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Abstract

Support of high performance queries on large volumes of spatial data has become increasingly im-
portant in many application domains, including geospatial problems in numerous disciplines, location
based services, and emerging medical imaging applications. There are two major challenges for man-
aging massive spatial data to support spatial queries: the explosion of spatial data, and the high com-
putational complexity of spatial queries. Our goal is to develop a general framework to support high
performance spatial queries and analytics for spatial big data on MapReduce and CPU-GPU hybrid
platforms. In this paper, we introduce Hadoop-GIS — a scalable and high performance spatial data
warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple
types of spatial queries on MapReduce through skew-aware spatial partitioning, on-demand indexing,
customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce,
and effective methods for amending query results through handling boundary objects. To accelerate
compute-intensive geometric operations, GPU based geometric computation algorithms are integrated
into MapReduce pipelines. Our experiments have demonstrated that Hadoop-GlS is highly efficient and
scalable, and outperforms parallel spatial DBMS for compute-intensive spatial queries.

1 Introduction

The proliferation of cost effective and ubiquitous positioning technologies has enabled the capturing of spa-
tially oriented data at an unprecedented scale and rate. Volunteered Geographic Information (VGI) such as
OpenStreetMap [1] further accelerates the generation of massive spatial information from community users.
Analyzing large amounts of spatial data to derive values and guide decision making has become essential to
business success and scientific discovery.

The rapid growth of spatial data has been driven by not only industrial applications, but also emerging
scientific applications that are increasingly data- and compute- intensive. With the rapid improvement of data
acquisition technologies, it has become more efficient to capture extremely large spatial data to support scientific
research. For example, digital pathology imaging has become an emerging field in the past decade, where
examination of high resolution scanned images of tissue specimens enables novel and more effective methods
for disease diagnosis and therapy. Pathology image analysis offers a means of rapidly carrying out quantitative,
reproducible measurements of micro-anatomical features in high-resolution images. Regions of micro-anatomic
objects such as nuclei and cells are computed through image segmentation algorithms, represented with their
boundaries, and image features are extracted from these objects. Exploring the results of such analysis involves
complex queries such as spatial cross-matching or overlay, spatial proximity computations between objects,



and queries for global spatial pattern discovery. These queries often involve billions of spatial objects and
extensive geometric computations. For example, spatial cross-matching is often used to compare and evaluate
image segmentation algorithm results [14] (Figure 1). In particular, the spatial cross-matching/overlay problem
involves identifying and comparing objects belonging to a wide range of different observations.
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Figure 1: Examples spatial query cases. (a) pathology imaging; (b) GIS applications.

A major requirement for the data intensive spatial applications is fast query response which requires a scal-
able architecture that can query spatial data on a large scale. Another requirement is to support queries on a cost
effective architecture such as commodity clusters or cloud environments. With the rapid improvement of instru-
ment resolutions, increased accuracy of data analysis methods, and the massive scale of observed data, complex
spatial queries have become increasingly data- and compute-intensive. A typical whole slide pathology image
contains more than 100 billion pixels, millions of objects, and 100 million derived image features. A single study
may involve thousands of images analyzed with dozens of algorithms - with varying parameters - to generate
many different result sets to be compared and consolidated, at the scale of tens of terabytes. In addition, the
aforementioned VGI also enables fast and massive geospatial data collection. Besides the data scale challenge,
most spatial queries involve geometric computations that are frequently compute-intensive. While the spatial
filtering using minimum bounding boxes (MBBs) can be accelerated through spatial access methods, spatial
refinements such as polygon intersection verification are highly expensive operations. For instance, spatial join
queries such as spatial cross-matching or spatial overlay could require significant numbers of CPU operations
to process. This is mainly due to the polynomial complexity of many geometric computation methods. Such
compute-intensive geometric computation, combined with the big data challenge, poses significant challenges
to efficient spatial applications. There is major demand for viable spatial big data solutions from diverse fields.

Traditional spatial database management systems (SDBMSs) have been used for managing and querying
spatial data, through extended spatial capabilities on top of object-relational database management systems.
These systems often have major limitations on querying spatial data at massive scale, although parallel RDBMS
architectures [9] are available. Parallel SDBMSs tend to reduce the I/O bottleneck through data partitioning
but are not optimized for compute intensive operations such as geometric computations. Furthermore, parallel
SDBMS architecture often lacks effective spatial partitioning mechanism to balance data and task loads across
partitions. The high data loading overhead is another major bottleneck for SDBMS based solutions [10, 13, 14].

In contrast, MapReduce based computing model provides a highly scalable, reliable, elastic and cost ef-
fective framework for storing and processing massive data on a cluster or in cloud environment. While the
MapReduce model fits amiably with large scale problems through its key-based partitioning, spatial queries and
analytics are intrinsically complex and difficult to adapt into this model due to its multi-dimensional nature.
Spatial partitioning poses two major problems to be handled: spatial data skew problem and boundary object



problem. The first could lead to load imbalance of tasks in distributed systems and thus result in long query
response time, and the second could lead to incorrect query results if not handled properly. Furthermore, spatial
query methods have to be adapted so that they can be mapped into partition based query processing framework
while preserving the correct query semantics. Spatial queries are also intrinsically complex which often rely on
effective access methods to reduce the search space and alleviate the high cost of geometric computations.

Meanwhile, hybrid systems combining CPUs and GPUs are becoming commonly available in commodity
clusters, but the computational capacity of such systems is often underutilized. There is a general trend towards a
simplified programming model such as MapReduce and hybrid computing architectures for processing massive
data, but there is a significant research gap in developing new spatial querying and analytical methods to run on
such architectures.

We have developed Hadoop-GIS [2, 3, 4, 5, 6, 12] — a spatial data warehousing system over MapReduce,
to support highly scalable and efficient spatial queries and anaytics on large scale data. Hadoop-GIS provides
a framework to parallelize multiple types of spatial queries and convert them into MapReduce based query
pipelines. Specifically, Hadoop-GIS offers data skew aware spatial data partitioning to achieve task paralleliza-
tion, an indexing-driven spatial query engine to process spatial queries, implicit query parallelization through
MapReduce, and boundary object handling to generate accurate results. In addition, we have evolved GPU based
spatial operators to accelerate heavy duty geometric computation, and integrated them into MapReduce based
query pipelines.

2 Overview

The main objective of Hadoop-GIS is to provide a highly scalable, cost-effective, efficient spatial query process-
ing system for data- and compute-intensive spatial applications, that can take advantage of MapReduce running
on commodity clusters and CPU-GPU hybrid platforms. We first create new spatial data processing methods
and pipelines with spatial partition level parallelism through the MapReduce programming model, and develop
multi-level indexing methods to accelerate spatial data processing. We provide two critical components to en-
able such partition based parallelism by investigating effective and scalable spatial partitioning in MapReduce
(pre-processing), and query normalization methods. To maximize execution performance, we fully exploit both
thread-level and data-level parallelisms and utilize SIMD (Single Instruction Multiple Data) vector units to par-
allelize spatial operations to support object level (via grouping of many objects) and intra-object level parallelism
(via breaking down an object into many smaller components), and integrate them into MapReduce pipelines. In
MapReduce environment, we propose the following steps on running a typical spatial query, as shown in Algo-
rithm 1. In step A, we effectively partition the input to generate tiles. In step B, we assign tile UIDs to spatial
objects and store the objects in the Hadoop Distributed File System (HDFS). In step C we pre-process the query,
and perform a preliminary filtering based on the global region index derived from the data partitioning in step
A. In step D, we perform a tile based spatial query processing in which tiles run as independent MapReduce
tasks in parallel. In step E, we process the boundary objects to remove duplicate objects and normalize the query
result. In step F, we perform a post processing required for certain spatial query types. In step G, we perform
aggregations and any additional operators, and output results to HDFS.

2.1 Real-time Spatial Query Engine

A fundamental component of Hadoop-GIS is its standalone spatial query engine. Porting a spatial database
engine for such purpose is not feasible, due to its tight integration with RDBMS engine and complexity on setup
and optimization. We developed a Real-time Spatial Query Engine (RESQUE) to support spatial query process-
ing. RESQUE takes advantage of global tile indexes and local on-demand indexes to support efficient spatial
queries. In addition, RESQUE is fully optimized, supports data compression, and incurs very low overhead on
data loading. Thus, RESQUE is a highly efficient spatial query engine compared to a traditional SDBMS engine.



Algorithm 1: Typical workflow of spatial query processing on MapReduce

A. Data/space partitioning;
B. Data storage of partitioned data on HDFS;
C. Pre-query processing (optional);
D. for tile in input_collection do
Index building for objects in the tile;
L Tile based spatial querying processing;

E. Boundary object handling;

F. Post-query processing (optional);
G. Data aggregation;

H. Result storage on HDFS:

RESQUE is compiled as a shared library which can be easily deployed in a cluster environment.

Hadoop-GIS takes advantage of spatial access methods for query processing with two approaches. At the
higher level, Hadoop-GIS creates global region based spatial indexes of partitioned tiles for HDFS file split
filtering. Consequently, for many spatial queries such as containment queries, the system can efficiently filter
most irrelevant tiles through this global region index. The global region index is small and can be stored in
HDEFS and shared across cluster nodes through Hadoop distributed cache mechanism. At the tile level, RESQUE
supports an indexing on demand approach by building tile based spatial indexes on the fly, mainly for query
processing purpose, and storing index files in the main memory. Since the tile size is relatively small, index
building on a single tile is fast and significantly improves spatial query processing performance. Our experiments
show that index building consumes very small fraction of overall query processing cost, and it is negligible for
compute-and data-intensive queries such as cross-matching.

2.2 MapReduce Based Parallel Query Execution

Instead of using explicit spatial query parallelization as summarized in [7], we take an implicit parallelization
approach by leveraging MapReduce. This will much simplify the development and management of query jobs
on clusters. As data is spatially partitioned, the tile name or UID forms the key for MapReduce, and identifying
spatial objects of tiles can be performed in mapping phase. Depending on the query complexity, spatial queries
can be implemented as map functions, reduce functions or combination of both. Based on the query types, dif-
ferent query pipelines are executed in MapReduce. As many spatial queries involve high complexity geometric
computations, query parallelization through MapReduce can significantly reduce query response time.

2.3 Boundary Object Handling

In the past, two approaches were proposed to handle boundary objects in a parallel query processing scenario,
namely Multiple Assignment and Multiple Matching [16]. In Multiple Assignment, the partitioning step repli-
cates boundary crossing objects and assigns them to multiple tiles. In Multiple Matching, partitioning step
assigns an boundary crossing object to a single tile, but the object may appear in multiple tile pairs for spatial
joins. While the Multiple Matching approach avoids storage overhead, a single tile may have to be read multiple
times for query processing, which could incur increase in both computation and I/O. The Multiple Assignment
approach is simple to implement with no modification to spatial computation algorithms and fits nicely to the
MapReduce programming model. For example, spatial join on tiles with Multiple Assignment based partition-
ing can be corrected by eliminating duplicated object pairs from the query result set, which can be implemented
as an additional MapReduce job [8, 16].



3 Spatial Data Partitioning

Geospatial data tends to be heavily skewed. For example, if OpenStreetMap is partitioned into 1000 x 1000
fixed size tiles, the number of objects contained in the most skewed tile is nearly three orders of magnitude
more than the one in an average tile. Such large skewed tiles could significantly increase the response time in a
parallel computing environment due to the straggling tiles. Thus effective and efficient spatial data partitioning
is essential for scalable spatial queries running in MapReduce.

Spatial partitioning approaches generate boundary objects that cross multiple partitions, thus violating the
partition independence. Spatial query processing algorithms get around the boundary problem by using a
replicate-and-filter approach [9, 16] in which boundary objects are replicated to multiple spatial partitions, and
side effects of such replication is remedied by filtering the duplicates at the end of the query processing phase.
This process adds extra query processing overhead proportional to the number of boundary objects. Therefore,
a good spatial partitioning approach should minimize the number of boundary objects.

We develop SATO [12], an effective and scalable partitioning framework which produces balanced regions
while minimizing the number of boundary objects. The partitioning methods are designed for scalability, which
can be easily parallelized for high performance. SATO stands for four main steps in the partitioning pipeline:
Sample, Aanalyze, Tear, and Optimize. First, a small fraction of the dataset is sampled to identify overall global
data distribution with potential dense regions. Next, the sampled data is analyzed to produce a coarse partition
scheme in which each partition region is expected to contain roughly equal amounts of spatial objects. Then
these coarse partition regions are passed to the partitioning component that tears the regions into more granular
partitions satisfying the partition requirements. Finally, the generated partitions are analyzed to produce multi-
level partition indexes and additional partition statistics which can be used for optimizing spatial queries.

SATO integrates multiple partitioning algorithms that can handle diverse datasets, and each of the algorithm
has its own merits [12]. SATO also provides MapReduce based implementation of the spatial partitioning
methods through two alternative approaches: top-down approach with region level parallelization, and bottom-
up approach with object level parallelization.

4 MapReduce Based Spatial Query Processing

RESQUE provides the core query engine to support spatial queries, which enables us to to develop a large scale
spatial query processing framework based on MapReduce. Our approach is based on spatial data partitioning,
tile based spatial query processing with MapReduce, and result normalization for tile boundary objects.

4.1 Spatial Join with MapReduce

Spatial join is among the most frequently used and costly queries in many spatial applications. Next, we discuss
how to map spatial join queries into the MapReduce computing model. We first show an example spatial join
query for spatial cross-matching in SQL, as shown in Figure 2. This query finds all intersecting polygon pairs
between two sets of objects generated from an image by two different algorithms, and computes the overlap
ratios (intersection-to-union ratios) and centroid distances of the pairs. The table markup_polygon represents
the boundary as polygon, algorithm UID as algrithm_uid. The SQL syntax comes with spatial extensions such
as spatial relationship operator ST_INTERSECTS, spatial object operators ST_INTERSECTION and ST_UNION,
and spatial measurement functions ST_CENTROID, ST_DISTANCE, and ST_AREA.

For simplicity, we first present how to process the spatial join above with MapReduce ignoring boundary
objects, then we return to discuss boundary handling. Input datasets are partitioned into tiles during the data
loading phase, and each record is assigned a unique partition id. The spatial join query is implemented as
a MapReduce query operator processed in following three steps: i) Map step: the input datasets are scanned
for Map operator, and each mapper, after applying user defined function or filter operation, emits the records



SELECT
ST AREA (ST INTERSECTION (ta.polygon,tb.polygon))/
ST_AREA (ST_UNION (ta.polygon,tb.polygon)) AS ratio,
ST_DISTANCE (ST_CENTROID (tb.polygon),
ST_CENTROID (ta.polygon)) AS distance,
FROM markup_polygon ta JOIN markup_polygon tb ON
ST_INTERSECTS (ta.polygon, tb.polygon) = TRUE
: WHERE ta.algrithm uid='Al’ AND tb.algrithm_uid='A2’ ;
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Figure 2: An example spatial join (cross-matching) query

with their parition id as the key along with a tag to indicate which dataset the records belong to. ii) shuffle
step: records are sorted and shuffled to group the records having the same key (same partition id), and the
intermediate results are materialized to local disks. iii) Reduce step: each reducer will be assigned to process a
single partition, and a spatial join processing algorithm, such as plane-sweep join or index based join, is used to
process the single partition. The join algorithm used for processing the single partition can be an in-memory or
a disk based depending on the size of the partition. In addition, during the execution, Hadoop-GIS constructs an
in-memory R*-Tree for each dataset in a partition, and uses those indexes to process spatial join query.

4.2 Support of other Query Types with MapReduce

Other types of spatial queries follow a similar processing pattern as shown in Algorithm 1. Spatial selection or
containment is a simple query type in which objects geometrically contained in selection region are returned.
For example, in a medical imaging scenario, users may be interested in the cell features which are contained
in a cancerous tissue region. Since data is organized in partitions, containment queries can be processed in a
filter-and-refine fashion. In the filter step, partitions disjoint from the query region are excluded from further
processing. In the refinement step, the candidate objects are checked with the precise geometry test.

The global region index is used to generate a selective table scan operation which only scans the file splits
potentially containing the query results. The query would be translated into a map only MapReduce program
as shown in [6]. Support of multi-way spatial join queries and nearest neighbor queries follow a similar pattern
and are discussed in [5].

For K-nearest neighbors search, Hadoop-GIS provides two algorithms for an application scenario where
the query is processed over a set of query objects and the cardinality of one set of objects is much smaller
than the other. For example, a query in pathology imaging would, for each stem cell, find the nearest blood
vessel, compute the variation of intensity of each biological property associated with the cell in respect to the
distance, and return the density distribution of blood vessels around each cell. In this case the number of cells is
significantly larger than the number of blood vessels. Both algorithms [5] use a replication strategy to parallelize
nearest neighbor queries. Specifically, the larger cardinality dataset is partitioned and distributed over HDFS,
and mappers replicate the smaller cardinality dataset to each node. Each reducer builds an in-memory index
structure, such as Voronoi diagram or R-Tree, on the smaller dataset, and processes the query over the larger
dataset utilizing the index.

4.3 Boundary Handling

In partition based spatial query processing, some spatial objects may lie on partition boundaries. As the partition
size gets smaller, the percentage of boundary objects increases. In general, the fraction of boundary objects is
inversely proportional to the size of the partition. Boundary objects pose the challenge that they belong logically
to multiple disjoint partitions and would generate duplicate results.

Hadoop-GIS remedies the boundary problem in a simple but effective way. If a query requires to return
complete query result, Hadoop-GIS generates a query plan which contains a pre-processing task and a post-



processing task. In the pre-processing task, the boundary objects are duplicated and assigned to multiple in-
tersecting partitions (multiple assignment). When each partition is processed independently during query exe-
cution, the results are not yet correct due to the duplicates. In the post-processing step, results from multiple
partitions will be normalized, e.g., to eliminate duplicate records by checking the object uids, which are inter-
nally assigned and globally unique. In the post-processing step, objects will go through a filtering process that
eliminates duplicate records.

Intuitively, such approach would incur extra query processing cost due to the replication and duplicate elim-
ination steps. However, this additional cost is very small and insignificant compared to the overall query pro-
cessing time [6].

4.4 Performance

The RESQUE engine is highly efficient compared to traditional spatial engine [6, 5]. In particular, the on-
demand R*-Tree construction cost is less than one percent of overall spatial join cost, and it does not incur any
index maintenance overhead as we discard the index after processing the query. The geometric computation is
the dominant cost in cross matching spatial joins. While this is difficult to support through I/O optimization
oriented parallel spatial database systems, Hadoop-GIS is well adapted for such computations and outperforms
parallel spatial DBMS [6]. In particular, Hadoop-GIS achieves high scalability as the on-demand spatial query
engine can be easily executed in multiple parallel MapReduce tasks on cluster nodes.

S GPU Supported Spatial Queries

GPUs employ a SIMD architecture that executes the same instruction logic on a large number of cores simultane-
ously. Many spatial algorithms and geometry computations do not naturally fit into such parallelization model.
Two alternative approaches are proposed for GPU based geometric operation, in particular, polygon intersection.
Monte-Carlo Based Method. This approach uses Monte-Carlo method for rasterization, which transforms
the combined spatial space of two polygons into pixel based representation. After such transformation, the
original vector geometric computation can now be performed on the pixel based representation. The intersection
area thus can be determined by counting pixels belonging to both polygons. A common approach to check
if a pixel is within a polygon is to use ray tracing [11] for point-in-polygon test. As the operation for each
pixel is fully independent from each other, they can be effectively executed in parallel by GPU threads [15].
Rasterization resolution is critical for achieving best performance. A high resolution rasterization yields larger
number of pixels, and consequently increases the compute intensity of the geometry computations. A low
resolution rasterization could increase computation efficiency, but will lead to loss of accuracy.

PixelBox. A more adaptive approach [15] — named PixelBox — can reduce the computation intensity while
ensuring the computation accuracy. Specifically, PixelBox first partitions the space into cells or boxes. For
boxes containing edges of polygons, rasterization is performed as Monte-Carlo approach. In this way, group of
pixels in a box could be tested together for the containment relationship with a polygon, and pixel level testing
is performed only for edge crossing areas. Thus, the computational efficiency could be much improved. The
experiments demonstrate two orders performance improvement for intersection operation compared to a single
thread CPU algorithm.

Integration of GPU Based Geometric Computation into MapReduce. To support a more efficient execu-
tion on accelerated systems, we have been extending Hadoop-GIS for execution of spatial query operations
with GPUs in distributed memory machines. The goal is to design an efficient bridge interface between the
MapReduce program and the GPU program. Many small tasks sent to GPU may incur much overhead on
communication and subdue the benefit of GPU. We propose a prediction model to decide the granularity of
tasks for GPU invocation, by considering both data communication cost and execution cost for different types
of spatial operations. Another goal is to achieve load balancing and data/operation aware task assignment in



the CPU/GPU hybrid environment. We first take a knowledge based approach to decide assignments to CPU
or GPU, and then build efficient task migration between the CPU and the GPU in case of an unbalanced task
assignment. Preliminary work is reported in [4].

6 Software

The high adaptability of the framework allows the system to be integrated into computer clusters or cloud
computing environments such as Amazon EC2. Hadoop-GIS is available as a set of library functions, including
input data transformation, data partitioning, spatial indexing and spatial query processing, and MapReduce
based execution. It also includes pipelines for combined multiple query jobs. We implemented the core spatial
indexing and querying methods in C++, and implemented the MapReduce programs in Java. We use the Hadoop
streaming mechanism to bridge the communication between C++ libraries and Java based MapReduce programs.
The pipelines are as set of scripts which can be easily customized. Hadoop-GIS is open source, and it can be
downloaded from the web site [2].
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