Practical Fine-Grained Binary Code Randomization

Soumyakant Priyadarshan, Huan Nguyen, R. Sekar
SecLab

Drawbacks of Existing Approaches

Require Source Code: Incompatible with dominant software deployment and update mechanisms.

Poor Performance: Previous binary-based techniques have high overhead.

Compatibility: Existing techniques are incompatible with error handling and reporting features.

Our Approach

Length-limiting Randomization: Limit the utility of any disclosed address.

Limit Disclosures in EH-metadata: Intra-block randomization, reduce EH-metadata stored in memory.

New Entropy Metrics: To quantify security against the new threat model EH-metadata leakage.

Binary Analysis and Instrumentation: Compatible with x86-64 binaries with error handling and reporting.

Key Benefits

Compatibility with COTS binaries, including low-level libraries with hand-written assembly.

Compatibility with exceptions and stack traces.

Strong Security against EH-metadata leakage.

Low Runtime Overhead (less than 5%)

Binary Analysis and Instrumentation

- Linear disassembly
- Identify functions using EH-metadata
- Identify and remap pointers
- PC-relative address
- Static pointer
- Jump table target
- Control flow graph
- EH-metadata reassembly

Length-limiting Randomization

- **Bounded utility of disclosed address:** Break every function into partitions of k instructions on average.
- **Tunable entropy and performance:** Tune k for trade-offs between security and performance.
- **Higher entropy for the same number of partitions:** Additional randomness in the placement of breaks.
- **Can be combined with other randomizations:** LLR introduces enough breaks for same partition size.

Limiting Disclosures in EH-metadata

- **Readable memory**
- **Non-readable memory**
- **Support exception handling**
- **Same time, space overhead**
- **Leaks not reveal randomization**

Specspeed 2017