
OS Support for File System Model
Checking
Wei Su, Yifei Liu, Erez Zadok, et al.
File systems and Storage Lab, Department of Computer Science, Stony Brook University.

1. Background and Motivation
● File systems are too complicated to be bug-free

➢ Corruption, Data loss, System crashes
● Existing work on file system verification

➢ Cannot check corner cases (Regression suites)
➢ Create file system from scratch (FSCQ SOSP’15)
➢ Only specific type of bugs (eXplode OSDI’06)
➢ Require effort to build a model (JUXTA SOSP’15)

● Model checking framework MCFS
➢ Through coverage
➢ Avoids requiring an abstract model
➢ Keeps original behavior of file systems and OS
➢ Applies to most file systems (kernel or user space)
➢ Runs with high performance

3. Key Challenges and Our Attempts
● Unbounded states to explore
➢ Compute abstract states to avoid duplicate states, see Figure 1
● Cannot access in-memory states of file systems
➢ Only track the persistent states from backing storage

● Cannot restore in-kernel states (cache incoherency)
➢ Unmount and remount file system b/w each syscall (hide bug!)

● How to track full file system states?
➢ VeriFS: RAM-based FUSE file system, see Figure 2
■ Provides checkpoint and restore APIs via ioctl

(ioctl_CHECKPOINT, ioctl_RESTORE)

4. Evaluation and Conclusions

● Ability to find bugs
➢ Found two bugs for VeriFS

■ Incorrect truncate
■ Cache incoherency between OS kernel and VeriFS

➢ Expect to discover bugs in other file systems
● Conclusions
➢ Need OS-level Support to address our challenges
➢ Can be applied to other system software
● Future work
➢ Checkpoint/restore API for Linux VFS and Ganesha NFS

■ Model-check more file systems
➢ Address current MCFS limitations (e.g., false positives)
➢ Swarm-verification runs model checking in parallel

2. MCFS Framework Design
1. Randomized Test Engines

● Issue system call sequences to each tested file system
2. Optimized State-Space Exploration

● Lets MCFS execute all permutations
3. Integrity Checks

● Verify all tested file systems have identical states
➢ Any discrepancy <=> A possible bug

4. Abstraction Functions
● Convert concrete states into abstract ones

5. Logging
● Reports precise sequences of operation for debugging and

reproducibility Figure 1: MCFS Model checking framework

Figure 2: VeriFS architecture
yifeliu@cs.stonybrook.edufsl.cs.stonybrook.edu/~yifei

