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Abstract

Concurrent Class Machines are a novel state-machine
model that directly captures a variety of object-oriented
concepts, including classes and inheritance, objects and
object creation, methods, method invocation and excep-
tions, multithreading and abstract collection types. The
model can be understood as a precise definition of UML
activity diagrams which, at the same time, offers an ex-
ecutable, object-oriented alternative to event-based state-
charts. It can also be understood as a visual, combined con-
trol and data flow model for multithreaded object-oriented
programs. We first introduce a visual notation and tool for
Concurrent Class Machinesand discusstheir benefitsin en-
hancing system design. We then equip this notation with a
precise semantics that allows us to define refinement and
modular refinement rules. Finally, we summarize our work
on generation of optimized code, implementation and ex-
periments, and compare with related work.

1. Introduction

Embedded software design automation (ESDA) is
emerging as a promising approach to developing the high-
confidence software demanded by embedded-system appli-
cations, including those found in the telecommunications,
aerospace/military, medical-device, and automotive indus-
tries. A comprehensive ESDA solution is expected to pro-
vide integrated support for (1) requirements capture, (2) vi-
sual modeling, (3) simulation, (4) component mapping to
target platforms, (5) code generation, (6) testing and (7)
documentation generation.

Visual modeling plays a key role in this context, akin
to the “design blueprints’ found in other engineering disci-
plines such as electrical, mechanical and civil. Errors unde-
tected at this stage of development are carried over to later
stages where they are much more costly to deal with. The
importance of visual modeling has been recognized by the
Object Management Group (OMG) computer-industry con-
sortium. The goal of this group is to set software standards
that enable distributed and enterprise-wide interoperability.

OMG is arguably most well known for UML, the unified
modeling language that has been unanimously embraced by
industry and promises to become the visual modeling lan-
guage of ESDA.

To model the behavior of object-oriented systems, UML
proposes both a state model (given by state diagrams) and
aflow model (given by activity diagrams). The former em-
phasizes states and state hierarchy, while the latter empha-
sizes actionsand action hierarchy. Emphasizing states |eads
to an intuitive understanding of allowed method-invocation
sequences. Emphasizing actionsleadsto an intuitive under-
standing of exceptions, recursion and inheritance. A recent
RFP (Request For Proposals) for the UML 2.0 Superstruc-
ture asked for clarification of the precise relation between
class and behavior diagrams. In particular, the RFP asks:
How does message-based communication relate to method
invocation and how is inheritance captured in behavior dia-
grams (state machines cannot be generalized in UML)?

Inthis paper, we develop acomprehensiveframework for
automated software engineering based on a combined con-
trol and data flow model for multi-threaded object-oriented
programs we call concurrent class machines (CCMs).
CCMs can be understood as a precise semantic definition
of UML activity diagrams that offers an executable object-
oriented alternative to event-based statecharts. It can also be
understood as an abstract, visual model for Java programs.
The visua presentation can enhance developer productiv-
ity and the interaction between developers and customers.
It also enables the development of efficient analysis algo-
rithms that exploit the structure present in the model. Our
main contributions are the following.

e Weintroduceavisual notation for CCMswhich were-
fer to as Visual Class Machines(Section 2). Visual CM
provides an intuitively appealing notation for develop-
ersthat graphically and coherently capturesavariety of
object-oriented features, including classes and inheri-
tance, objects and object creation, methods, method in-
vocation and exceptions, multi-threading and abstract
collection types.

e We then present our Concurrent Class Machines
model (Sections 3 and 4) which serves both as a for-



mal, transition system-style semantics and abstract
syntax for Visual CM. The operational nature of CCMs
renders Visual CM specifications executable and the
model itself provides the basis for powerful analysis,
verification, and code-generation techniques.

e We complement our CCM model with a collection
of refinement rules (Section 5) that allow one to rea
son compositionally about multi-threaded, recursive,
object-oriented systems in a trace-based setting. The
basis for our definition of CCM traces is the notion of
an evolving communication interface between a sys-
tem and its environment.

2. A Visual Language for Class Machines

We first describe Visual CM, avisual representation for
CMs. (We have also developed agrammar for atextual rep-
resentation of CMs.) By design, the visual representation
and CMs have exactly the same structure, so CMs provide
an “abstract syntax” as well as a semantics for the visual
language. Therefore, we do not give a separate grammar for
the visual language. Instead, we present the language us-
ing afamiliar example—the readers/writers problem. Next,
a semantically minimal extension to handle concurrency is
introduced, providing a notation for concurrent CMs.

2.1. Visual CM

A solution to the readers/writers problem—effectively,
an implementation of read locks and write locks—appears
in Figure 1. To save space, the figure does not show class
Resour ce, which declares public methodsr ead( ) : i nt
andwrite(int x),andclassMonit or Exc, whichde-
clares no fields or methods; definitions of methods of W -
Cap are aso elided. Our solution is fairly standard except
for the use of capabilities to identify the client to whom a
lock was granted; more commonly, thread identity is used.
Our approach is more flexible. For example, a coordina-
tor thread could create a resource, a monitor, and a write
capability, acquire the write lock embodied in the write ca-
pability, initialize the resource, and then pass the write ca-
pability to a worker thread, which can immediately use the
write capability to access the resource. The capabilitiesalso
enforce the calling discipline; for example, if the acquire
operation is invoked on a capability whose lock is aready
held, the capability throwsa Moni t or Exc. Our language
is designed to fit into the UML, so class diagrams are used
to describethe static structure of systems. Dueto spacelim-
itations, we omit the class diagram for our example and in-
clude information from it directly in the UML-like activity
diagramsthat define the behavior of methods. The notation
is the same as in class diagrams: underlining a declaration
indicates that the declared element has class scope (thisis

equivalent to Java's st at i ¢ modifier), and the visibility
modifiersare public (“+"), private (“—"), and package (de-
fault). We use a Javarlike t hr ows clause to indicate the
types of exceptionsthat a method can throw.

Methods are defined by UML-like activity diagrams.
Three kinds of nodes may appear on the border of a dia-
gram: (1) acall entry node (unfilled circle), (2) return exit
nodes (filled circles), each labeled with an expression that
evaluatesto the return value, (3) exception exit nodes (filled
diamonds), each labeled with an expression that evaluates
to the returned exception.? The types of expressions associ-
ated with return nodes must be consistent with the declared
return type of the method; similarly, the types of expres-
sions associated with exception nodes must be consistent
with thet hr ows clausein the declaration of the method.

Execution of a CM starts by creating an instance of the
designated main class and invoking its r un method. Ex-
ecution of a method starts at the call node and proceeds
along edges labeled with guarded commands, which con-
sist of a guard (a Boolean expression) and a parallel as-
signment statement (a set, possibly empty, of assignments
that are performed in parallel). Naturally, an edge can be
traversed only if the guard is true. We elide the constant
guardt r ue and the empty parallel assignment statement.

Guarded commands may contain only operations that
have no net effect on the size of the stack or heap. Thus,
expressionsmay contain operations on primitive values (in-
tegers, sets regarded as mathematical values, etc.), reads
of object attributes, and invocations of functional methods
(i.e., methods that do not throw exceptions and do not con-
tains writes to object attributes); parallel assignments may
update variables and object attributes.

Operations that may have a net effect on the size of the
state appear in boxes. The sequential language contains
two kinds of boxes: method invocation boxes, which rep-
resent method invocations with dynamic dispatch, and ob-
ject creation boxes, which allocate and new object, execute
a congtructor to initialize it, and return a reference to it.
Our language is garbage-collected and hence does not con-
tain object de-allocation boxes. Each box has a call-entry
node, label ed with the argument, areturn-exit node, labeled
with avariable or attribute into which the returned value is
stored, and (if the called method can throw an exception) an
exception-exit node, labeled like the return-exit node.

Aninternal nodeisanodethat isnot acall, return, or ex-
ception node of a method definition or box. Internal nodes
are smply intermediate control points. Execution blocks
when control isat an internal node whose outgoing edgesall
havefalse guards. Thisisawell-known, flexible, high-level

1In the formal CM model, the call node is labeled with the formal
parameters; in the visual language, the formal parameters appear in the
method declaration.

2|f the return or exception typeisvoi d, the corresponding expression
may be omitted.
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Figure 1. Package ReaderWriter.

way to express condition synchronizationin concurrent sys-
tems. For example, execution of Moni t or . acqW blocks
if the monitor is not free. Declarations of local variables
may appear anywhereinside the method body (e.g., the dec-
laration of e in RdCap. acq).

Conditional branches are drawn with unfilled diamonds,
thisis syntactic sugar, just asit isin activity diagrams[7, p.
263]. Anexampleappearsin thedefinition of RdCap. acq.
Asin activity diagrams, the guards on the outgoing transi-
tions of a conditional diamond should be digoint and ex-
haustive [7, p. 263].

For brevity, some features described in this section are
omitted from the formal definition of CMs in Section 3 but
can easily be added. Specifically, these features are: static
attributes and methods, multiple exception types for a sin-
gle method, packages, and visibility modifiers for methods
and attributes. Also, the semantics for object creation re-
flects only the behavior default constructors, which have no
arguments (except t hi s) and initialize al attributes to de-
fault values (zero for integers, null for references, and so
on); non-default constructors can easily be modeled as this
default initialization followed by invocation of the specified
constructor.

2.2.Visual Languagefor Concurrent CMs

Concurrent CMs are an extension of CMs with a mech-
anism for forking threads. Incorporating only this semanti-
cally minimal extensioninto the language helpssimplify the
semantics and alow maximum flexibility. Synchronization
is achieved using guarded commands. The semantics re-
quires. (1) aguarded command executesatomically, and (2)

it executes only in states where its guard is true. All com-
mon synchronization constructs (semaphores, locks, condi-
tion variables, wait-free data structures, etc.) can be im-
plemented using these primitives. We alow methods to
be declared at omi c; thisis syntactic sugar for acquiring
and releasing asystem-widelock (thus, at om ¢ isstronger
thansynchr oni zed in Java). An optimizing code gener-
ator might allow more concurrency by using multiplelocks,
when thisis behaviorally equivalent.

An alternative would be to prohibit the use of guardsfor
condition synchronization (by allowing guardsonly in con-
ditional diamonds, where the guards should be exhaustive)
and introduce selected synchronization constructs as prim-
itives. This approach would clutter the semantics, and the
choiceof primitiveswould inevitably be somewhat arbitrary
and unsatisfactory for some applications. For example, if
Java-like monitors are primitive, there is no way to asso-
ciate multiple condition variables with asingle lock (thisis
inconvenient when solving the readers/writers problem, be-
cause a natural approach is to have separate condition vari-
ables on which readers and writers wait, and to associate
these two condition variables with a single lock).

An object is associated with each thread. These objects
are instances of a distinguished class named Thr ead or a
subclass thereof. Class Thr ead declares one method with
signaturerun(): voi d and no attributes. These ob-
jects are created and initialized in the usual way, using ob-
ject creation boxes, etc. The thread of execution is started
using a new kind of box, called athread start box. An ex-
ample appears in Figure 2. The new thread executes the
r un method of the target object. The thread start operation
is a box because it changes the structure of the state space,



by alocating a new call stack. Execution of a concurrent
CM starts in the same way as execution of a CM; the only
additional requirement is that the main class is a subclass of
Thr ead.

The diagram for Client.run contains a simple
example of catching an exception. The diagram for
Client.activateCient illustrates our notation for
propagating exceptions. Consider a method invocation box
b in a method m. Suppose b has an exception exit node
np. It is common for m not to catch the exception. We
make this the default behavior using the following syntactic
sugar: if ny has no explicit outgoing edges, then implicitly
thereisan edgelabeled witht rue --> ski p and going
from n,;, to an exception exit node n.,, of m with appropri-
ate type, and the exception expression associated with n,,
isthe variable associated with n,, (if that variableis omitted,
then implicitly afresh local variable is used at n,,, and the
corresponding n’s).

Synchronization bars are used in UML activity diagrams
to represent forks and joins in a structured way. Synchro-
nization bars can easily be introduced in our language as
syntactic sugar: forks correspond to boxes that create and
start threads, and joins correspond to a simple condition
synchronization that can be implemented in various ways.

3. Sequential Class M achines

In thisand the following section weintroduce a class ma-
chine model that closely corresponds to the sequential and
concurrent parts of the visual language respectively. Keep-
ing the model close to the syntax makesit accessible to en-
gineers. The model sets a solid ground for understanding
their visual specifications and for developing tools. It aso
helps usto develop efficient analysis algorithmsthat exploit
the structure present in the model.

Asin C++ or Java, the class machine model allows re-
cursion. The meaning of recursion is usually explained by
introducing aleast fixpoint operator. In this paper we use a
more operational approach. We give the meaning of recur-
sion by defining a flat state machine, with a potentially un-
bounded number of states and transitions that, similarly to
the fixpoint operator, computes the least solution of the re-
cursive machine by unfolding the method invocations. Note
however, that our analysis algorithms work directly on the
finite-control recursive machine.

3.1. The Recur sive Definition

Environmentsand actions. We assume, the set of classes
C and their subclass relation < with single inheritance is
given by the class diagrams in our visua notation. Given
aset X={xy:T1,...,x,:T,} of typed variables, a vari-
able environment (frame) o over X is a partia function
[x1—a1,. . .,xp—ai] where k < n and for al i, a; € U;

and U; < T;. We denote by o[y—a] the environment where
thevalue of y isbound to a. The set of al variable environ-
ments over X is denoted by Y x. Attributes and attribute
environments are treated similarly to variables and variable
environments. The set of attributes of each classis given by
the class diagram.

For z€ X, let [z] be the evaluation function of z over o
defined by [x], = o(x)3. For an expression e over X, let
[e] be the homomorphic extension of the evaluation func-
tion to expressions. For example, suppose o(x) = 1 and
o(y) = 2. Then [z + y], = [z]s + [y]e = 1+2 = 3.
In the following, we call [e] also an expression and write it
ase. Expressions are defined as usual over typed variables
and identifiers of primitive (mathematical) functions.

To keep track of data, we maintain aframeo and aglobal
object environment (object pool) w. Assuming that A isthe
set of al attributes and O is the set of all object identifiers,
w is a partia function in C—(0O—X4). The domain of
w(c) : O—X 4, containsal instances of c. Define a partial
function classOf(o0) = ciff 0 € dom(w,.). The set of dl ob-
ject poolsw is denoted by 2. To keep track of contral, i.e.,
the returnlocations of method calls and the current program
counter, we maintain alocation stack of boxeshaving ontop
the current node. Similarly, the variable frame is extended
to a stack of frames.

An actionfrom U to V isardationa C U x V. Syn-
tactically actions are boxes or guarded commands. Boxes
encapsulate actions that change the size of environments.
Guarded commands gc correspond to actions that test or
changevaluesin the dataenvironments. They havetheform
g—a wherethe guard g isaboolean expression and the par-
allel assignment a isaset z1:=eq|| ... ||z,:=e,, Of assign-
ments. We extend the evaluation function to guarded com-
mands by defining [gc], .+ by its characteristic predicate
l9lo A o'=c[z1 — [e1]s, - - -, Tn — [en]s]. By definition,
[gc] isanactionfromXx to X x.

To access object attributes, we extend expressions with
attribute selectors. As a consequence, we extend the ex-
pression evauation function to [e],..* The evaluation
function for guarded commands is extended accordingly.
For example, ! i nCs->i nCS: =t r ue in RdCap. acq()
has for an object vedom (wracap) the action:

{(o:w, o) |
—(wracap(v) (RACap.inCS)) A
w’ = w[RdCap — Weqcap[v — [RACap.inCS — true]]]}
Expressions may not contain method invocations, object
creation or thread starting expressions. These operations
appear only in boxes.

Definition of SCM. A sequential class machine M =
((C,<),B, N, C;, Q) consists of:

SFor afunction f we also write f, for f(z).
4To avoid parenthesis we write tuples (z, y) asz:y.
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Figure 2. Package Client.

¢ A finite tree of classes (C, <), where ¢ < d if class
c isasubclass of class d. C; isthe main class. The
machine starts by executing C;’sr un method.

e A finite set of boxes B, afinite set of nodes N and a
set of all object environments (2.

We assumethat C, B and N aredigoint. Eachclassc € C
has associated the following elements:
e A finite set of attributes Ac={a1:T1,...,an:Ty}. The
set of all attributes A. = Ug>.{d} x A4 consistsof de-
clared and inherited attributes prefixed with their class.

o A finite set M, of methods.
Each method m e M. has associated the following elements:

o AtypeT,,, = cTem X 11Tem X eTe, defining the call,
return and exception types of m?®.

e A setof local variables X, = {x1 : T, ...,z : T} }.

e A set of nodes N,,,, € N such that N.,,, N Ng,, = 0
for cm # dn. Thisset is partitioned into:

— A call entry node ¢ with formal parameters x :
T, and this : cin X,,.

— A set of return exit nodes R whereeach noder €
R has areturn expression re over X, of atype
T whereT < rT,,,.

— A set of exception exit nodes E where each node
e € E has an exception expression ee over X,
of atypeT where T' < eTp,.

— A set of internal nodes 1.

— A set of box entry nodes B.,,.En and a set of
box exit nodes B.,,,.E'x.

The set of from-nodesis defined as F = {c} U T U
Bem.Ex. The set of to-nodesisdefinedas T = {c} U
ITURUFEU By, En.

5To simplify the presentation, we consider only one parameter and ex-
ception type.

e A set of invocation boxes B.,,, C B such that B.,, N
By, = 0 for em # dn. The invocation boxes are par-
titioned into method invocation boxes and object cre-
ation boxes. Each method invocationbox b € B, has
associated:

— An expression oe;, of aclasstyped, € C deter-
mining the target object.

— A cal node ¢, € B,.,,,.En, amethod identifier my,
with m,€ My, and argument ae;, of atype’ such
that T<cTy, m, -

— A return node r,€B.,.Fx and a variable
r€X.,, of atype T such that T>rTy,,,,°. The
return value gets bound to .

— An exception node e, €B..,,,.EFx and a variable
y€Xem Of atype T such that T>rTy,,,,. The
exception value gets bound to y.

Object creation boxes are similar to method invocation
boxes except that: (1) they have associated a class d,
instead of an object expression oe;, (2) the call node
has no expression, (3) the variable = of the return node
has class d;, and (4) the method identifierisnewandis
not required to bein M,

e A labeledtransitionréationd,,, C I'x Act x T where
Act = P((Zx,,, xQ) x (Zx., xQ)) isaset of actions

a from Xx_ xQ to Xx xS that relate frame and
pool tuples o, : w.

For example, class C i ent has an attribute Cl i ent . m
and the methods mai n, rund i ent and run. Method
rund i ent starts with an object creation box having as-
sociated the class W Cap. The method invocation box
w. r ead() hasassociated the expression (target object) w,
the method identifier r ead, a return node with variable v
and an exception node with no variable.

The above definition separates control from data. While
control is kept explicitly in the nodes, data (environments)

SFor primitive type T we assume < relates T to itself only.



is handled implicitly by the transitions. As a consequence
the class machine has a direct,compact and human readable
representation in visual CM. This representation also ad-
mitsacompact symbolic representation (with BDDs) that is
well suited for combined enumerative and symbolic model
checking algorithms. By contrast, a state machine repre-
sentation that adds the environments to the nodes, leads to
a human unreadable representation and can easily blow up
the state space in a symbolic representation.

3.2. Meaning of Recursion and Object Creation

The meaning of recursion and object creation in a CM
A = ((C,<),B,N,C;, ) is given in terms of a global
class machine (GCM) A* = (GL,GF,n;,0) consisting of
the following elements:

e A set of global locations GL C B*N. Each global

boxes b; with anode n on top. For each k, by, (or n)
belongsto a method m of classd whered < ¢, cisthe
class of the target expression oe associated with by, and
m isthe method associated with b,.

o A set of global frames GF C X% where X isthe set
of all variables. A global frame ¢ € GF is a stack

each i, o; isthe frame (local variable environment) of
the method containing box b;41 (or n). Let GF) bethe
set of all global frames associated with .

e A labeled transition relation 6 € GL x GA x GL
where GA = P((GF xQ) x (GFxQ)). Thisrelation
containstuples (A1, «, A\2) where Ay, Ao aregloba lo-
cations and « is a global action from GF,, x Q to
G’F‘)\2 x .

The transition relation ¢ is the least relation that contains

for each method, internal transitions, call transitions, return

transitions, exception transitions and object creation tran-
sitions. Call transitions capture dynamic method dispatch.

To ease notation we treat environment tuplesin ¥ x xQ and

GFxQ asoasstackso : wand ¢ : w respectively.

Internal. In this case the source location is A=3:n where
n is a from node of a method c.m. If (n, acm,n’) is
iN 0cm @and X' =0:n" then (A, o, \') isin ¢ where the
global action o extends the action «..,,, as defined be-
low:

{ (p:ow, p:o":w') |
(ow, o'W') € aem N piow € GF)y }

Call. Inthis casethe sourcelocation is A=0:cp, Where ¢,
is the call node of method box b;,. Let m, oe and d be
the method, object expression and class of oe respec-
tively, associated with box b;. Let p be the class from
which d inherits m; if d defines m then p=d. For each
class a<p that definesm thereis a destination location
N'=p:by:c and atrangition (A, «, \') in 6. The node ¢

is the call node of the method m of class a, and the
global action « defined by
{(pow, poTw) |
classOf(oey,) = a A piow € GF\ A
T = T;[this — o€, T — Ges ] }

doesthe following: (1) it checksif the value of oe has
classa’, (2) it pushes a frame 7; that binds local vari-
ablesto default valuesand bindst hi s and the formal
parameter x to the values of oe and ae, respectively.

Return. In this case the destination location is M=,
wherery, isthe return node of method box by,. Let m,
oe and d be the method, object expression and class
of oe respectively, associated with box b,. Let p be
the class from which d inherits m; if d defines m then
p=d. For each class a<p that defines m and each re-
turn node r€ R,,,,, there is a source location A\=0:by:r
and atransition (\, i, \') in §, where the global action
« defined by

{ (oW, p:o’:w) |
o' =0z —re,,] N pioTwe GFy }
does the following: (1) it binds the return variable x
associated with nodery,, of b, to theactual returnvalue
of re in o’ and (2) it discards .

Exception. These transitions are handled similarly to re-
turn transitions. Their main role is to separate control
and return type of the normal execution sequence from
the exceptional one.

Object creation. Inthis casethe source and destination lo-
caionsae A\ = § : ¢, and N = (§ : r, where
¢cp, and rp, are call and return nodes respectively, of
the object creation box b;. Let d be the class and
x the return variable associated with box b;. Then
(A, a, \') € ¢ with global action o defined as below
where odom(w)= Ucec dom(w,).

{ (p:ow, p:o":w') |
i € (O\odom(w)) A w' = wl[d— wgy[i — 7]] A
o' =0z —i] A piow € GFy }

The action « does the following: (1) it finds a fresh
object identifier €O, (2) it binds i to the default at-
tribute environment ;€% ; - inside w’ and (3) it binds
thereturn variable z to the new identifier 7 inside .

4. Concurrent Class Machines

Concurrent CMs (CCMs) are an extension of CMs with
a mechanism for forking threads. Formally, CCMs are the
same as CM s except that: (1) the class hierarchy must con-
tain aclass Thr ead with no attributes and one method with
signaturer un() : voi d, (2) there is an additional kind of

"Thisisfalseif the value of oe is null



box, namely, a thread start box, and (3) the main class C;
must be asubclass of Thr ead.

A thread start box is similar to a method invocation box
except that: (1) the class dy, is Thread, (2) the associated
methodidentifier m; isst art (notethat st art, likenew,
isnot amethod), (3) the argument expression isomitted (be-
causest ar t hasno parameters), (4) the return node has no
associated variable (because st art has no return value),
and (5) thereis no exception node e;, (because st art does
not throw exceptions).

The semantics of aCCM A = ((C,<),B, N, C;,Q)
is given in terms of a globa state machine A* =
(GL,GF, C;, 6) consisting of the following elements:

e A set of location maps GL that are partial functions
from O to GL, where GL C B*N. In particular, the
domain of alocation map isthe set of threadsthat have
been started.

e A set of framemaps GF that are partial functionsfrom
Oto GF,whereGF C ¥¥%.
e A labeled transition relation § € GL x GA x GL
where GA = P((GF x Q) x (GF x Q)).
The transition relation § is defined by interleaving the tran-
sitions of the threads. Transitions that do not go through
thread start boxes have the same semantics as in a se-
guential CM. To capture this in the semantics of CCMs,
we consider the sequentiadl CM A obtained from A by
adding to class Thr ead amethod called st ar t that does
nothing and replacing all thread start boxes with method-
invocation boxes that invoke this new method. We de-
fine § in terms of the transition relation § of A*. Let
threads(w) = U,<1nreaq dom(w(c)). For ¢ < Thread,
let startGL(c) = (n.), where n. is the call node of the
r un method of class ¢ (this method might be inherited) and
startGF(c¢) = (o.), where . mapslocal variablesof c.run
to default values. Note that (n.) and (o.) are tuples inter-
preted as stacks containing one element.

Consider a location map A and athread § € dom()).
Let 3 : n = X@#). If nisnot the call node of a
thread start box, then for each transition (A\(6), a, \') € 4,
(A, extend(a, 0), N[0 — X]) € 6, where extend(a, ) =
{(p:w, g0 — ¢]:0") | (B(0):w, ¢ ') € a}. Ifnis
the call node of athread start box b, there are two cases, de-
pending on whether the thread has already been started. The
target thread is 6 = oeg(p) .- L€t ¢ = classOf(6;). If the
target thread has not been started, i.e., 6; € threads(w) \
dom(), then (A, a, \[f +— B:7][01 — startGL(c)]) € 4,
where

a={(p:w, ¢":w') | ¢' = glbh > startGF (¢)]Aw’ = w}.

If the target thread has been started, i.e., 61 € dom(\), then
the st art operation is a no-op that returns normally (we
could easily adopt a Java-like semantics in which st art

throws an exception in this situation), and (X, ¢, \[§ — 3:
7)) € &, where . isthe identity relation on GF x Q.

5. Trace Semantics and Refinement

Trace semantics.  Given a CM_A denote the associated
GCM by A*. A pair (A\,77) whereAe GLand7j € GF x{Qis
called aconfiguration of A*. Wewrite (X, %), (X ,77)) €.
if (X, @, X) €5 and (7,7) €a. An execution of A* isase-

quence (X, ) — (A1,71) — - .. — (An,7,,) Such that for
al i, (X\i,7;), (Ait1,7,41)) isan environment or a§ step.

An environment step occurs when the environment in-
vokes a method of an object shared by the CM and its en-
vironment; these objects (e.g. static shared attributes and
input/output streams) form the CM’s communication inter-
face (Cl). The net effect of the step is to push a stack frame
with two local variables, ret and exc, non-deterministically
assign an arbitrary value to one of them, and return that
value. The Cl may vary over time and can be computed
inductively using an approach related to [9]. For space rea-
sons, this computation is deferred to the full paper.

Given an execution ex its associated trace tr captures
only the observable part of ex. The location and frame
stacks are private, so they can be discarded, along with the
private objects. Hence, ¢r contains at each i the projection
of w; to the objects accesible from Cl;. The first and last
elements of the trace also contain the call and return values.
The executions and traces of A are defined to be the same
asfor A*. Theset of tracesof A isdenoted L 4.

Refinement. Thetrace semanticsleadsto anatural notion
of refinement between CCMs: an implementation CCM [
refines a specification CCM S, denoted I < S, if Ly C Lg
modul o an isomorphism of object identifier names. Theiso-
morphism is necessary, because the exact policy of allocat-
ing identifiers should be hidden and therefore not influence
refinement. If the implementation CCM is large, we would
like to decomposethe refinement task into simpler subtasks.
For this we provide two compositional and two least fix-
point induction rules. We write C[M] if CCM C containsa
box refering to CCM (method) M .

Theorem 1 If M<N then C[M]=C[N]. If C[.|x*D]]
then C[M]=<D[M]. If C[N]=N then (ux.C[x])=N. If for
all z, z<N implies C[z] <N then (uz.C[z])<N.

Thefirst compositional ruleisjustified by the monotonicity
of the corresponding GCMs. The second compositional rule
is justified in addition by observations at the “inner envi-
ronment” border (<* relates trace sets where the call/return
information at the inner box is made visible). The fixpoint
rules are justified by the continuity of the GCMs. These
rules are related to the rules givenin [3].

6. Conclusions

We have presented CCMs, a comprehensive, machine-
based model of multi-threaded, object-oriented systems.
We have equipped CCMs with a visual design notation and



a collection of refinement proof-rules supporting composi-
tional reasoning. Although not described in this paper due
to space limitation, we have also studied important new
techniques for generating efficient code from CCM speci-
fications, by applying incrementalization [16, 19, 13, 12] to
multi-threaded programs and to object-oriented programs,
we have also studied the use of other analyses and optimiza-
tions, e.g., [11, 6, 17, 6], in our framework.

We have a prototype implementation that allows interac-
tive specification in Visual CM and automatic generation of
Java code for most features of our language. We have used
the system for the specification and code generation of ex-
ample applications, including the readers/writers problem
and a simple telephone switch system. Performance of the
generated code is similar to the best handwritten code.

A variety of visual notations, formal models and anal-
ysis methods for object-oriented systems have been pro-
posed in the literature; an extensive bibliography can be
found in [18]. What distinguishes our approach from
this body of work (and more recent proposals such as
[1, 10, 15]) is the comprehensive nature of the Concur-
rent Class Machine model. CCMs capture a host of key
object-oriented concepts in one machine-based model, in-
cluding classes, objects, inheritance, dynamic method dis-
patch, multi-threading and exceptions. Moreover our refine-
ment rulesallow oneto reason compositionally about multi-
threaded object-oriented systems in a trace-based setting.
The CCM model and accompanying refinement rules have
been inspired by the work of [3, 2, 5]. These approaches
are not object-oriented and hence do not cover the array of
object-oriented programming concepts featured in CCMs,

For future work, we plan to complete the implementa-
tion of the code generator and optimizer for more advanced
features of CCM and assess performance of our system and
the generated code via further experimentation. We are al'so
in the process of developing amodel checker in the style of
[4, 5] that supports both enumerative and symbolic invari-
ant and refinement checking of CCM models and that uses
static analysis techniques similar to [8].
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