
GraphZeppelin: 

Processing Enormous, Changing Graphs
Evan West, David Tench, Victor Zhang, Michael A. Bender, Abiyaz Chowdhury, J. Ahmed Dellas, Martin Farach-Colton, 
Tyler Seip, Kenny Zhang

Stony Brook University, Rutgers University, MongoDB

Analyzing Evolving Graphs

Example Problem: Find the connected components of a graph 
with  vertices subject to a stream of edge insertions and 
deletions.


Semi-Streaming Constraint:  space.

n

O(n · polylog(n))

External Memory Data-Structures

GraphZeppelin uses a Gutter-Tree to efficiently buffer 
updates in external memory.


Buffering updates allows us to keep sketches on disk with 
minimal performance impact.


Each time we update a sketch we apply a large batch of 
updates to amortize the cost of accessing the disk.

Efficient Graph-Sketching

GraphZeppelin: C++ 
Library for finding the 
connected components of a 
graph stream.


Simultaneously an optimal 
external memory and 
space optimal algorithm 
for connected components


GraphZeppelin uses CubeSketch, a new linear sketching 
algorithm, it is faster and more compact than AGM’s 
algorithm.


GraphZeppelin’s memory usage scales with the number of 
vertices not the number of edges. We do best when the 
graph is dense

Graph Sketching Theory

Compressing graph stream via 

linear sketching uses  space.


Even though stream updates are compressed 
into the sketch one by one we can still 
recover connected components w.h.p

[Ahn, Guda, McGregor SODA 2012]

O(n log3 n)

For a graph with a billion vertices, before considering 
constants  = 25 TB. Too big for RAM!109 × log3(109)

RAM SSD

Modern SSDs bandwidth is 
approaching that of RAM 
but latency is high.

Can we get sketching to 
work on disk — without 
being slow?

Sketching Theory in Practice

GraphZeppelin is Space-Efficient

Graf-Zeppelin, NOT the  
Hindenburg, did not explode

GraphZeppelin is Fast, Even on Disk

Implications

Graph streaming algorithms should be designed as external 
memory algorithms.


These new algorithms have the ability to outperform the state 
of the art.

Root Buffer
Edge Updates

Internal NodeInternal Node

. . .

. . . . . .
⋮ ⋮

Leaf Node Leaf Node Leaf Node Leaf Node

Update Batches

. . .


