, Φ2),
not(Φ), equal(Φ1, Φ2), init reg(P) (which returns
the MDD representing the initial states of P), pre(P,Φ)
and post(P,Φ) (which compute the MDDs representing
the successor and predecessor states of the set of states rep-
resented by Φ). Other functions include functions for check-
ing invariants and refinement relations. The usual control
constructs are available in SLANG, such as if-then-else and
while loops.

As an example of the capabilities of SLANG, the follow-
ing function backforth invcheck (M, phi) checks
whether the module M implements the invariant phi, by us-
ing a mix of forward reachability from the initial condition

and backward reachability from the complement of the in-
variant. The functions provided by SLANG are sufficient to
model check all ATL and µ-calculus requirements and to
compute state equivalences such as bisimilarity, over finite-
state as well as infinite-state systems (in the latter case, a
SLANG script may not terminate) [9].

def backforth_invcheck (M, phi) {
R_back := zeroMdd; R_forw := zeroMdd;
NR_back := not(phi); NR_forw := init_reg(M);
while (!equal (R_back, NR_back)

&& !equal (R_forw, NR_forw)
&& empty (and (NR_forw, NR_back))) {

R_forw := NR_forw;
NR_forw := or (NR_forw, post (M, NR_forw));
R_back := NR_back;
NR_back := or (NR_back, pre (M, NR_back));

}
return (empty (and (NR_forw, NR_back))); }

Acknowledgements
We thank Himyanshu Anand, Ben Horowitz, Franjo Ivancic,
Michael McDougall, Marius Minea, Oliver Moeller, Shaz Qadeer,
Sriram Rajamani, and Jean-Francois Raskin for their assistance in
the development of JMOCHA.

REFERENCES

[1] R. Alur, R. Grosu, and B.-Y. Wang. Automated refinement
checking for asynchronous processes. In Proc. 3rd FMCAD,
LNCS. Springer-Verlag, 2000.

[2] R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani,
and S. Tasiran. MOCHA: Modularity in model checking. In
Proc. 10th CAV, LNCS 1427, pages 516–520, 1998.

[3] R. Alur and T.A. Henzinger. Reactive modules. Formal Meth-
ods in System Design, 15(1):7–48, 1999.

[4] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time
temporal logic. In Proc. 38th FOCS, pages 100–109, 1997.

[5] R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model
checking. In Proc. 10th CONCUR, LNCS 1664, pages 98–
113, 1999.

[6] R. Brayton et al. VIS: A system for verification and synthesis.
In Proc. 8th CAV, LNCS 1102, pages 428–432, 1996.

[7] E.M. Clarke and R.P. Kurshan. Computer-aided verification.
IEEE Spectrum, 33(6):61–67, 1996.

[8] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting finite-
state models from Java source code. In Proc. 22nd ICSE,
pages 439–448, 2000.

[9] T.A. Henzinger and R. Majumdar. A classification of sym-
bolic transition systems. In Proc. 17th TACS, LNCS 1770,
pages 13–34, 2000.

[10] T.A. Henzinger, S. Qadeer, and S. Rajamani. You assume, we
guarantee: Methodology and case studies. In Proc. 10th CAV,
LNCS 1427, pages 521–525, 1998.

[11] G.J. Holzmann. The model checker SPIN. IEEE Trans. Soft-
ware Engineering, 23(5):279–295, 1997.

[12] K. McMillan. Symbolic model checking: An approach to the
state explosion problem. Kluwer Academic Publishers, 1993.

