
Efficient Audit Logging with eBPF
Rohit Aich
PhD Student, Secure Systems Lab

MOTIVATION

1. Large enterprises continue to be marred by stealthy 
and long-term cyber-attacks, commonly known as 
Advanced Persistent Threats (APTs).

2. The only way to detect and prevent such attacks is 
forensic analyses. The system audit logs provide 
crucial information for such analyses.

3. The existing approaches of logging system audit data 
involves installing one or more kernel modules, 
hence difficult to deploy and maintain.

4. Existing approaches like Linux Audit Daemon suffer 
from huge run-time and space overhead. 

5. Also, system logs tend to be unnecessarily verbose, 
making it difficult to analyze them.

Comparison of runtime with Linux Auditd 

OUR APPROACH AND ITS KEY 
BENEFITS

● Introduces a lightweight audit logger written in BPF 
C and Python.

● Simple installation and deployment techniques, does 
not require to modify or rebuild the kernel.

● Leverages eBPF technologies to hook into system 
calls at predefined static tracepoints.

● Traces all system call arguments and return values 
and sends to userspace by a high-performance ring 
buffer.

● The system is absolutely lossless and thread-safe.

PERFORMANCE & OPTIMIZATION

1. So far, our system supports the most frequent 25 
system calls. As of now, the hooking and tracing by 
the eBPF system introduces a small run-time 
overhead.

2. The graph shows the runtime comparison of our 
system with the Linux Audit Daemon, with an 
experimental command.

3. We are currently trying to optimize the system to 
provide better run-time and storage usage 
performance.

4. We are building a cache-based filter inside our eBPF 
system to prevent redundant entries from getting 
logged.

What is eBPF?

1. eBPF (Extended Berkeley Packet Filters) is a 
technology that can run sandboxed programs inside 
the kernel.

2. Has a register based VM using a custom 64 bit RISC 
instruction set capable of running Just-in-Time 
native-compiled "BPF programs".

3. Programs are event-driven; run when the kernel or 
an application passes a certain hook point.

4. No need to change kernel source code or load new 
modules.

5. Pre-defined hooks include system calls, network 
events, and several others.

System Architecture and Workflow


