Improving Dependence Explosion by Dynamic Tag Update
Sanaz Sheikhi, Md Nahid Hossain, R.Sekar
Secure System Labs

Dependence Explosion Problem

- **Dependency graph** captures casual relations between system entities (processes, files, sockets, ...)
- **Used for** attack detection and scenario reconstruction

- **Dependence explosion**: every output of a process becomes dependent on every earlier input operation.
- **Long running processes** cause dependence explosion and make the graph so huge.

Existing Approaches Drawbacks

- Fine-grained dependence tracking: instrumentation of applications and/or OS code
- Model-assisted search
- Analyst-driven search

Our Approach

- **Tag Decay**: Gradually lift data tag d of benign processes to a quiescent value.
 \[d = \max(d_0, d_0 + r^i + (1 - r^i) \cdot T_q) \]
- **Tag Attenuation**: Attenuate tags propagating from benign subjects to objects.
 \[\text{obj.
dtag} = \text{sub.
dtag} + a \]

Improved Attenuation and Decay

- Attenuation/Decay are not affective on Windows audit data
- Observing broken data or specific behavior of processes in Windows.
- **Solution**: learning benign behavior of the system and update subject and object tags accordingly.
- **Attenuation/Decay rates** are dynamic regarding the training results.

Learning System Behavior

- **Process profile**: $(\text{proc}, W_j, \text{alarm}_k, \text{count})$
 Number of each alarm, process generates in each time windows
- **Object Profile**: $(\text{Object}, W_j, \text{event}_k, \text{count})$
 Number of each event, happening on object in each time window

Dynamic Tag Update

- **Dynamic attenuation**: W_j: ratio of access (read/write) to the object based on the profile
 \[\text{obj.
dtag}' = \text{obj.
dtag} + w_j \]
- **Dynamic decay**: r_i: ratio of process activity in the time window based on the profile
 \[\text{Subj.
dtag} = \text{sub.
dtag} + r_i \cdot T_q \]

Evaluation

Datasets: DARPA TC Engagement 4 Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Events</th>
<th>Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1</td>
<td>45M</td>
<td>SSH/RDP, Phishing, PowerShell, Firefox Draxon</td>
</tr>
<tr>
<td>W_2</td>
<td>49M</td>
<td>Firefox Draxon, Code Injection</td>
</tr>
</tbody>
</table>

Scenario graph from W_2