
High-Confidence Operating Systems
�

Radu Grosu, Erez Zadok, Scott A. Smolka, Rance Cleaveland, and Yanhong A. Liu
Stony Brook University

1 Introduction

Operating systems (OSs) are among the most sophisti-
cated software systems in widespread use, and among
the most expensive and time-consuming to develop and
maintain. OS software must also be robust and depend-
able, since OS failures can result in system crashes that
corrupt user data, endanger human lives (cf. embedded
systems), or provide open avenues of attack for hackers
or even cyber-terrorists.

OSs present their designers with enormous develop-
ment challenges. On the one hand, many activities inside
an OS happen concurrently: caches are flushed period-
ically; processes and threads are stopped and restarted;
interrupts and other signals arrive at random times and
must be handled promptly; data can be transferred
through multiple channels (memory, DMA, I/O buses).
Concurrent processing introduces well-known difficul-
ties into the traditional code-test-debug paradigm, since
errors can be difficult to repeat owing to race conditions
between concurrent processes. On the other hand, de-
bugging even sequential OS modules poses difficulties,
since the OS’s closeness to the actual computing hard-
ware requires in situ testing.

It is also important that OS system-call interfaces be
well documented so that they may serve as useful design
guides for OS implementers and as interface definitions
for application developers. Man pages, currently the pri-
mary source of documentation for system-call interfaces,
are often incomplete, vague, ambiguous, and even incor-
rect. Another often under-appreciated aspect of OS soft-
ware is the profusion of different OSs in use, particularly
in the embedded-systems arena where OSs such as Vx-
Works or pSOS or (more often) proprietary ad hoc OSs
are deployed.

�

Appears in proceedings of the Tenth ACM SIGOPS European
Workshop (EW-2002).

The above observations highlight the great impact that
improved OS development techniques would have on all
enterprises that produce or use OS software. If man
pages could be guaranteed to be correct and complete; if
system calls could be certified to be free from deadlocks
and memory leaks; if causes of system crashes could
be quickly diagnosed; then the savings to the OS and
application-development communities would be enor-
mous. If this could also be accomplished while reducing
OS development costs, then the impact is even greater.
We refer to this ideal—better OSs at lower cost— as
High-Confidence Operating Systems (HCOS).

In this paper, we present an overview of our work on
bringing the HCOS concept to bear on the practice of
OS development. Section 2 presents the overall method-
ology we are pursuing, a central component of which is
the Concurrent Class Machines (CCM) modeling formal-
ism. Section 3 describes how we are using CCMS to
model system-call man pages. Section 4 discusses how
we verify our CCM models against different kinds of re-
quirements. Section 5 concludes with a status report.

In related work, efforts to validate OSs fall into three
main categories: verification techniques [3], compilation
techniques [4, 7], and external runtime testing [6]. The
references given are a sampling. The HCOS approach
focuses on the formal modeling of OS system calls and
their interfaces, and utilizes newly developed techniques
from all three categories.

2 Methodology

The organizing principle of our approach is that an ounce
of modeling is worth a pound of debugging. In particular,
we advocate the use of formal operational modeling as
a methodology that can fundamentally and dramatically
improve how OS software, and indeed any low-level sys-
tem software, is developed. We envision these models

1



being used throughout the OS development and deploy-
ment process, as active (i.e., executable) documentation
for designers and application developers; as mechani-
cally analyzable requirements and design artifacts; and
as bases for reliable implementations.

The specific modeling formalism we are using, con-
current class machines (CCMs) [5], extends basic finite-
state machines with features capturing a variety of
object-oriented (OO) concepts, including classes and in-
heritance, objects and object creation, method invocation
and exceptions, multithreading, guarded commands, and
abstract collection types. The CCM model builds on our
previous work in the formal modeling of hierarchic reac-
tive systems, e.g. [1], and provides an intuitive, graphical
notation for modeling system behavior at different levels
of abstraction. In contrast with existing OO design no-
tations, CCMs also possess a mathematically precise op-
erational semantics that defines the execution steps that
CCM models can engage in; this semantics makes CCM
models candidates for a variety of different mechanical
analyses. Figure 1 shows how CCMs provide a uniform
basis for requirements analysis, verification, and code
generation:

� Executable and analyzable man pages: CCMs
model system-call interfaces and system properties,
such as deadlock and livelock freedom. Unlike man
pages, the resulting specifications are graphical, ex-
ecutable, precise and unambiguous.

� Verifying models against requirements: Verifica-
tion techniques are used to check whether the CCMs
derived (via compilation) from system-call imple-
mentations correctly implement man-page-derived
system-call interface and requirements (required
properties) that are also given as CCMs.

� Models as system monitors: Automatic code gen-
eration based on CCMs is used to produce efficient
code for monitoring the runtime behavior of OS im-
plementations in order to detect and, in some cases
prevent, erroneous behavior.

A central idea in our approach is that of an instrumented
CCM, where a CCM describing the implementation of
an OS system call is combined with the CCM of the cor-
responding system-call interface or CCM of the require-
ments. Man-page CCMs can also be instrumented by
combining them with requirements CCMs they must ad-
here to.

3 Operational Modeling of Man Pages

The process of determining the exact behavior of a sys-
tem call begins with a careful reading of its documenta-
tion, including an inspection of the arguments that are
passed to the system call, its return values, and their
types. Man pages typically specify valid inputs and ex-
pected return values. The latter are divided into values
that indicate success and values that indicate failures, or
exceptions. Based on this information, an initial mock-
up of a CCM can be developed.
Figure 2 shows an example, the modeling of the creat
system call as a method of the FileSystem CCM. Let
us first describe the visual notation. A class machine is a
named rounded box that has several compartments: one
for attributes and one for each method. A method has an
entry point (hollow circle), several exit points (filled cir-
cles) and several exception points (filled diamonds). Exit
and exception points may be marked with an expression
denoting the return value. The entry point is connected to
the exit (and exception) points by transitions and method
invocations. A transition (shown as a labeled arrow) is
an atomic guarded assignment. A method invocation
(shown as a rounded box) has an entry point, an exit point
and several exception points. Exit and exception points
may be marked with variables to hold the return values.
Exceptions propagate by default to the enclosing levels.
A method may contain local variable declarations. As in
UML, an attribute or method marked with + is public.

The creat method takes as arguments a pathname
pn and a mode m, splits the first into a path � and a name
� , creates a new file with path � , name � and mode �
and returns its file descriptor � . If a file already exists at

� � , creat truncates it to zero bytes. However, the call
only works for regular files, not directories (for which
the user should use mkdir). We reflect this condition
in the CCM as follows: if the file name to be created al-
ready exists and the type of that file is dir, then exit this
system call with the error condition EISDIR; otherwise
continue to the next step in the CCM.

In cases where the man pages are insufficiently de-
tailed or known to be inaccurate, we inspect the actual
kernel sources at or near the entry point of that given sys-
tem call into the kernel. For example, the manual page
for the creat system call (on Red Hat Linux 7.1) does
not specify that it will return an ENOQUOTA (quota ex-
ceeded) error code if the user’s quota was exceeded when
trying to add the new file; or that it will return EIO (I/O
error) if a hardware failure occurred while trying to add
the new file’s entry to the on-disk directory. We found
these conditions by inspecting the kernel sources for a

2



Error

Instrumented OS Code

Man Pages

OS Sources

OS Requirements

report

Man Page CCMs

OS CCMs

Requirements CCMs

instrument

abstracterror

generatemodel

compile

fix fix
Abstract CCMs

Instrumented CCMs

check

simulate

monitor

Figure 1: HCOS methodology overview.

current process 

ENOQUOTAEROFS EIO

EACCES

ENAMETOOLONG EFAULT EMFILE

ENFILEEACCES ELOOP ENOSPCENOENT

EISDIR ETXTBSY

+creat(pn:Pathname, m:Mode):FileDesc throws Exception

+type:FSType; +size:long; +used:long

static FileSystem

lookup(pn)
(p,n,f) f=null

cp.addFD(f,m,w)
f d d

f!=null
creat(p,n,m)

f.type=’dir’

f.mode!=’x’ | cp.exec!=n

f.mode=’x’ & cp.exec=n

f.type!=’dir’

p:Path; n:Name; f:File; d: FileDesc; cp:Process = Task.cp

Figure 2: The CCM for the creat system call.

running version of Linux. Incorporating this behavior
into the CCM above is straightforward, and the result is
a more complete accounting of the behavior of creat
than is available from its man pages. The description is
also much more concise; instead of the several pages of
text used to document creat, the diagram fits onto less
than half a page.

CCM models have several benefits. In addition to their
clarity and conciseness, they are executable, which en-
ables application and OS developers to experiment with
system calls on different inputs to see how they behave.
CCMs also permit inter-system-call analyses in general,
and those involving concurrency in particular, to be rig-
orously studied. For example, suppose one process tries
to read a (shared-mapping) memory-mapped file, while
another process tries to write to that same file asyn-
chronously not using the mmap-interface. The OS must
carefully coordinate the transfer of (possibly cached)
data, lock pages and files, to ensure data coherency.
Moreover, this seldom-used combination of Unix fea-
tures should never result in a kernel crash. Whereas a
small file system tool named FSX [8], recently released
by Apple, can detect a few such anomalies, such tools
have to be written by hand. Our method allows such

anomalies to be systematically uncovered using fully au-
tomatic techniques that thoroughly search the state space
of a CCM.

4 Verifying Models Against Requirements

In Section 3 we discussed how to use CCMs to model
system-call interfaces. These models may be seen as
detailed specifications that implementations should ad-
here to. In addition, other, simpler system requirements
(e.g. “a file is locked before it is accessed”) may be en-
coded as CCMs that act as monitors, entering bad states
when an undesired system state is entered. Finally, de-
tailed code-level CCMs can be used faithfully to model
the actual behavior of a system call implementation, and
can be obtained via compilation.

Given these different levels of models, one would like
to check that they are in agreement, namely, that man-
page models agree with requirements, that code mod-
els satisfy requirements, and that code models match
man-page models. A traditional approach to handling
this question involves the use of a refinement relation to
check whether a given CCM refines (is faithful to) an-
other CCM. Our methodology uses a novel, albeit math-

3



ematically equivalent, alternative that relies on the use of
instrumented CCMs.

The basic idea behind this approach is the following.
Given a high-level CCM (e.g., man-page model) and a
lower-level one (e.g., code-level model), we use the for-
mer to track the execution of the latter. The state space
of the resulting instrumented CCM is then explored to
see if the wrapper ever enters a bad state (i.e., raises an
unintended exception); if so, an error trace leading from
the start state of the instrumented CCM is reported to
the user for debugging purposes. Essentially, the instru-
mented CCM checks that the CCM in question refines
its specification. The modularity property of refinement
checking allows such checks to be performed at the level
of component CCMs.

In order for the instrumented-CCM approach to veri-
fication to be practical, the state-explosion problem must
be overcome: the number of states to in the instrumented
CCM is likely to be intractably large. One approach to
coping with state explosion is to use abstractions to elim-
inate distinctions between data values and thus reduce
the number of distinct states. We are investigating us-
ing a combination of data and predicate abstraction [2]
to obtain good abstractions.

A well-known drawback of abstraction-based tech-
niques is the false-positive problem: a path to an error
state may exist in the abstracted system that is not possi-
ble in the concrete system, owing to the loss of too much
information in the abstracted conditional statements. To
combat this problem our method uses counter-examples
generated during reachability analysis to successively re-
fine the data abstractions used: see the directed edge
from “Instrumented CCMs” to “Error” in Figure 1. If
an error trace is detected in the abstracted CCM, the
trace is replayed on the unabstracted CCM to see if it
is feasible. If not, conditions on transitions are modified
to refine the abstracted CCM, increasing the size of its
state space but eliminating the possibility of the spuri-
ous trace. We are developing an efficient algorithm for
symbolically checking the feasibility of an error path in
the instrumented CCM and returning the corresponding
abstraction predicates if the path is not feasible.

We are also investigating the problem of construct-
ing a minimal instrumented CCM for a given specifica-
tion CCM and a corresponding implementation CCM.
The smaller the wrapper (instrumentation), the smaller
the overhead incurred during monitoring and verifica-
tion. Once a property has been verified, its wrapper can
be removed from the instrumented CCM and code, also
leading to reduced overhead.

5 Status

We are currently developing tool support for the CCM
modeling formalism with the goal of applying HCOS
techniques to several variants of Linux, including SMP,
Beowulf, and embedded Linux. To date, a prototype has
been implemented that consists of a visual front-end for
interactive specification using CCMs, and automatic gen-
eration of Java code for most CCM features. Other tools
developed for the analysis of non-CCM operational mod-
els are also being retargeted to CCMs.

References

[1] R. Alur, R. Grosu, and M. McDougall. Efficient reachabil-
ity analysis of hierarchical reactive machines. In Computer
Aided Verification, 12th International Conference, LNCS
1855, pages 280–295. Springer, 2000.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. In PLDI
2001, SIGPLAN Notices 36(5), pages 203–213, 2001.

[3] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach, C.S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from java source code. In Proceedings
of 22nd International Conference on Software Engineer-
ing, pages 439–448, 2000.

[4] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to In-
ferring Errors in Systems Code. In Proceedings of the
18th ACM Symposium on Operating System Principles
(SOSP 2001), Chateau Lake Louise, Banff, Canada, Oc-
tober 2001. ACM SIGOPS.

[5] R. Grosu, Y.A. Liu, S.A. Smolka, S.D. Stoller, and J. Yan.
Automated software engineering using concurrent class
machines. In Proceedings of ASE’01, the 16th IEEE Inter-
national Conference on Automated Software Engineering.
IEEE, 2001.

[6] A. Kolawa and A. Hicken. Insure++: A
Tool to Support Total Quality Software.
http://www.parasoft.com/insure/papers/tech.htm, March
2001.

[7] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. ERASER: A Dynamic Data Race Detector
for Multithreaded Programs. ACM Transactions on Com-
puter Systems, 15(4):391–411, 1997.

[8] A. Tevanian and C. Minshall. File System Exerciser.
http://www.codemonkey.org.uk/cruft/fsx-linux.c, 1991.

4


