
Visual Formalisms Revisited∗

R. Grosu, Gh. Stefănescu‡, M. Broy

Institut für Informatik, TU München, D-80290 München, Germany
‡Department of Informatics, Kyushu University 33, Fukuoka 812-81, Japan

email: grosu,broy@informatik.tu-muenchen.de, ghstef@i.kyushu-u.ac.jp

Abstract
The development of an interactive application is a

complex task that has to consider data, behavior, inter-
communication, architecture and distribution aspects
of the modeled system. In particular, it presupposes
the successful communication between the customer
and the software expert. To enhance this communica-
tion most modern software engineering methods rec-
ommend to specify the different aspects of a system by
visual formalisms.

In essence, visual specifications are directed graphs
that are interpreted in a particular way for each as-
pect of the system. They are also intended to be com-
positional. This means that, each node can itself be
a graph with a separate meaning. However, the lack
of a denotational model for hierarchical graphs often
leads to the loss of compositionality. This has severe
negative consequences in the development of realistic
applications.

In this paper we present a simple denotational
model (which is by definition compositional) for the
architecture and behavior aspects of a system. This
model is then used to give a semantics to almost all the
concepts occurring in ROOM. Our model also provides
a compositional semantics for or-states in statecharts.

1 Introduction
Recent advances in telecommunication and hardware
technology made distributed, interactive applications
into an important domain of concern of software con-
struction. The development of an interactive applica-
tion is, however, a complex task that has to consider
data, behavior, intercommunication, architecture and
distribution aspects of the modeled system. In par-
ticular, it presupposes the successful communication
between the customer and the software expert.

To enhance this communication, most modern soft-
ware engineering methods, such as Rhapsody [16],

∗This research was partially supported by the ESPRIT basic
research action 8533 NADA

ROOM [22], SDL [20] and UML [21], recommend
to specify the different aspects of a system by vi-
sual formalisms. In essence, all visual specifications
are directed graphs that are interpreted in a partic-
ular context. In the data context the nodes define
data-entities and the arcs define data relationships
(e.g. entity-relationships diagrams [11]). In the behav-
ior context the nodes define states and the arcs define
state transitions (e.g. statecharts [14], ROOM-charts
[22]). In the intercommunication context the nodes
define processes and the arcs define events (e.g. mes-
sage sequence charts [17]). In the architecture con-
text the nodes define components and the arcs define
data-flow paths (e.g. data-flow diagrams [25]). Finally,
in the distribution context the nodes define compo-
nents and computation resources and the arcs define
the placement of components on resources (e.g. UML
deployment diagrams).

All these visual specifications are intended to be
compositional, i.e., each node can be a graph with a
separate meaning. However, the lack of a denotational
model for hierarchical graphs often leads to the loss
of compositionality. This has severe negative conse-
quences in the development of realistic applications.

In this paper we present a simple denotational
model (which is by definition compositional) for the
architecture and behavior aspects of a system. This
model is then used to give a semantics to almost all the
concepts occurring in ROOM. Our model also provides
a compositional semantics for or-states in statecharts.
In comparison with the compositional semantics for
or-states given in [19], this semantics retains the full
power of the higraph semantics [15].

To better appreciate the importance of a compo-
sitional model, let us give a small example showing
the problems arising when using the hierarchical state-
chart notation.

A telephone switch (which resides in a telephone
exchange) is supposed to control the function of an
associated telephone. Its simplified overall behavior is

given in Figure 1. The state onHook consists of two
sub-states: idle and ring. Idle is responsible for call
initiation.

getNo conn

talk

idle

ringrtB

rtE rtB

offH

offH

onHook offHook

onH rtB

ok

ok

Figure 1: The telphone switch behavior

If the switch receives the signal off-hook offH while
it is in state idle, then it moves to the state getNo
and subsequently to conn and talk, if everything goes
right. If the switch receives the signal ring-tone-begin
rtB from another switch while it is in the state idle,
then it moves to the state ring. Further signals rtB
from another switch leave the switch in ring. The
receipt of the signal ring-tone-end rtE from the origi-
nal switch determines the switch to move back to the
state idle. However, the receipt of the signal offH ini-
tiates a talking session by moving the control to the
state talk. At any time, if the switch is in the state
offHook and it receives the signal on-hook onH, then
it moves back to the state idle. Moreover, any sig-
nal rtB received by the switch while it is in the state
offHook leaves the state unchanged.

The problem with this hierarchical diagram is that
the transitions labeled by offH and onH connect states
inside onHook and offHook. If we want to reason in a
compositional way, for instance, if we want to hide the
states inside these two composed states, we loose the
starting and the ending points of the corresponding
transitions.

offHook
offH

offH

rtB

onHook

onH

Figure 2: The switch behavior with stubs

A single transition labeled by offH and connecting
the composed states onHook and offHook is clearly
undesirable, because the behavior associated to the
original transitions is definitely different. Moreover,
a transition labeled by onH and connecting the com-
posed states offHook and onHook is also problem-
atic without some default assumptions, because the
original transition ended in a particular sub-state of
onHook, namely idle. As a consequence, one either
draws the diagram as shown above, or uses a patch,
the so called stubs. With stubs, the top level diagram
looks as shown in Figure 2. The semantics of these

stubs is, however, not clearly defined. Moreover, in
this case we have a new kind of nodes, the stubs, and
two new kinds of arcs, arcs connecting stubs and arcs
connecting states and stubs.

The main problem with this notation is the absence
of a clearly defined interface notion. Using a graph for-
malism that explicitly supports interfaces, stubs get a
very natural interpretation. They are interface points.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe our graph formalism in an abstract
setting. This formalism is then instantiated to the
architecture and to the behavior aspects in Sections 4
and 5. The instantiation is guided by the computation
model described in Section 3. Finally in Section 6 we
summarize the results of this paper and relate them
to the literature. To introduce and explain our for-
malism in an intuitive way we use a running example
throughout the paper: the specification of a telephone
exchange. The paper also contains two appendices
giving an additive and a multiplicative interpretation
of graphs.

2 Hierarchical Graphs

A hierarchical graph consists of a set of nodes con-
nected by a set of arcs. For each node, the incoming
and the outgoing arcs define the node’s interface. In
general the arcs have associated some type informa-
tion.

Suppose T is a set of type names and D is a type
function mapping each name t ∈ T to an associated
domain of valuesDt. Since we want to speak about in-
coming and outgoing arcs collectively we assume given
a binary (monoidal) operation �, with neutral element
e, both on type names and on the corresponding do-
mains. For types, we obtain the set of terms defined
by the following grammar:

a ::= t ∈ T | e | a � a | (a)

The � operation on domains is assumed to be compat-
ible with the � operation on type terms, hence:

Da�b = Da � Db Da�e = De�a = Da

Now a node N with incoming arcs that collectively
have type a and outgoing arcs that collectively have
type b can be interpreted as a relation N ⊆ Da ×Db.
Visually, this is represented by a box labeled by N and
with an incoming arrow labeled by a and an outgoing
arrow labeled by b. We writeN : a → b. If we define |t|
as the number of names occurring in the term t, then
|a| gives the number of incoming arcs and |b| gives the
number of outgoing arcs of N .

Operators on nodes. In order to form graphs, we
put nodes one next to another and interconnect them
by using the following operators on nodes: star com-
position, sequential composition and feedback. Their
visual representation is given in Figure 3.

1b b2

N2N1 N1 N2

a cb
N

c
a

b

a2a1

sequential feedback

Figure 3: The composition operators

star

The star composition is achieved by extending � to an
operation over nodes. Given N1 : a1 → b1 and N2 :
a2 → b2 we define N1�N2 to be of type a1�a2 → b1�b2.

The sequential composition corresponds to the
usual composition of relations. Given N1 : a → b
and N2 : b → c we define N1 ; N2 to be of type a → c.

The feedback operation allows to connect the out-
put of a node to the input of the same node, if both
have the same type. Given N : a � c → b � c we define
N↑c

� to be of type a → b.

a

a

a

a a

a a

a a b

b a

identity identification ramification transposition

Figure 4: The connectors

Operators on arcs. Beside operators on nodes, we
also need some operators on arcs, that we call connec-
tors. We consider the following connectors: identity,
identification, ramification and transposition. Their
visual representation is given in Figure 4.

The identity connector Ia simply copies its input to
the output. Hence, it has the type a → a.

The binary identification connector ∨a joins two
inputs together. Hence ∨a has the type a � a → a.
This operator is naturally extended to k inputs. For
k ≥ 1 it is written ∨k

a. For k = 0 it is written either

a or ∨0

a.
The binary ramification connector ∧a distributes

the input information on two outputs. Hence ∧a has
the type a → a�a. This operator is naturally extended
to k outputs. For k ≥ 1 it is written ∧a

k. For k = 0 it
is written ⊥a or ∧a

0 .
Finally the transposition connector aXb exchanges

the inputs. Hence aXb has the type a � b → b � a

Symmetric feedback. Using the above basic oper-
ators and connectors one can define, as shown in Fig-

ure 5, left, a derived composition operator, the sym-
metric feedback. If N : a�c → b�d and M : d�e → c�f
then N�M has type a � e → b � f . Its simplified vi-
sual representation is given in Figure 5, right. The
formal definition corresponds one to one to the visual
representation in Figure 5, left:

N�M=(((Ia�exc�d);(N�M);(Ib�d�cxf);(Ib�f �
dxc))↑d

�)↑c
�

The symmetric feedback operator often simplifies both
the visual notation and the associated graph expres-
sion. Moreover, it plays a central role in Abramski’s
semantics of interaction [2, 1].

Figure 5: The symmetric feedback

a

a

b

b

a

b

NN
d

e

e

d

d
dc

c

c

c f

f

e

f

c

d

d

c
M M

To be a precise formalization of graphs, the above
basic operators and connectors have to satisfy a set
of laws, which intuitively express our visual under-
standing of graphs. These laws correspond to symmet-
ric monoidal categories with feedback enriched with
branching constants, see e.g. [23]1. The very basic set-
ting without branching constants, but extended from
symmetric to balanced categories is given in [18]. A
category obeying these laws is called a trace monoidal
category there. Such a category also contains asso-
ciativity isomorphisms for �. To simplify notation,
they are never written explicitly and assumed present,
when necessary.

In this work we are interested in two particular in-
terpretations for � that are highly relevant in com-
puter science and satisfy the graph laws: the additive
interpretation and the multiplicative interpretation2.
The additive interpretation. This interpretation
corresponds to control-flow in sequential programs as
follows. At any moment of time, the control resides
in exactly one node. The node receives the control on
one of its disjoint entry points and gives the control
back on one of its disjoint exit points. The arcs of the
graph then forward the control to another node. The
intended disjointness of nodes, entry/exit points and
branches of the connectors is obtained by interpret-
ing � by the disjoint sum + and by defining the other

1The basic laws were given by Stefanescu (1986) and were
extended to various branching constants by Bergstra, Cazanescu
and Stefanescu.

2They are sometimes called the temporal and the spatial
interpretation respectively.

operators and connectors consistently with this inter-
pretation (see Appendix A). The additive connectors
are written as Ia, k>•a, a•<k and b

a/\.
The multiplicative interpretation. This interpre-
tation corresponds to data-flow in parallel programs
as follows. At any moment of time, all nodes of the
graph are active and computing the output data based
on the input data. A node receives the input data
along a tuple of input channels and sends the com-
puted data along a tuple of output channels. The arcs
of the graph, i.e., the channels, forward the data to the
other nodes in the graph. The intended parallelism of
nodes, input/output channels and branches of the con-
nectors is obtained by interpreting � by the product
× and by defining the other operators and connectors
consistently with this interpretation (see Appendix B).
The multiplicative connectors are written as Ia, ◦∨k

a,
◦∧a

k

and aXb.
Both the additive and the multiplicative interpre-

tations were already studied in isolation by the au-
thors, e.g. in [6, 8, 10, 12, 13, 23]. and also by other
researchers like Abramski, Bartha, Bergstra, Bloom,
Cazanescu, Elgot, Esik, Joyal, Milner, Stark, Street,
Verity etc.

The combination of data-flow networks with state-
transition diagrams was also studied e.g. in [7, 9].
However, the way we combine the additive and the
multiplicative interpretations in this paper to obtain
a state-based description of reactive systems is new
and it is guided by the computation model presented
in the next section.

3 The Computation Model
We model an interactive system by a network of
autonomous components that communicate time-
synchronously via directed channels (Figure 6, left).
Time synchrony is achieved by using a global clock .

A component is modeled by a Moore-machine (Fig-
ure 6, right). This machine consists of three parts: a
combinational part, a register and a feedback loop.

1Cmp Cmpn

InI1

OnO1

...

...
∆s

Figure 6: The Moore-machine computation model

Com

Out
O

I S

clk

The combinational part. The combinational part
consists of two elements: Com and Out. Both have no
memory. Com is concerned exclusively with control.

It instantaneously and (possibly) nondeterministically
maps the current state and the current input to the
next state. If S is the set of states and I is the set of
inputs then Com is a relation,

Com ∈ I × S → P(S)
which is total, i.e., Com(i, s) �= ∅, for all s, i. To em-
phasize input/output and totality, we write the rela-
tion in a functional style. In Section 5 we define Com
by an additive control-flow graph with nodes of the
form N ⊆ (I ×Sa)×Sb where a and b are sum terms.
The only apparent mismatch of this additive interpre-
tation with the abstract graph-definition is the addi-
tional input component I. However, by considering
that I is the same for all the nodes representing the
combinational part, the extension to relations of this
type is trivial. Note that in contrast to state transi-
tion diagrams, our control-flow graphs model instan-
taneous computation.

The output relation Out ∈ S → P(O) is usually
a function that (instantaneously) projects the current
state to the component’s output interface.
The component. The register ∆s and the feedback
loop model the memory, i.e., they add the temporal di-
mension. As long as the global clock does not tick, the
current state, input and output remain stable. This
leaves enough time for the combinational part to per-
form its computation. Moreover, it assures a stable
input for the components receiving the outputs of this
component. The arrival of a clock-tick clk updates the
current state and input and a new computation cycle
begins.

Associating a natural number with each computa-
tion cycle and assuming that a component never stops,
the input and the output of the component are infinite
sequences in IN andON respectively, which we call the
input and the output histories of the component.

For any initial state, we formally define a compo-
nent Cmp as a total relation between its input and
output communication histories. As before, to empha-
size input/output and totality, we write this relation
in functional notation. Let us define the timed exten-
sion R† of a combinational relation R and the delay
relation ∆s (the register) as follows:

∆s(x) = {y | y(0) = s ∧ ∀t > 0 : y(t) = x(t − 1)}
R†(x) = {y | ∀t : y(t) ∈ R(x(t))}

Then using the multiplicative graph-operators, ∆s,
Com† and Out† the formal definition of Cmp corre-
sponds one-to-one to the Figure Figure 6, right:

Cmp ∈ S → IN → P(ON)

Cmp(s) = (Com†; ∆s; ◦∧2; (Out†×I))↑×

Hence, Cmp is the extension in time and with memory
of Com. This matches Abramski’s slogan: processes
are relations extended in time. A relation like Cmp
whose output depends only on the input received be-
fore is called strongly time guarded. This property
makes the multiplicative feedback operator well de-
fined.

The system. For a given initial state s0, the rela-
tion Cmp(s0) defines a component with an encapsu-
lated private state. In Section 4 we define a system by
a multiplicative data-flow graph where each node rep-
resents a component, and each arc represents a data
flow, i.e., a communication history. We also call such
a diagram the architecture specification of the system.

Note on semantics. A very important character-
istic of our semantic model is its uniform use of the
relational framework. This has two beneficial conse-
quences. First, it considerably simplifies the semantic
definition. Second, it allows us to apply the well es-
tablished set of graph operators to compose relations.

Another important aspect is the totality of Com,
which also implies the totality of Cmp. Totality is
also called reactivity and it assures that composing
two components does not lead to an empty relation,
provided that the components are not empty. This
is essential both for modular system development and
for modular proofs about a system.

4 Architecture Specification
The architecture specification is given by a hierarchi-
cal data-flow graph. Each node in the graph is a com-
ponent acting in parallel with the other components
and each arc in the graph is a channel describing the
data flow from the source component to the destina-
tion component.

The data-flow graphs are constructed by using the
operators formally defined in Appendix B. In the ex-
ample below, we shall only use parallel composition
× and symmetric multiplicative feedback ⊗. As with
associativity isomorphisms, to simplify notation we as-
sume the necessary transpositions, too.
Example 1 ((Telephone Exchange)) Suppose we
want to specify a telephone exchange, whose architec-
ture is given in ROOM-notation in Figure 7.

n

BUSTelSw

Exchange

Figure 7: The architecture of the exchange

tel

bus

It consists of n telephone switches, each monitoring
an associated telephone and communicating with the
other switches along an internal bus. The main task
of the exchange is to connect a caller to an idle callee
upon receipt of a four digit number. We consider the
following sets of input and output messages on the
telephone interface of the switch:

TelI ::= tk | onH | offH | dig(I)
TelO ::= tk | dtB | dtE | rtB | rtE | rbB|rbE

where | denotes as usual alternatives, i.e., it is the same
as +. A telephone may send the signals on hook onH,
off hook offH, a digit n dig(n) and an abstract talking
signal tk. The switches enclosed in the exchange send
pairs of signals of the form signalB (signal Begin) and
signalE (signal End). The pairs are dial tone dt, ring
tone rt and ring back tone rb. The switches may also
forward the abstract talk signal tk. Along the bus
interface the switches exchange the sets of messages
BusI= BusO where:

BusI ::= tk(I) | onH(I) | rtB(I) | rtE(I) | bsy(I)

The integer denotes the number of the destination
switch when the message is sent by the switch and
the number of the source switch when the message is
sent by the bus. Given the above types, the switches
and the bus are components of the following types:

TelSw ∈ (TelI× BusI)N → P((BusO× TelO)N)
BUS ∈ (BusOn)N → P((BusIn)N)

The telephone exchange is then defined by their com-
position as below:

Exchange ∈ (TelIn)N → P((TelOn)N)

Exchange = (×n
i=1TelSw) ⊗ BUS

Note the close relation between the formula and the vi-
sual representation given in Figure 7. For the product
of the n telephone switches one can use as in ROOM
a distinct visual notation that emphasizes that all the
components in the product are identical. �

5 Component Specification
In many modern software-engineering methods the be-
havior of a component is given by a state-chart-like
diagram. The semantics of such a diagram is, how-
ever, complicated by the use of hierarchy in absence
of interfaces and by the use of additional features
like entry/exit actions and history variables. The ab-
sence of interfaces also severely reduces their useful-
ness. In this section, we give a denotational seman-
tics to ROOM-charts in a simple and modular way by
using hierarchical control-flow graphs. ROOM-charts

are the only visual notation we know that explicitly
supports interfaces3.

Control-flow graphs describe the behavior of the
combinational part of a component. Since this be-
havior is extended in a canonical way to component
behavior, specifying the combinational part amounts
to specifying the component itself. Let us first be more
precise about state and input.
State and input. A state consists of a mapping
of latched (or controlled) variable names to values of
corresponding type. Let S denote the set of controlled
variable names with associated domains {Dv | v ∈ S}.
Then the set of all associated states is given by S =∏

v∈S Dv.
The variables occurring in the state can be further

split in two disjoint sets: a set P of private variables
and a set O of output (or interface) variables. We
write SP for

∏
v∈P Dv and SO for

∏
v∈O Dv. Clearly,

S = SP × SO.
The input is also a mapping of input variable names

to values of corresponding type. Let I denote the set
of input variable names with associated domains {Dv |
v ∈ I}. Then the set of all associated inputs is given
by I =

∏
v∈I Dv.

We are now prepared to define the semantics of
ROOM-charts. As a consequence of this semantics,
we can safely use ROOM-charts to define components.
Moreover we can reason about ROOM-charts in an ab-
stract mathematical setting.
Arrows with common source or common des-
tination. Arrows with common source are modeled
by using the additive ramification connector. Arrows
with common destination are modeled by using the
additive identification connector.
Computation units. A “simple state” is drawn in
ROOM as shown in Figure 8, right. It may have an
entry action which is marked as →◦, an exit action
which is marked as ◦→ and may perform the transi-
tions ac1, . . . ,acn.

We model a simple ROOM-state by a computation
unit whose flow-graph is shown in Figure 8, left. The
computation unit gets the control along one of its en-
try points and gives the control back along one of its
exit points.

After getting the control along an entry point eni,
the computation unit forgets the entry point informa-
tion (it is not relevant in this case) and then it exe-
cutes an entry action. Then it evaluates a set of action
guards. If one of the guards is true, than the corre-
sponding action is said to be enabled and its body may

3The usefulness of interfaces was actually recognized and
implemented in Statemate, the official tool for statecharts, too.

be executed. After finishing its execution, the compu-
tation unit may also execute an exit action. Finally,
the control is given to another computation unit along
the exit point corresponding to the executed action.

1en

n

ex

ex

1

enm

wt wt

ea xa

xaac

wa

CompUnit

1ac nac

ac

n

1

Figure 8: The architecture of a computation unit cU

If more than one guards are true, then the compu-
tation unit nondeterministically chooses one of them.
If none of the guards is true, i.e., if the computa-
tion unit would block, then wa is true and the dis-
crete computation is completed by leaving not only
the computation unit but also the enclosing combina-
tional part along the exit point wt. The computation
unit cU ⊆ I × Sen1+...+enm+wt → P(Sex1+...+exn+wt)
is defined formally by the following formula:

cU
def= (m>•; ea+ I); 2>•;•<n+1; ((+n

i=1aci; xa) + wa)

Waiting. The control passed by cU along the wait
exit point wt to the register has the form wt.s. It is the
injection of the state s ∈ S in the sum Sex1+...+exn+wt.
Since the injections are unique both inside a computa-
tion unit and inside the enclosing combinational part,
the multiplicative part gives the control wt.s to the
computation unit associated with wt in the next time
slice back. Hence the combinational part resumes exe-
cution exactly where the computation was suspended.
Passing control between the additive and the multi-
plicative parts models waiting. Since waiting usually
happens because of interaction (if all guards involve
the input and all of them are false), we are able to
model interaction in a purely denotational setting.
Contrast this with the structural operational seman-
tics, where the state of the transition relation has to
contain additionally the program expression.

Note that adding an implicit wait entry/exit point
wt and an implicit wait action wa assures the totality of
simple computation units. However, it does not assure
the totality of computation units involving feedback.
Feedback control is either the specifier’s responsibility
or the responsibility of a compiler, like in Esterel [5].

Actions. An action a is a relation between the cur-
rent state, the current input and the next state:

a ⊆ (I × S) × S

We specify actions by their characteristic predicate.
We use back-primed variables to denote the current
input, primed variables to denote the next state and
plain variables to denote the current state. Moreover,
we mention only the changed variables and always as-
sume the necessary equalities stating that the other
variables did not change.

Events and message passing. Latched variables
allow us to model many different communication
styles. Particularly interesting are events and mes-
sage passing. We model events by toggling boolean
variables. The occurrence of an event is detected by
testing if the current input value for that variable is
different from the latched value of that variable, i.e.,
e‘ �= e, where e ∈ B signals the occurrence of the
event e. We abbreviate the above expression by e?.
Similarly, sending an event is given by the following
expression e′ = ¬e which is abbreviated by e!.

To model message passing we associate with each
channel c a pair (e,m) consisting of an event variable
e and a message variable m. The arrival of a message
a on the channel c is given by the following expres-
sion: e? ∧m‘ = a. We abbreviate it by c?a. Similarly
sending the message a on the channel c is given by
e! ∧m′ = a which is abbreviated by c!a.

Example 2 ((Computation Units)) Let us define
the behavior of the telephone switch in the state ring.
The switch has four unidirectional channels which we
denote by teli, telo, busi and buso and model
them as explained above.

An interesting aspect of this computation unit is
the way it handles events that take time. Intuitively,
as long as control is in the ringing “state”, the tele-
phone should be ringed. This is accomplished in a
message passing formalism with a pair of messages
rtB and rtE as follows. Whenever control arrives at
the computation unit ring the message rtB is sent.
This is performed by an entry action. Whenever con-
trol leaves the computation unit ring the message rtE
is sent. This is performed by an exit action.

The top level specification of this computation unit
is given below. Its visual representation inside the
state onHook is given in Figure 9, left. Let us abbre-
viate k• by k. Then:

ring ⊆ (I × S2) × S3

ring ≡ (ea+ I); 2>•;•<4;
((wa+ rtB); 2>• + rtE; xa+ ans; xa)

All actions are relations in (I × S) × S. The entry
and the exit actions of the computation unit ring are

described as follows:

ea ≡ telo!rtB xa ≡ telo!rtE

The other actions are as expected. The state variable
nr memorizes the destination switch. Note that we
often use the same name for an action and the message
it is waiting for.

wa ≡ ¬(teli?offH∨ busi?rtB(n) ∨ busi?rtE(nr))
rtB ≡ busi?rtB(n) ∧ nr �= n ∧ buso!bsy(n)
rtE ≡ busi?rtE(n) ∧ nr = n
ans ≡ teli?offH

The above computation unit defines the ROOM-charts
in Figure 9, right. Note that in ROOM transitions like
rtB, which give control to the enclosing multiplicative
structure, are drawn as a loop. Moreover, rtB is drawn
inside the “state” ring to emphasize that no entry and
exit actions are performed for rtB. �
Hierarchical states. Hierarchical states of ROOM-
charts are obtained by composing computation units.
For this purpose, we use the symmetric feedback op-
erator and implicitly assume the necessary transposi-
tions.
Example 3 ((The state onHook)) The hierarchi-
cal computation unit onHook consists, as shown in Fig-
ure 9, of two interconnected computation units, idle
and ring.

r

i r

i

wtwt

rtB ringwt

ring
rtB

ans

init
onH

rtB

idle

rtB
idle ring

call ans

init onH

rtE

rtE

callwt

Figure 9: The computation unit onHook

The mathematical equivalent is the following rela-
tional expression:

onHook ≡ idle ⊕ ring

Note that the semantics of the sum automatically as-
sures that upon entry, the control is either given to
idle or to ring according to the control’s injection.

�
Entry and exit actions of composed states. A
composed computation unit may also have entry and
exit actions. This is especially useful when dealing
with pairs of events. For example if we would like to
limit the connection and talking time to 60 minutes,

we could set a timer when entering the composed state
offHook and reset it when leaving this state.

getNo talkconn
ok ok

wt tmoonH

wt

call ans

Fig 10: Entry/exit actions for offHook

In this case, as shown in ROOM-notation in Fig-
ure 10, the computation unit offHook has three entry
points, wt, call and ans and three exit points, wt,
onH and tmo. Entry and exit actions for composed
computation units are dealt with similarly to simple
computation units. Care is necessary if we do not want
to identify different entry points. In that case, we use
a technique similar to the exit actions in the previous
section. For offHook we have:

offHook = (2 ea+ I); (getNo⊕conn⊕talk); (2xa+ I)

where +n
i=1 R is abbreviated by nR. At the beginning

and at the end of offHook, the identity handles the
transitions wt. If to is the considered timer, than
the entry and the exit actions may have the following
form:

ea = to!set(60), xa = to!reset
Transitions to composed states. The transition
onH from the composed state offHook to the composed
state onHook as shown in Figure 2 was problematic,
because on that level we did not have enough infor-
mation to unambiguously determine the destination
state. Using sums, the complete information is con-
tained in the interface of the composed computation
units. Defining:

offHook = getNo ⊕ conn ⊕ talk
telSw = onHook ⊕ offHook

we can safely abstract from the internal structure of
these computation units and draw the corresponding
diagrams as shown in Figure 11.

ff

n ff

n

n

nwt

wt

wtwt wt

wt

offHook

wt wt
call

ans
onH

telSwitchonHookonHook

init

Figure 11: Top level graph of the switch

The interface of offHook automatically directs
call to getNo and ans to talk. Similarly, the in-
terface of onHook directs onH to idle. The wt transi-
tions are dealt with similarly on the top-level defined
by telSwitch.

Transitions from composed states (preemp-
tion). The transition onH is a transition from
the composed state offHook to the composed state
onHook. The usual meaning is that from each sub-
state, that transition is taken, if it was not overrid-
den. In terms of computation units this means that
each computation unit has the exit point onH.

Although this semantics clearly does its job, it has a
big disadvantage: it is not modular. Adding a common
transition automatically implies the change of code of
all the computation units involved in the sum giving
the composed computation unit. Fortunately, in our
formalism there are three ways to deal with common
transitions in a modular way. They are shown in Fig-
ure 12. The first one can be understood as an entry
action; the second one as an exit action; the third one
as an alternative action. Let the actions corresponding
to the transition onH be given as follows:

onHa ≡ teli?onH, onHw ≡ ¬ teli?onH

The three ways of achieving a common transition onH
correspond to the following expressions:

OffE ≡ (3•<2; (3onHw+ (3>•1; onHa))); (offHook+ I)
OffX ≡ offHook ; (1•<2 ; (onHw + onHa))
OffA ≡ 3•<2 ; (offHook + (3>•1 ; onHa))

The first expression corresponds to the strong preemp-
tion semantics for statecharts: the common transition
onH has greater priority than any nested transition
onH. The second expression corresponds to the weak
preemption semantics for ROOM-charts: the common
transition onH has lower priority than any nested tran-
sition onH. It is therefore better suited to incremental
OO-design. The third expression allows nondetermin-
istic choice between the common and the nested tran-
sitions onH. Each of these semantics may be useful in
different contexts.

offHook onHExit

wt call ans

offHook

onH
wt

wt

onHEntry

wt

wt call ans

onH

anscallwt

onH

wt

offHook onHAlt

Figure 12: The preempting transition onH

The above expressions can be generalized to arbi-
trary composed states in the obvious way.
History variables (interrupts). Suppose the
transition int interrupts the computation unit
offHook on the occurrence of some special event and
gives the control to the computation unit admin. The

computation unit admin does some processing (which
can consume time and require interaction with other
components) and then returns the control with the
transition ret to the same state, at which offHook
was interrupted. Then, the interrupt processing unit
admin has to be, similarly to exit actions, generic with
respect to the current state, i.e., it should not destroy
the information about the current exit point. Hence,
admin must have the following form:

admin = +n
i=1 intProcessingi

where n gives the number of components in the inter-
rupted computation unit. This interface information,
is already contained in the wt exit points (n = |wt|)
and can be directly used if one chooses the weak pre-
emption semantics for the transition int.

Now, by requiring that int and ret have the same
type, after the interrupt processing is finished, con-
trol is returned to the right computation unit inside
offHook. This gives a very concise, formal meaning
to history variables.

Embedding in the multiplicative part. The top
level flow-graph of the combinational part has only one
entry and one exit point: the composed wait point.
The multiplicative part receives the control on this
point and gives it back to the additive part.

Let n = |wt|. Then the the function Out from Sec-
tion 3 is defined by Out = n>• ; |O. It first identifies
the control points and then projects them on the out-
put interface O.

6 Conclusions
In this paper we showed how to combine control
(the additive graph interpretation) with data-flow (the
multiplicative graph interpretation) by using the well
established Moore-machine computation model. The
result is a mixed additive-multiplicative graph inter-
pretation that opens new perspectives both from prac-
tical and from theoretical point of view.

From the practical point of view, the mixed inter-
pretation provides a very concise compositional se-
mantics for ROOM-charts. It not only justifies the
informal use of interface points in ROOM-charts but
also shows how to define or-states in a compositional
way in statecharts. In fact, we put on a solid, for-
mal basis the original idea of Harel about or-states.
Finally, the mixed interpretation also shows how to
integrate architectural specifications with state-based
component specifications.

From the theoretical point of view, the mixed inter-
pretation extends the additive and the multiplicative
algebras that were studied in isolation in [23] and in

a categorical setting in [18]. While the additive alge-
bra gives a semantics to control by ignoring interac-
tion, and the multiplicative algebra gives a semantics
for interaction by ignoring control, the mixed algebra
gives a semantics to both control and interaction. An
axiomatization of this algebra was already started in
[24].

An important aspect of our algebra is that it uses
the operators advocated by Abramski in [2, 1] for a
formal foundation of interaction. Hence, our algebra
has deep connections to game theory and linear logic.
It is also connected to the reactive modules and the au-
tomata of Alur and Henzinger [4, 3]. Hence, we expect
to be able to extend the associated model checking al-
gorithms for hierarchical automata.

Because of space limitation we have omitted in
this paper two important concepts: parallel compo-
sition inside the combinational units and network-
architecture manipulation.

Parallel composition inside the combinational unit
corresponds to the parallel composition inside state-
charts and Esterel modules. Although one can argue
(like in ROOM) that such an operator is not needed in
practice, we believe that such an operator is useful as a
handsome abbreviation of more involved diagrams. In
fact, for the combinational part, parallel composition
reduces to additive symmetric feedback. The reason
is, that the combinational part performs computation
instantaneously, i.e., for the combinational part the
equation a×b = (a×I); (I×b) + (I×b); (a×I) is true.
Hence, in order to give a semantics to parallel com-
position inside statecharts, we do not need to modify
our model.

The model proposed so far can be understood as
the alternation ΣΠΣΠ of additive and multiplicative
interpretations. The first Σ corresponds to data-type
definitions. The first Π corresponds to states. The sec-
ond Σ defines hierarchical state transition diagrams
(or sequential programs). Finally, the second Π de-
fines components and communication. Now, if we add
a Σ on top of the second Π, we obtain control over
components, i.e., we can express architecture control.
This not only allows us to express object-oriented con-
cepts, but also concepts occurring in mobile systems
like network reconfiguration and process migration.

References
[1] S. Abramsky. Retracing some paths in process alge-

bra. In Seventh International Conference on Concur-
rency Theory (Concur’96), Lecture Notes Computer
Science 1055, pages 21–33, 1996.

[2] S. Abramsky, S. Gay, and R. Nagarajan. Interac-
tion categories and the foundations of typed concur-

rent programming. To appear in Proc. Marktoberdorf
Summer School, 1994.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. To appear in the
Proceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 1997), 1997.

[4] R. Alur and T.A. Henzinger. Reactive modules. In
Proceedings, 11th Annual IEEE Symposium on Logic
in Computer Science, pages 207–218, New Brunswick,
New Jersey, 27–30 July 1996. IEEE Computer Society
Press.

[5] G. Berry and G. Gonthier. The synchronous pro-
gramming language ESTEREL: Design, semantics,
implementation. Sience of Computer Programming,
19(2):83–152, 1992.

[6] M. Broy. Semantics of finite and infinite networks of
concurrent communicating agents. Distributed Com-
puting, 2:13–31, 1987.

[7] M. Broy. Mathematical system models as a basis of
software engineering. Computer Science Today, 1995.

[8] M. Broy. Towards a mathematical model of a com-
ponent and its use. Software—Concepts and Tools,
18:137–148, 1997. Also appeared in Proc. of Compo-
nentware Users Conference 1996, Munich.

[9] M. Broy, R. Grosu, and C. Klein. Reconciling
real-time with asynchronous message passing. In
J. Fitzgerald, C.B. Jones, and P. Lucas, editors, FME
’97, 4th International Symposium of Formal Methods
Europe, Graz, Austria, Lecture Notes in Computer
Science 1313. Springer, September 1997.

[10] M. Broy and Gh. Stefănescu. The algebra of stream
processing functions. Technical Report TUM-I9620,
Technische Univerität München, 1996.

[11] P. Chen. The entity-relationship model – toward a
unified view of data. ACM Trans. on Database Sys-
tems, 1(1):9–36, March 1976.

[12] R. Grosu and K. Stølen. A Model for Mobile Point-to-
Point Data-flow Networks without Channel Sharing.
In Proc. of the 5th Int. Conf. on Algebraic Method-
ology and Software Technology, AMAST’96, Munich,
pages 505–519. LNCS 1101, 1996.

[13] R. Grosu and K. Stølen. Specification of Dynamic
Networks. In M. Haveraaen and O. Owe, editors, Pro-
ceedings of the 8th Nordic Workshop on Programming
Theory, Oslo, Norway, pages 67–76. Department of
Informatics at the University of Oslo, 1996.

[14] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8, 1987.

[15] D. Harel. On visual formalisms. Communications of
the ACM, 31(5):514–530, 1988.

[16] D. Harel and E. Gery. Executable object modeling
with statecharts. In 18th International Conference on
Software Engineering, pages 246–257, Berlin - Heidel-
berg - New York, March 1996. Springer.

[17] ITU-T. Z.120 – Message Sequence Chart (MSC).
ITU-T, Geneva, 1996.

[18] A. Joyal, R. Street, and D. Verity. Traced monoidal
categories. Math. Proc. Camb. Phil. Soc., 119:447–
468, 1996.

[19] F. Maraninchi. Operational and compositional seman-
tics of synchronous automaton compositions. In CON-
CUR. Springer Verlag, LNCS 630, august 1992.

[20] A. Olsen, O. Færgemand, B. Møller-Pedersen,
R. Reed, and J. R. W. Smith. Systems Engineering
Using SDL-92. Elsevier Science, North-Holland, 1994.

[21] Rational. UML Notation guide, version 1.0. Response
to the OMG’s OOA&OOD RFP, January 1997.

[22] B. Selic, G. Gullekson, and P. T. Ward. Real-Time
Object-Oriented Modeling. John Wiley and Sons, Inc.,
1994.

[23] Gh. Stefănescu. Algebra of flownomials. Technical Re-
port TUM-I9437, Technische Universität München,
1994.

[24] Gh. Stefănescu. Reaction and control I: Mixing ad-
ditive and multiplicative network algebras. Technical
Report 37/1996, Institute of Mathematics of the Ro-
manian Academy, 1996. To appear in Journal of the
Interest Group in Pure and Applied Logic.

[25] E. Yourdon. Modern Structured Analysis. Englewood
Cliffs, Yourdon Press, New Jersey, 1989.

A The Additive Interpretation
This additive behavior is obtained by instantiating the ab-
stract operator � to the disjoint sum operator + and the
type mapping D to the state space S . Since S is indepen-
dent of t ∈ T , the set of names T reduces to a one element
set {•}. Hence we obtain:

Se = ∅, S• = S Sa+b = Sa + Sb

where Sa1+ . . .+San = {1}×Sa1∪ . . .∪{n}×San . If x ∈
Sa and y ∈ Sb we write 1.x and 2.y for their correspond-
ing injections in Sa+b. In examples, we often use more
suggestive names for the injections.

The disjoint sum interpretation is extended to the com-
position operators and to the connectors as follows.

A.1 The Composition Operators
The additive composition of two nodes N1 ⊆ (I×Sa1)×Sb1

and N2 ⊆ (I × Sa2) × Sb2 yields, as in statecharts, a new
node N1 + N2 ⊆ (I × Sa1+a2)× Sb1+b2 , such that control
resides either in N1 or in N2:

N1 + N2 = {(x, 1.s, 1.s′) | (x, s, s′) ∈ N1}
∪ {(x, 2.s, 2.s′) | (x, s, s′) ∈ N2}

The sequential composition of two nodes N1 ⊆ (I×Sa)×Sb

and N2 ⊆ (I × Sb) × Sc yields, a new node N1 ; N2 ⊆
(I × Sa)× Sc, which is defined as expected:

N1;N2 = {(x, s, s′) | ∃t ∈ Sb.(x, s, t) ∈ N1 ∧ (x, t, s′) ∈ N2}

The additive feedback is more tricky and it allows the con-
struction of loops. As in programming, feedback has to
be used with care in order to ensure termination. Given
a relation N ⊆ (I × Sa+c) × Sb+c we define the relation
N↑c

+ ⊆ (I ×Sa)×Sb as follows: the control is received on
a and it is either given directly on b or after an arbitrary
number of times in which it loops along c. Formally:

N↑c
+ = N1,1 ∪ N1,2 ; N∗

2,2 ; N2,1

where N∗ is the arbitrary but finite iteration of N and Ni,j

and is defined as below:

Ni,j = {(x, s, s′) | (x, i.s, j.s′) ∈ N}

In this definition 1 and 2 are the injections corresponding
to a and c for the input and to b and c for the output.

A.2 The Connectors
The identity Ia ⊆ (I × Sa)× Sa is defined as expected:

Ia = {(x, s, s) | s ∈ Sa ∧ x ∈ I}

The identification k>•a ⊆ (I ×Sk a)×Sa forgets the entry
point on which it gets the control:

k>•a = {(x, i.s, s) | 0 ≤ i ≤ k ∧ s ∈ Sa ∧ x ∈ I}

The ramification a•<k ⊆ (I × Sa) × Sk a gives the control
on any of its exit points:

a•<k = {(x, s, i.s) | 0 ≤ i ≤ k ∧ s ∈ Sa ∧ x ∈ I}

The transposition b
a/\ ⊆ (I × Sa + b)× Sb + a commutes the

entry point information:

b
a/\ = {(x, 1.s, 2.s) | s ∈ Sa ∧ x ∈ I}

∪ {(x, 2.s, 1.s) | s ∈ Sb ∧ x ∈ I}
Sums clearly have associativity isomorphisms. The sym-
metric feedback ⊕ is defined as shown in Section 2.

B The Multiplicative Interpretation
B.1 The Operators
Given a type mapping D and a set of primitive type names
T such that Dt is a primitive type for each t ∈ T . The �
operation is interpreted as product, hence:

Da×b = Da ×Db, De = {()}

Since the data-flow relations are defined over infinite
streams, we often obtain products of the form DN

a×b. In
this case DN

a×b = DN

a × DN

b , because we work in a time-
synchronous setting.

As in statecharts, the parallel composition of two com-
ponents yields a new component such that control re-
sides in both of the summands. Given two components
N1 ⊆ DN

a1 × DN

b1 and N2 ⊆ DN

a2 × DN

b2 we define their
product N1 × N2 ⊆ DN

a1×a2 ×DN

b1×b2
as follows:

N1 × N2 = {((x, u), (y, v)) | (x, y) ∈ N1 ∧ (u, v) ∈ N2}

Sequential composition allows to pass the data from one
component to another component. Mathematically, it is
the usual sequential composition of relations. Given two
relations: N1 ⊆ DN

a × DN

b and N2 ⊆ DN

b × DN

c we define
their sequential composition N1 ; N2 ⊆ DN

a ×DN

c as follows:

N1 ; N2 = {(x, y) | ∃z ∈ DN

b . (x, z) ∈ N1 ∧ (z, y) ∈ N2}
The multiplicative feedback allows to pass the output of
a component back to its input. It is this construct which
added the memory to our components by passing the state
back to the input of the combinational unit. This construct
also allows us to model communication between compo-
nents by passing the output of one component to the input
of the other one.

An essential property for the well behaveness of the
feedback is that the relation introduces a one tick delay,
i.e., that the relation is strongly time guarded . In this way,
the output of the relation can be computed successively
for the whole input stream. This delay was assured by
introducing the register. The computation speed of the
component is then given by the speed of the clock. Given
a relation N ⊆ DN

a × c × DN

b × c we define the new relation
N↑c

× ⊆ DN

a × DN

b as the unique fix-point of the following
recursive definition:

N↑c
× = {(x, y) | ∃z. (y, z) ∈ N(x, z)}

The uniqueness of the relation N↑c
× is guaranteed by the

strong time guardedness of the relation N .

B.2 The Connectors
The identity Ia ⊆ DN

a × DN

a is the simplest operator. It
simply copies the input to the output:

Ia = {(s, s) | s ∈ DN

a}

The identification ◦∨k
a ⊆ DN

ak × DN

a allows to identify k
copies of elements s ∈ DN

a :

◦∨k
a = {(sk, s) | s ∈ DN

a}

The ramification ◦∧a
k ⊆ DN

a × DN

ak allows to make k copies
of the input s:

◦∧a
k = {(s, sk) | s ∈ DN

a}

The transposition aXb ⊆ DN

a × b ×DN

b ×a allows to commute
the factors:

aXb = {((x, y), (y, x)) | (x, y) ∈ DN

a × b}
Products clearly contain associativity isomorphisms. The
symmetric feedback ⊗ is defined as shown in Section 2.

