Appeared in IEEE S&P (Oakland) '20

Combating Dependence Explosion in Forensic Analysis Using Alternative Tag Propagation Semantics

Stony Brook University

Computer Science

Md Nahid Hossain, Sanaz Sheikhi and R. Sekar Secure Systems Lab

Drawbacks of Existing Approaches

Subject & Data Tags

Subject Tag

• High: [0.0, 0.5)

• Low: [0.5, 1.0]

- "Needle in a haystack:" Hard to distinguish real attacks within a flood of false alarms
- "Connecting the dots:" No help in understanding the overall campaign
 - Solution: Use *provenance* information
 - Issue: Dependency Explosion

Our Approach

- Policy-based attack detection and root cause identification
- Modulate dependency flow using subject tags
- Conservative dependence propagation for suspicious processes
- Selective dependence propagation for benign processes,

Scenario Graph Generation

Provenance-based alarm clustering: Attribute an alarm to an ancestor

Entry point identification: Trace back from largest clusters to a source node (e.g., network connection).

that also triggered alarms.

Re-propagating tags: Assign suspicious Subject tag to entry point, repropagate tags as needed. Forward search: Run depth-first search and prune away nodes with high data integrity Local simplifications and visualization

Graph Size Reduction Naive forward propagation Using Tag Decay Scenario Graph for Vulnerable Browser Extension

Default Tag Propagation Normally, tags propagate in the direction of information flow

Suspicious: Process may have been compromised. Subject Object Benign: Believed to be benign; may contain vulnerabilities. Data) Integrity Tag • Low: [0.0, 0.5) Object Subject • High: [0.5, 1.0] dtag (Data) Confidentiality Tag

> Default propagation causes dependence explosion, which leads to massive (unreadable) scenario graphs

Tag Attenuation

- Key intuition: Objects are lousy intermediaries for propagating attacks
- Key Idea: Attenuate tag propagation from benign subjects
- Implemented by adding a small constant a to data tag value: object.dtag = subject.dtag + a

Tag Decay

- Key intuition: If a benign process is compromised by suspicious input, this will happen soon after consuming it
- Key Idea: Gradually lift tags of benign processes to quiescent value T_a
- By decaying data tag d exponentially at rate r $d = max(d_0, d_0 * r^t + (1 - r^t) * T_a)$

Da

ata	Total	Memory	Graph generation
et	events	Usage (GB)	time/attack (sec.
.3	714 M	0.49	0.04
.4	36.5 M	0.11	0.05
3	21 M	0.19	0.030
4	37.2 M	0.11	0.220

Performance