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Manifold assumption and Distribution transform

Manifold Distribution Hypothesis: a specific class of natural data is 

concentrated on a low dim manifold in the high dim data space
Distribution Transformation: the generative model computes a 
transport map from the given continuous distribution to the real 
data distribution.
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The AE-OT : Conqure Mode Collapse/Mixture

Mode Collapse and Mode Mixture

Mode collapse:; Generate part of the modes for multi-mode dataset
Mode mixture: Generate samples that are mixtures of multi-mode
Explaination: Approximate the intrinsic highly discontinuous 
probability transform map by continuous DNNs

Semi-discrete Optimal transport

We compute the semi-discrete OT map from Uniform distribution to the 
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Experimental Results
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