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Summary
» Frank-Wolfe algorithm is slow because of the zig- Continuous Time Frank-Wolfe (FW) [4]
zagging.
» Continuous Time Frank-Wolfe does not zig-zag. ‘
» We try to imitate the Continuous Time Frank-Wolfe. r(t) = vy(t)(s(t) —x(t)),
s(t) € argminVf(z(t))! (s — z(t))
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Constrained optimization problem:
fis differentiable, convex.
D is a convex compact constraint set.
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. Let x(9 e D
. for k =0...K do Continuous vs discrete. A comparison of the numerical error vs compared with derived rate.
s(k) = argmin Vf(x"))Ts, > linear minimization oracle (LMO)
seD
dXé"“’ = 4Rtk 4 (1 — 41X, Proposition: Suppose y(t) = ﬁ , and for some constant ¢ >
. enda 1or
) 0, the Continuous Time FW has an upper bound of
*y(k) = ——.
— f* C
e Ify(k) =0 (kip) with p > 1, a sequence becomes f(x®) — f < ( ¢ ) _ 0(1
* C
summable. f(x(0) - f c+t t
Motivation Runge-Kutta Multistep Methods

Main drawback is the slow convergence rate [3].
"Vanilla" FW method can only reach O(1/k) convergence
FW Trajectory tends to zigzag.

Zigzagging makes acceleration challenging.

« A Generalized Class of Higher Order Methods to Discretize
Continuous Time FW:
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Continuous Time FW does not zigzag.
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Proposition (Positive): All Runge-Kutta methods converge at
worst with rate

K * 1
fOM) = fr<0@)
Proposition (Negative): The worst best case bound for F\W-
RK, for any RK method, is of order 0(%).
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Better Search Direction

More Aggressive Line Search:

%) = max{ 52,7},

5 — - F(xK)
7= jmax {v: f(x

x(k+1) = A(K)g(K) 1 (1 — (k) )x(k)

7(k)ay(k)) < f(x(k))}

Better Use of Momentum [5]:

y(k) = (1 — i )xE) + b,

2041 = (1 — 3 )2 + 7 VF(y®),
vkt = LMOp (z(k+D),

xkF1) = (1 = )x(9) - ypyl)

Experiments
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Figure 5: Compressed sensing. 500 samples, 100 features, 10% sparsity ground truth, o = 1000. L
= line search. Performed over 10 trials.
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Figure 6: Sparse logistic regression. m = 2000 samples, n = 5000 features. o = 250. M =
momentum.
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