
PROGRESS IMBALANCE IN 
MULTI-PROCESS PERFORMANCE
Arghya Bhattacharya, Ph.D. Candidate, Algorithms Lab, CS@SBU

ABSTRACT
Most modern systems have multi-core, multi-threaded, and 
time-shared architecture and processes run on a shared cache. 
Understanding the behavior of a cache that several concurrent 
processes share is crucial for application designers. Multiple 
homogeneous threads, threads running copies of the same 
program, may suffer from an imbalance of cache-residency [1].
  We observe an interesting phenomenon: if we run multiple 
copies of the same program (homogeneous instances), each has 
private-data, and share a given shared memory, we observe a 
progress imbalance of the copies of the program; the program 
instances finish at different times.
  We run up to six concurrent instances of two cache-oblivious 
divide-and-conquer and one cache-aware cubic matrix 
multiplication algorithms. We compare the differences in the 
running time of the program instances. We observe that the 
relative standard deviation of the running time increases with 
the number of concurrent instances. The more concurrent 
programs we run, the more progress imbalance among them 
we get to observe. One potential reason is an imbalance in the 
cache-sharing among the instances; indeed, the program 
instances with a transient stall suffer from a lesser share of 
cache throughout the run, leading to much higher running time.

KEY FINDINGS
> Multiple concurrent processes fail to share the memory gracefully.

> Some of the concurrent processes dominate others.

> The ones who dominate others are likely to have more share of the 
cache, leading to enjoy more progress, and ultimately causing a 
progress imbalance.

CONCLUSION
Application designers and system researchers need to keep 
this phenomenon in mind while designing systems. In the 
future, we hope to explore some algorithmic solutions to deal 
with this phenomenon.

[1] Dice et al. Brief Announcement: Persistent Unfairness Arising from Cache Residency 
Imbalance. SPAA ’14.
[2] Bender et al. Cache-adaptive  Analysis.  SPAA ‘16.
[3] Chowdhury et al.  Autogen: Automatic Discovery of Efficient Recursive 
Divide-&-Conquer Algorithms for Solving Dynamic Programming Problems. ACM TPC 
’17.
[4] Hong and Kung. I/O Complexity: The Red-blue Pebble Game. STOC ’81.

EXPERIMENTAL SETUP
Algorithms: We observe the running time of two cache-oblivious 
cubic matrix multiplication algorithms, one of which does in-place 
additions (MM-INPLACE), another does additions outside the 
recursion using extra space and linear scans (MM-SCAN) [2]. We also 
observe the running time for the cache-aware block matrix 
multiplication algorithm (MM-BLOCK) [4]. Each program multiplies 
two square matrices of width 2048; the input matrices and the output 
matrix take a total of 48 MiB.
  System: The input and output data of each program is stored in the 
hard-disk and mapped to the memory using a file-backed mmap. We 
restrict the memory of a program by running it inside a Linux cgroup.
 Experiment: We run up to 6 concurrent instances of the matrix 
multiplication programs [3]; in each run, a fixed amount of memory is 
given (k ⨉ 10 MiB memory for k concurrent instances), and the 
concurrent instances share this memory.
  To know why: We run 6 concurrent instances, we employ a uniform 
transient stall to all the program instances; either all of them stall at 
the end (homogeneous) or a half stall in the middle and the other half 
stall at the end (heterogeneous).
  Quick review: For example, we run 3 concurrent instances of a 
program. The running-times of the instances are X1, X2, and X3. 
Mean running time = X = (X1 + X2 + X3) / 3 
Standard Deviation, SD = √Var =√( [(X1 - X)2 + (X2 - X)2 + (X3 - X)2 ] / 3)  
Relative Standard Deviation, RSD = SD / X

R
S

D
 O

F 
R

U
N

N
IN

G
 

TI
M

E
 *

 1
00

NUMBER OF CONCURRENT INSTANCES

R
S

D
 O

F 
R

U
N

N
IN

G
 

TI
M

E
 *

 1
00

          MM-BLOCK MM-INPLACE MM-SCAN


