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Abstract

We propose a new biological framework, spatial networks of hybrid input/output automata (SNHIOA), for
the efficient modeling and simulation of excitable-cell tissue. Within this framework, we view an excitable
tissue as a network of interacting cells disposed according to a 2D spatial lattice, with the electrical behavior
of a single cell modeled as a hybrid input/ouput automaton. To capture the phenomenon that the strength
of communication between automata depends on their relative positions within the lattice, we introduce a
new, weighted parallel composition operator to specify the influence of one automata over another.

The purpose of the SNHIOA model is to efficiently capture the spatiotemporal behavior of wave propagation
in 2D excitable media. To validate this claim, we show how SNHIOA can be used to model and capture
different spatiotemporal behavior of wave propagation in 2D isotropic cardiac tissue, including normal
planar wave propagation, spiral creation, the breakup of spirals into more complex (potentially lethal)
spatiotemporal patterns, and the recovery of the tissue to the rest via defibrillation.
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1 Introduction

Systems biology is a multidisciplinary field whose goal is to provide a systems-level
understanding of biological phenomena by uncovering their structure, dynamics
and control methods [19]. A main focus of systems biology is to devise math-
ematical or formal models that capture significant aspects of in vitro or in vivo
experimental data, while remaining amenable to both quantitative and qualitative
analysis. Currently, the most popular modeling approach is to use complex systems
of nonlinear differential equations, describing in great detail the underlying biologi-
cal phenomena. Equation-based models, however, are not particularly amenable to
formal analysis, and impose high computational demands on simulation, especially
in large-scale 2D and 3D networks. Simulation at the organ or even the cell level is
thus rendered impractical.

Considering this state of affairs, systems biology could greatly benefit from the
development of techniques that given a system of nonlinear differential equation,
(semi-automatically) constructs a more abstract model that preserves the properties
of interest. One promising approach is based on the use of Hybrid Automata [16,22]
as a modeling formalism for complex biological processes. Hybrid Automata (HA)
are an extension of finite automata that allows one to associate a continuous be-
havior with each state. They have been used as mathematical models for a variety
of embedded systems, including automated highway systems [10], air traffic man-
agement [20] and real-time circuits [1].

More recently, HA have been used to model the behavior of biological sys-
tems [2,3,13,23]. In particular, Ye et al. [23] demonstrated the feasibility of using
cycle linear hybrid automata (CLHA) to model the behavior of several representa-
tive excitable cells, basing their derivation on the biological interpretation of these
cells’ action potential. Note that the focus of this work is on using HA to model
the behavior of a single cell.

To model excitable tissue, one should take into account the behavior of a network
of spatially distributed components (cells), which have the ability to propagate
electrical signals without damping. An impulse over a certain threshold initiates
a wave of activity moving across the excitable tissue. As each cell undergoes an
excursion from its resting potential, it causes its neighbors to move over threshold
at a rate determined by the diffusion coefficient (a property of the tissue), the
distance from the stimulated cells, and the rate of rise of the excited cell.

In this paper, we introduce spatial networks of hybrid 1/0 automata (SNHIOA),
which extend CLHA with the concepts of space and synchronization based on shared
variables. Within the SNHIOA framework, we view an excitable tissue as a network
of interacting cells disposed according to a 2D spatial lattice, with the electrical
behavior of a single cell modeled as a (cycle-linear) hybrid input/ouput automaton.
To capture the phenomenon that the strength of communication between automata
depends on their relative positions within the lattice, we introduce a new, weighted
parallel composition operator to specify the influence of one automata over another.

The purpose of the SNHIOA model is to efficiently capture the spatiotemporal
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behavior of wave propagation in 2D excitable media. To validate this claim, we
show how SNHIOA can be used to model and capture different spatiotemporal be-
havior of wave propagation in 2D isotropic cardiac tissue, including normal planar
wave propagation, spiral creation, the breakup of spirals into more complex (poten-
tially lethal) spatiotemporal patterns, and the recovery of the tissue to the rest via
defibrillation.

The rest of this paper is organize as follows. Section 2 provides the biological
background on excitable cells. Section 3 discusses related work. Section 4 and 5
describe the HA model and its extension with I/O variables as advocated in [22].
Section 6 introduces the concept of a space lattice, while Section 7 extends HIOA
with the concept of space. Section 8 provides a model of an isotropic cardiac tissue
of neonatal rat using SNHIOA. Section 9 shows the results of the cardiac tissue
simulation. Section 10 offers our concluding remarks and directions for future work.

2 Biological Background

An excitable cell has the ability to propagate an electrical signal—known at the
cellular level as the Action Potential (AP)—to surrounding cells. An AP corre-
sponds to a change of potential across the cell membrane, and is caused by the flow
of ions between the inside and outside of the cell. The major ion species involved
in this process are sodium, potassium and calcium; they flow through multiple
voltage-gated ion channels as pore-forming proteins in the cell membrane. Excita-
tion disturbances can occur in the behavior of these ion channels at the cell level,
or in the propagation of the electrical waves at the cell-network level.

Generally, an AP is an externally triggered event: a cell fires an action potential
as an all-or-nothing response to a supra-threshold stimulus, and each AP follows the
same sequence of phases and maintains the same magnitude regardless of the applied
stimulus. During an AP, generally no re-excitation can occur. The early portion
of an AP is known as “absolute refractory period” due to its non-responsiveness
to further stimulation. The “relative refractory period” is the interval immediately
following during which an altered secondary excitation event is possible if the stimu-
lation strength or duration is raised. Figure 1 shows the shape of a neuron’s Action
Potential. Examples of excitable cells are neurons, cardiac myocytes and skeletal
muscle cells.

Despite differences in AP duration, morphology and underlying ion currents, the
following major AP phases can be identified across different species of excitable cells:
resting, rapid upstroke, early repolarization phase, plateau and late repolarization,
and final repolarization (identical to the resting phase due to the cyclic nature of
an AP). The resting state features a constant transmembrane potential (difference
between the inside and outside potential of the cell) that is about -80 mV for most
species of cardiac cells; i.e. the membrane is polarized at rest. During the AP
upstroke, the transmembrane potential rapidly changes, from negative to positive;
i.e. the membrane depolarizes. This is followed by an early repolarization phase.
A slower, plateau phase is present in most mammalian action potentials, during
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Fig. 1. Action Potential of a neuron

which calcium influx facilitates muscle contraction. After this phase, a faster final
repolarization brings the potential back to the resting state. Due to the universal
nature of these AP phases among species and regions, as shown in [24], it is possible
to use them as a guide in the construction of HA models.

Excitable-cell networks are important in the normal functioning and in the
pathophysiology of many biological processes. In cardiac cells, on each heart beat,
an electrical control signal is generated by the sinoatrial node, the heart’s internal
pacemaking region. Electrical waves then travel along a prescribed path, excit-
ing cells in atria and ventricles and assuring synchronous contractions. Of spe-
cial interest are cardiac arrhythmias: disruptions of the normal excitation pro-
cess due to faulty processes at the cellular level, single ion-channel level, or at
the level of cell-to-cell communication. The clinical manifestation is a rhythm
with altered frequency—tachycardia or bradycardia—or the appearance of multiple
frequencies—polymorphic Ventricular Tachycardia (VT)—with subsequent deterio-
ration to a chaotic signal—Ventricular Fibrillation (VF). VF [18] is a typically fatal
condition in which there is uncoordinated contraction of the cardiac muscle of the
ventricles in the heart. As a result, the heart fails to adequately pump blood, and
hypoxia may occur.

3 Related Work

An excitable tissue is generally modeled in terms of reaction-diffusion systems.
Thus, a typical continuous representation would involve partial differential equa-
tions (PDEs) for the diffusing species (typically the transmembrane potential), and
a system of nonlinear ordinary differential equations describing all other state vari-
able that are normally considered non-diffusing. These may include ion-channel
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gating variables and ion concentrations. The first mathematical model of ionic pro-
cesses that underly cell excitation was empirically developed in 1952 by Hodgkin
and Huxley (HH) for a squid giant axon [17]. This provided the basis for subse-
quent models of increasing complexity, using multiple continuous state variables
(voltage, ion-channel gates, ion concentrations) to describe APs in different cell
types [6,11,21]. Current models of cardiac cells include more than 20 such state vari-
ables and a large number of fitted parameters. Detailed models of cardiac excitation
are perceived as over-determined systems and, as such, make both qualitative—i.e.
checking general properties—and quantitative analysis—i.e. by simulation—at the
organ or even tissue level impractical.

At the opposite end of the spectrum, completely discrete models based on cel-
lular automata (CA) have emerged [8,12]. The first generation of CA models used
nearest-neighbor diffusion modeling (Neumann and Moore neighborhoods) and a
small number of few discrete states, resulting in unrealistic AP shape and wave
propagation. Second-generation CA models [12] focused on correct representation
of wavefront curvature effects by employing more complex neighborhood functions,
such as Gaussian, circular templates or randomized lattices. Furthermore, the tran-
sitions rules for the relaxation states were updated to reflect a higher threshold for
excitation and to effectively represent the relative and absolute refractory period.
The latest generation is exemplified by Barkley’s model [5], in which a standard
finite-difference method is used to calculate the diffusive term, but CA-like rules
govern the kinetics of the two model variables, with adjustable thresholds.

Recently, modified CA models have been used to study cardiac excitability and
for comparison with experimental data [8,9]. A body of literature provides clear
links between the classical continuous PDE representation and the more ad hoc
CA-based approach as an alternative description of reaction-diffusion systems. The
purely discrete nature of CA presents some difficulties in capturing subtle non-
stepwise features of excitation.

4 Hybrid Automata

In this section we briefly report some basic definitions—mostly taken from [22]—
that are useful to describe the discrete and continuous behavior of a system. For the
aims of this paper, we introduce the key notions of variables, static and dynamic
types for variables, and trajectories. More details can be found in [22].

We fix a time axis T which is the group (R, +), the real numbers with addition;
T20 is defined to be the set {t € T|t > 0}. If K C T and t € T, we define
K+t={t+t|t € J}. Similarly, for a function f with domain K, we define f + ¢
to be the function with domain K + ¢ and such that (f +¢)(¢) = f(¢’ —t), for each
t'e K +t.

Definition 4.1 (Variables and types for variables) Assume a universal set of vari-
ables V. A variable may represent either a location within a state (internal variable)
or a location where information flows from one component of the system to another
(external variable). For each v € V, we distinguish a (static) type, which represents
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the set of values it may take on, and a dynamic type, which represents the set of
trajectories v may follow. In more detail: 1) the (static) type of v, denoted by
type(v), is a nonempty set of values; 2) the dynamic type of v is the set of functions
from left-closed intervals of T to type(v) satisfying the following properties:

* (Closure under time shift) For each f € dtype(v) and t € T, f 4+t € dtype(v).

* (Closure under subinterval) For each f € dtype(v) and J C dom(f), f[J, the
restriction of f to the subinterval J, is in dtype(v).

* (Closure under pasting) Let fo, f1, f2,- .. a sequence of functions in dtype(v) such
that, for each ¢ > 0, f; not the final function of sequence implies dom(f;) right-
closed and max(dom(f;)) = min(dom(fi+1)). Then, the function f defined by
f(t) = fi(t), where i is the smallest index such that ¢ € dom(f;), is in dtype(v).

Definition 4.2 (Trajectories) Let V a set of variables. A wvaluation v for V is a
function that associate to each v € V' a value in type(v). We write val(V') to denote
the set of all valuations for V. Let J a left-closed interval of T with left end-point
equal to 0. A J-trajectory for V is a function 7 : J — wal(V') such that, for each
v eV, ] v e dtype(v) (i.e. the projection of 7 on the variable v is in the set of
the trajectories that v may follow). A trajectory for V is a J-trajectory, for any J.
The set of all possible trajectories for V' is denoted by trajs(V).

If 7 is a trajectory, then 7.ltime, the time limit of 7, is the supremum of dom(7).
Moreover we define the first evaluation of 7, 7.fval, to be 7(0) and, if 7 is closed
(meaning that its domain is a finite closed-interval), we define the last evaluation
of 7 to be 7(7.ltime).

Definition 4.3 A Hybrid automaton (HA for short, see [22]) is a tuple A =
(W, X,Q,0,E,H,D,T) where:

- W is a set of external variables and X is a set of internal variables; we assume
that W and X are disjoint from each other and write V=W U X.

Q Cwal(X) is a set of states and © C @ is a nonempty set of initial states.

- F and H are disjoint sets of external and internal actions, respectively. We
write A=FUH

- DCQxAxQ is aset of discrete transitions. We use x - 4 x’ as a shorthand
for (x,a,x’) € D. We say that the action a is enabled in x if there exists an x’
such that x =4 x'.

T is a set of trajectories for V' such that 7(¢)[X € Q for every 7 € 7 and

t € dom(7). Given a trajectory 7 € 7 we denote 7. fval[X by 7.fstate and, if
7 is closed, we denote 7.lval[ X by T.lstate.

We require that the set of trajectories 7 satisfies the following axioms:
T1 (Prefiz Closure) For every T € T and every 7/ < 7,7 € T.
T2 (Suffix Closure) For every 7 € T and every t € dom(1), T>t e 7.

T3 (Concatenation Closure) Let 79,71, T2, .. . be a sequence of trajectories in 7 such
that for every index i, 7;.lstate = 7;41.fstate. Then 7,™ 7~ 7,7 ... € 7.
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For our aims it suffices to only consider HA and pre-HIOA (see Definition 5.1)
with real-valued variables (i.e. for each v € V, type(v) = R).

Notation: Let 7 be a trajectory over some set of variables V and v € V. As in
[22], we sometimes use v as shorthand for the function 7 | v : dom(7). Similarly, we
can view any expression e containing variables from V' as a function with domain
dom(7). These conventions allow us to say that 7 satisfies the algebraic equation
v = e meaning that v(t) = e(t), for every t € dom(r). Similarly, if for every
t € dom(r), v(t) = v(0) + fg e(t')dt’, we can say that 7 satisfies the algebraic
equation v = e.

Definition 4.4 (Weighted Trajectories ) Let e be an expression containing vari-

ables from a universal set of variables V. Here, we assume V partitioned into
n

n + 1 > 2 disjoint subsets Vi, Va,...,V,,,V — Z, where Z = |J V;. For any index

i=1
i € [1,n], we denote with e; = e[V} the subexpression of e (if any) containing only

variables from V;. Moreover, we write e[ Z to denote the subexpression of e (if any)
containing only variables from V' — Z and (possibly) constant subterms. Finally,
let w = {wy,ws,...,w,} C R be a set of real-valued weights, where each w; is the
weight associated with the variables in V;. We define (w-e)[Z to be the expression
we obtain from e by replacing each subexpression e; = e[V; with w; - e;. More
formally:

(i) if e = e[Z (i.e. if e does not contain variables from Z),
(w-e)[Z=e
(ii) if e = ei, opo €iy OP1 - .. OPm—1 €i,,, Where ig, i1, ..., i, are indexes from [1,n],
(W-e)[Z = (wi, - eiy) opo (wi, - €i,) 0p1 - .. Opm—1 (Wi, - €,,)

(iii) if e = e, 0po€i, OP1 ... OPm—1 €;,, Opm €[ Z, where again ig,i1,...,%, are in-
dexes from [1,n],

(W-e)[Z = (wi, - €iy) 0po (Wiy - €i,) Op1 - - . Opm—1 (wi,, - €;,,) opm e[ Z

Finally, if 7 is a trajectory over V satisfying the equation v = e (0 = ¢e), we define the
weighted trajectory (w-7)[Z to be the trajectory over V that satisfies the algebraic
equation v = (w-e)[Z (0 = (w-e)[Z, respectively).

5 Hybrid Input/Output Automata
Definition 5.1 A pre-hybrid I/0 automaton (pre-HIOA for short, see [22]) is a

tuple A = (H,U,Y, I,0) where:
-H=W,X,Q,0,E,H,D,T) is an hybrid automaton.
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- U and Y partition W into input and output variables, respectively. Variables
in Z=XNY are called locally controlled. Again, we write V =W U X.

- I and O partition FE into input and output actions, respectively. Actions in
L = H NI are called locally controlled. Again, we write A= FE U H.

A hybrid 1/0 automaton (HIOA for short) is a pre-HIOA satisfying the following
additional axioms:

E1 (Input action enabling) For every z € Q and every a € I there exists x’ such
that x 5 x/.

E2 (Input trajectory enabling) For every x € @ and every v € trajs(U), there
exists 7 € trajs(V) such that 7. fstate = x, 7 | U < v and either (1) 7 | U = v
or (2) 7 is closed and some [ € L is enabled in 7. fstate

In [22], it has been proved that the parallel composition of two HIOA (or pre-
HIOA) is guaranteed to be a pre-HIOA, but property E2 is not necessarily preserved
by the parallel composition operator. Again in [22], it has been shown that to en-
sure the preservation of such a property some “strong compatibility” assumption is
needed. For the aims of this paper, it suffices to consider pre-HIOA and composition
of pre-HIOA.

5.1 Weighted Composition of Hybrid Input/Output Automata

In this subsection, we introduce a new operation of parallel composition for pre-
HIOA. Since a typical hybrid system consists of a collection of HIOA located in 2D
space, we first extend the binary parallel composition operator defined in [22] in
order to describe the behavior of a set {A; |7 € [1,n]} of HIOA running in parallel.
Moreover, since communication between components of such systems also depends
on their positions (meaning that flow of information between a given component and
its “neighbors” may be somehow influenced by their relative distance), the parallel
composition operator HwAi (Definition 5.2) uses a real-valued, weight function w
to specify the influence of communication between pairs of automata. We say that
two pre-HIOA A; and As are compatible if (1) HHNAs = HoNA; =0, XiNVy =
XoNVy =0 (ie. if Hy and Hs are compatible) and (2) Y1 NYs = O1 N Oy = 0.

Definition 5.2 (Weighted Composition of pre-HIOA) Let {A; |i € [1,n]} be a finite
set of pairwise compatible pre-HIOA and let w : [1,n] x [1,n] — R be a weight
function such that (i) w(i,i) = 0 for each i € [1,n] and (ii) w(i, j) = w(j,4) for each
i,7 € [1,n]. In the following, let w; denote the set of weights w; = {w(i,j)|j €
[1,n]}.

The weighted parallel composition Hw'Ai is the tuple A = (H,U,Y, I, O) where:

cY=UY,U=(UU)-Y, 0= O, I=(UJ L)-0
i=1 i=1 i=1 i=1
o If, for i € [1,n], the HA H; = (W;, X, Qi, 0y, E;, Hi, D;, T;), then H is the tuple
(W, X,Q,0,E,H,D,T) defined as follows:
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-W= U W; and X = U Xi;
P

- Q {X € val(X) |for each i € [1,n], x[X; € Q;};
= {x € Q| for each i € [1,n], x[X; € ©;};
- FE= U E; and H = U H;;

i=1
for each x,x' € Q and eacha € A=FEUH, x %4 x'iff, for each i € [1,n],
cither (1) a € A; and x[X; L4, X'[X; or (2) a ¢ A; and x[X; = X' [X;
7 Cwal(V) is given by 7 € 7 iff, for each i € [1,n], there exists 7; € 7; such
that 7 | V; = (WZTZ)[LQOEZ

The composed hybrid automaton H and its discrete transitions — 4 are built
starting from the hybrid automata H; and their discrete transitions — A, exactly
as in [22]. On the contrary, w.r.t. to [22], we provide a different rule for building
trajectories of the pre-HIOA ||wA¢. Intuitively speaking, a trajectory 7 € 7 is
obtained by combining weighted trajectories of its components in a such way that
the value of each variable v € I; N O (i.e. an input variable of a given A; that is
an output variable of some other component .4;) also depends on the weight w(z, j)
and, hence, on the distance between A; and A;.

6 Spatial Lattices in 2D

Each point in a polar coordinate system can be described with the two polar co-
ordinates, the radial coordinate r and the angular coordinate . The r coordinate
represents the radial distance from the pole, and the 6 coordinate represents the
counterclockwise angle from the 0 degree ray (sometimes called the polar axis),
known as the positive x-axis on the Cartesian coordinate plane.

Definition 6.1 We define a generic 2D spatial lattice as a function y(r,n) = S
such that:

® v R>0 x N — P(RZO X [07271'))
e r € Ryg is the minimum distance between a couple of points.
* n € N is the dimension of the lattice.

e S CRx|[0,27) is aset of coordinates identified by the lattice in a polar coordinate
system.

O
Definition 6.2 We define a square 2D spatial lattice as a function ¥ such that:

{(0,0)}u
{(r,01), (V2r,0:) |61 = k5,00 = (2k+ 1) |0 < k < 3} ifn=1

-0
=
E

Il

O

Y (r,n—1)U{(nr,k3)|0 <k < 3}U

U{(s, k3 £0;)|s=rViZ+n2 <nrtg(0;) =L,0<k<3}ifn>1
i=1
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O
Proposition 6.3 The cardinality of ¥ (r,n) is:

‘:l n
|7 ()| =9+ 8k=9+4(n*+n—2)=4n"+4n+1=(2n+1)
k=2

A
Definition 6.4 We define a triangular 2D spatial lattice as a function ¥ such that:

—~—

(0,0)}u

(r,0)|6=k%, 1<k <6} ifn=1
VAN

Y (rn) =979 (rn—1)U
{(s,0)|s=rvn?—In+12,0 =15 + k&, ifn>1

0<l<n0<k<5}

>

A
Proposition 6.5 The cardinality of 7V (r,n) is:

A n n
|V ()| =) 6k+1=6) k=3n"+3n+1
k=1 k=1

7 Spatial Network of Hybrid Input/Output Automata

A spatial network of HIOA is a set of HIOA running in parallel (by taking their
weighted composition) and placed in a 2D lattice.
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Definition 7.1 A spatial network of hybrid input/output automata is a tuple
(S,v, P, w) where:

o Sisaset {A; = (H;,U;, Y, 1;,0:) | i € [1,n]} a set of n > 2 mutual pairwise
compatible pre-HIOA. This a networks behaves as ||wA¢.

e ~ is a spatial lattice.

e A set of positions ' = {p;|i € [I,n]} in a polar coordinate system; each p; =
(si,0;) € = that represents the position in a 2D spatial of the automaton A4;.
Moreover, we assume that there exists nmax € N>g such that m = |y(r, max)|-

e w is weight function w : [1,n] x [1,n] — R such that (i) w(i,i) = 0 for each
i€ [1,n], (ii) w(i,j) = w(y,4) for each 7,5 € [1,n]. We can model the fact that
A; and A; are too far to influence each other by setting w(i, j) = w(j,i) = 0.

8 Modeling Cardiac Tissue with SNHIOA

In this section we provide a model, using SNHIOA, of a cardiac tissue behavior
assuming for ease an isotropic arrangements of the cells: this means that the diffu-
sion of electrical signal is uniform in all directions. In this model each single hybrid
automaton represents the behavior of the AP of a single cell. A Triangular lattice
has been chosen to mimic the isotropic arrangements. Input/output variables per-
mit the exchange of values between automata. A distance-based weight function
mediates this interaction.

Definition 8.1 Let r be the minimal distance between a pair of cells, n the lattice
dimension and D the diffusion constant. We can define an isotropic cardiac tissue,
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using SNHIOA, as a set of cells (myocytes) arranged in a triangular lattice %. Cells
interact through I/O variables mediated by an exponential distance-based function
Wd,,...» Which assigns a non-zero weight to each pair of cells within distance dy,qq of
each other:

. A -
Tissue = (Cells,” (r,n), p,wq,,..)
where:

JAN
- Cells = {Cell; = (AP;,U;,Y;, 1;, 0;) |i € [L,| 7 (r,n)[]}

—d(py,p;)

2
e dmaz M i G £ G A d(ps, ps) < dmas
0 if’i:j\/d(pi,pj) >dmax

- wdmaz (Z7 -]) =

-d:p x P = R,d(pi,p;) = \/(sicosh; — sjcosl;)2 + (sisinb; — sjsinf;)?
- I, = {stimulated;, stimulated;}
) A
- U; = {stimulusi™} U {(voltage?™)|k € [1,| ¥ (r,n)|], k # i}
- Y; = {voltage?*'}

AP; = (W3, X;,Q4, 04, E;, Hi, D;, T;) is the HA modeling the AP of a single cell
such that:

e W;=U;UY;,

o X = {ve, vy, vz, Be, By, By day Coy v, 1},

* (); is a subset of valuations of V; = W, U X;,
e B, =1;U0;

* H; = {upstroke, plateau, resting}

©; consists of one valuation which assigns 0 to v.,vy,v., the resting potential
constant (-80 mV for cardiac cell) to v , al to 3, all/ to By, al to ., 1 to ¢, and
0 to dg.

D — stimulated; , stimulated; ,
i {l‘ AP, T ¥ ———— AP, T, T
’ resting

x',x —— 4p, 2’} such that z, 2’ € X; and:

stimulated;

plateau

upstroke ’
AP; T, ——AP;

Ap,; ' performs the following updates 7.

UIZUvM:U//VR;dz:Lﬁw:O (1)

SR, 4p, o' performs the following updates:

dy =0, 8z = apf(n) if v < g(Vr) (2)

7 Here we use the standard convention that v denotes the value of the variable in the start state of a discrete
transition, and v’ denotes the value in the end state.
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. .
Lupstroke, Ap,; ' performs the following updates:

szoadﬂc:QBx:ang y:a?pﬂz:ag if v>g(Vr) (3)

] .
g Patear, Ap; @' performs the following updates:

¢z =0,d, = 0,0, = ai,ﬁy = ag,ﬁz = ai if v > h(Vo) (4)

p resting, Ap; @ performs the following updates:

sz17d:1::Oaﬁx:aif(:u),ﬁy:a;aﬁzzai if v <Vg (5)
where f(u) = 1+ 241,9(Ve) = Vi - (1 + 145 30, h(Vo) = Vo — 40,/71)
e Set 7; consists of all trajectories that satisfy:

15 ()| Sl |
Vo = Bate + a5 Z voltage" — v, Z Wappw (4, 7)) + dypstimulus;™ (6)
" k=1,k#i j=1
by = Byvy (7)
0, = Byv, (8)
U:Ux—l)y-f—vz (9)

8.1 Instantiating the cardiac tissue model

In this subsection, we instantiate the cardiac-tissue model of Definition 8.1 to the
neonatal rat (NNR) AP. We refer the reader to [24] for the details of the NNR CLHA
model. Figure 4 shows the AP waveform for a single NNR cell. All parameters used
are reported in Table 1 and are obtained using curve-fitting techniques. The HIOA
model chosen performs five actions: stimulated;, stimulated;, upstroke, plateau,
resting, which have the following biological explanations. Initially, the cell is in
the resting state. When (externally) stimulated with an action stimulated; the cell
becomes stimulated and updates its voltage adding the current stimulus according
to the Equations 1, 6.

Upon termination of the stimulation, via action stimulated;, with a sub-
threshold voltage (v < g(Vr)), the cell performs the variables updates according
to Equation 2 and returns back to resting state without firing AP. If the stimulus is
supra-threshold, i.e., (v > ¢g(Vr)) holds, the excited cell will generate an action po-
tential by progressing to the upstroke state and performing an upstroke action and
variables updates according to the Equation 3. This transition could be happen also
when the cell is in resting and the sum of the contribute of voltage of its neighbors
is supra-threshold. During the upstroke the cell enter in the “absolute refractory
period”, so d, and c, are setting to 0, avoiding any further stimulation. When the
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Ve | Vr | Vo al a al a? af/ a? ad oz,?y’

nw

1
Y

20 | 30 | 120 | -0.025 | -0.07 | -0.2 | 250 | 200 | 125 | -0.025 | -0.07 | -0.2

Table 1
Parameters definition for NNR model

voltage reaches an overshoot voltage (v > h(Vp)) the cell starts the repolarization
and performs a plateau action and variables updates according to the Equation 4.
Then the recovery course of the cell follows the transitions to resting state with an
action resting and performs variables updates according to the Equation 5 when
(% g VR.

stimulus |

NNR Original Model
»l \ NNR HA Model

wovovyvec BB, B0}

voltage!"

voltage (mv)

voltage " k#1i

-80, Th———

o 100 200 300 500 600 700 BOO

400
time (ms)

Fig. 4. Hybrid 1/O Automata representing the AP of a neonatal rat cardiac cell

9 Simulation Results

We have developed CellExcite [7], a simulation environment for excitable-cell net-
works ® . CellExcite allows the user to sketch a tissue of excitable cells, plan the
stimuli to be applied during simulation, and customize the arrangement of the cells
selecting the appropriate lattice. CellExcite adopts SNHIOA as the computational
model in order to efficiently capture both discrete and continuous excitable-cell be-
havior. Figure 5 shows the simulation results of a cardiac tissue of 400x400 cells
of a neonatal rat, stimulated three times during the simulation in different regions.
The results of this simulation demonstrate the feasibility of SNHIOA to capture
and mimic different spatiotemporal behavior of a wave propagation in 2D isotropic
cardiac tissue such as the normal propagation of a wave along the tissue (1-150
ms); the creation of dangerous spirals (200-250 ms); the break-up of such spirals
into more complex spatiotemporal patterns, meaning the transition to ventricular
fibrillation, a lethal type of arrhythmia (250-400 ms); the recovery of the tissue to
the rest with the destruction of all waves through an electrical shock, i.e. defibrilla-
tion (400-500 ms). Figure 6 shows the difference in wave propagation using a square
lattice (see the squarish wave) and using a triangular lattice (see the rounder wave).
The triangular lattice was found very suitable to represent the isotropic behavior of

8 The simulator is available at http://www.cs.sunysb.edu/~eha/download.htm
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a excitable tissue, but other lattices could also be designed to customize the specific
cells disposition.

@est

s)(vormal Wave Pr ion {2° Stimulus, Ventricular Fibrillation

)3 stimulus)(

Defibrillation

— |-
= -

mv

| 1
-80 -66 -52 -38 -24 -10 4 18 32 46 60

( Continuous i )

(2° sti s)(ormal Wave Pr ion (22 stimulus)( Ventricular Fibrillation J3e stimulus)( Defibrillation ]
1ms 50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms 400 ms 401 ms 425 ms 450 ms 500 ms
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<))
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Il Resting State [ | Stimulated State [l Upstroke State [] Plateau State

C i i J

Fig. 5. Snapshots during simulation of cardiac tissue stimulation using a Spatial Network of Hybrid 1/0
Automata

Wave propagation using a 2D square lattice Wave propagation using 2D triangular lattice

Fig. 6. Example of wave propagation using square or triangular lattices

10 Conclusions

In this paper we propose a new biological modeling framework based on Hybrid
I/O Automata, but extended with the concept of space. This approach was found
very suitable to better model the spatiotemporal behavior of electrical waves in
a 2D cardiac tissue. Our approach naturally evolved as an attempt to combine
the benefits of purely continuous PDE methods and computationally efficient CA
methods. Previous works [24,25] derived a cycle-linear hybrid automata (CLHA)
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for several representative excitable cells that approximates with reasonable accuracy
their electrical properties. This derivation was made firstly manually [24,25] and
then automatically [14] by learning the biological interpretation of their AP.

The term cycle was used to highlight their cyclic structure and the fact, while in
each cycle they exhibit linear dynamics, the coefficients of the corresponding linear
equations and mode-transition guards may vary in interesting ways from cycle to
cycle. The simulation of excitable cells using CLHA models exhibits [24] a nearly
eight-fold speed-up in a simulation of 400 by 400 cell network.

Furthermore models based on HA are amenable to formal analysis. Symbolic
reachability analysis is a well-established technique in the model checking of lin-
ear hybrid systems and are now supported by several tools such as d/dt [4] and
HyTech [15]. We are interested to extend these technique from linear to cycle linear
hybrid automata. The study of spatial properties of hybrid automata networks is
relative new. Following this direction the work in [13] performed automatic reach-
ability analysis on a HA model for the Delta-Notch signaling network.

In our case study, spatial and temporal properties could be i.e. the spiral detec-
tion, the presence or absence—a safety property—of a fatal arrhythmia as fibrilla-
tion. Predicting spirals in the pure continuous models is more complicated than use
a discrete structure given by the distribution of modes in a SNHIOA. To achieve
this goal, we are investigating some model analysis techniques that help us to pre-
vent the state-explosion problem during the model checking but able to capture the
spatial properties of interest.
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