
 Center for Comprehensive Informatics

Technical Report

Hadoop-GIS: A High Performance Spatial Query System for

Analytical Medical Imaging with MapReduce

Fusheng Wang

Ablimit Aji

Qiaoling Liu

 Joel H. Saltz

CCI-TR-2011-3
August 8, 2011

Hadoop-GIS: A High Performance Spatial Query System for
Analytical Medical Imaging with MapReduce

Fusheng Wang1 Ablimit Aji2 Qiaoling Liu2 Joel H. Saltz1

1Department of Biomedical Informatics, Emory University
2Department of Mathematics and Computer Science, Emory University

{fusheng.wang, ablimit.aji, qiaoling.liu, jhsaltz}@emory.edu

ABSTRACT
Querying and analyzing large volumes of spatially oriented scien-
tific data becomes increasingly important for many applications.
For example, analyzing high-resolution digital pathology images
through computer algorithms provides rich spatially derived infor-
mation of micro-anatomic objects of human tissues. The spatial
oriented information and queries at both cellular and sub-cellular
scales share common characteristics of “Geographic Information
System (GIS)”, and provide an effective vehicle to support com-
puter aided biomedical research and clinical diagnosis through dig-
ital pathology. The scale of data could reach a million derived spa-
tial objects and hundred million features for a single image. Man-
aging and querying such spatially derived data to support complex
queries such as image-wise spatial cross-matching queries poses
two major challenges: the high complexity of geometric compu-
tation and the “big data” challenge. In this paper, we present a
system Hadoop-GIS to support high performance declarative spa-
tial queries with MapReduce. Hadoop-GIS provides an efficient
real-time spatial query engine RESQUE with dynamically built in-
dices to support on the fly spatial query processing. To support high
performance queries with cost effective architecture, we develop
a MapReduce based framework for data partitioning and staging,
parallel processing of spatial queries with RESQUE, and feature
queries with Hive, running on commodity clusters. To provide a
declarative query language and unified interface, we integrate spa-
tial query processing into Hive to build an integrated query system.
Hadoop-GIS demonstrates highly scalable performance to support
our query cases.

1. INTRODUCTION
Data-oriented scientific research largely relies on efficient accu-

rate analysis of data generated through observations or computer
simulations [10]. For example, Large Synoptic Survey Telescope
projects [3] and earthquake analysis and simulation generate large
volume of spatial and temporal oriented data. Human atlas projects
provide 3D spatial modeling of objects in human bodies such as
brain and heart [1].

In the past decade, devices that can acquire high-resolution im-
ages from whole tissue slides have become more affordable, faster,
and practical. Together with the advances in “omic” data such
as genomics and proteomics and radiology imaging, this revolu-
tionized the medical professional’s ability to rapidly capture vast
amount of multi-scale, multi-dimensional data on each patient’s ge-
netic background, biological function and structure. As this decade
progresses, significant advances in medical information technolo-
gies will be needed to transform very large volumes of multi-scale,
multi-dimensional data into actionable information to drive the dis-
covery, development, and delivery of new mechanisms of prevent-
ing, diagnosing, and healing complex disease. As discussed next,
the huge amount of spatially derived information from pathology
images contains essential knowledge to support biomedical research
and clinical diagnosis, and poses major challenges for data manage-
ment and queries.

1.1 Digital Pathology Imaging
The morphology of nuclei from pathology whole slide images

is a pivotal attribute used to classify tumors. For example, for
brain tumors (glioblastoma), nuclei appear to be round shaped with
smooth regular texture in oligodendrogliomas, whereas they are
generally more elongated with rough and irregular texture in astro-
cytomas. The classifications of brain tumor nuclei based on mor-
phology are linked to genetic and gene expression classifications.
The characterizations and classifications of micro-anatomic objects
or regions offer tremendous potential to assess patient survival and
response to treatment [19, 25].

Pathology image analysis offers a means of rapidly carrying out
quantitative, reproducible measurements of micro-anatomical fea-
tures in high-resolution pathology images and large image datasets.
Systematic analysis of large-scale image data can involve many
interrelated analyses on hundreds to tens of thousands of images,
generating tremendous amount of quantifications such as shape and
texture, as well as classifications of the quantified features. Figure
1 shows an example workflow on integrative brain tumor studies
with pathology images. In this example, regions (or markups) of
nuclei are computed through image segmentation algorithms, rep-
resented with their boundaries, and image features are extracted
from these regions [26]. Classifications are computed based on im-
age features or region classification algorithms. The derived data
could be classified into two categories: markups – spatial bound-
aries for delineating objects, and annotations – features, classifica-
tions and observations derived from images or assessed by humans.
In order to correlate micro-anatomic morphometry with molecular
profiles and clinical outcome, summary statistics on image features
are computed for each image. This process involves calculating
the mean feature vectors and the feature covariance values of all

Figure 1: Integrative Biomedical Study with Pathology Images

Figure 2: Example Spatial Query Cases in Analytical Medical
Imaging

possible feature pairs over all nuclei for every image.
Algorithm evaluation. To support computer aided diagnosis of

diseases with the emerging pathology imaging technology, it is
essential to develop and evaluate high quality image analysis al-
gorithms, in following scenarios: i) Algorithm Validation. Algo-
rithms are tested, evaluated and improved in an iterative manner by
validating algorithm results such as segmentations with human an-
notations made by pathologists. ii) Algorithm Consolidation. Mul-
tiple algorithms can be developed in a study to solve the same prob-
lem. Different algorithm results are aggregated to generate more
confident analysis results. iii) Algorithm Sensitivity Studies. An
algorithm often includes a set of parameters that can be adjusted to
adapt to different types, resolutions, and qualities of images. Ex-
ploring the sensitivity of analysis output with respect to parameter
adjustments can provide a guideline for the best deployment of al-
gorithms in different scenarios and for rapid development of robust
algorithms. One essential task for such evaluation is to cross-match
spatial boundaries of micro-anatomic objects such as nuclei seg-
mented by different approaches, such as different algorithms and
varied parameters.

1.2 Medical Imaging GIS and its Challenges
Pathology image analysis produces large scale spatially derived

information, and share common characteristics of “GIS” flavor queries.
Figure 2 demonstrates a few common queries: i) Point Query: a
simple human marked point can be used to identify an object con-
taining the point; ii) Window Query: a visualization tool can high-
light objects contained in a window from a whole slide image with
high dimension; iii) Containment Query: Objects contained in cer-
tain regions (e.g., tumor regions) pre-marked by humans or seg-

mented by region classification algorithms are used for evaluation;
and iv) Spatial Join Query (Spatial Cross-Matching) : to compare
and consolidate (segmentation) algorithm results, multiple result
sets will be cross-matched to compute the extent of intersection.
For example, a query to compute the distance and intersection ra-
tio of intersected boundaries segmented from an image by different
algorithms is a common query type, among one of the most expen-
sive query types. To compare two results from a single image, we
are cross-matching a million spatial objects with another million
spatial objects.

1.2.1 Use Cases
Scientific research is an exploratory process in which large amount

of preliminary analytical results may be quickly generated for vali-
dating different approaches or initial discoveries, and validated and
curated results may need to be made persistent for archiving, query-
ing and sharing. Similarly for digital pathology imaging, there are
two major scenarios:

Scenario 1: Data models and data management architecture to
manage image data products, feature sets and results from com-
puter algorithms. The data management infrastructure will provide
public shared data archives with well-understood results and algo-
rithm performance and to support further studies and algorithm
evaluation in a community of biomedical researchers.

Scenario 2: High performance computing architecture for result
analysis, mining and evaluation. This is for on the fly data pro-
cessing for algorithm validation and comparison, or discovery of
preliminary results. In this case, short response time for queries
is needed, cost effective architecture is preferred, and results are
transient and may not need to be made persistent.

1.2.2 “Big Data” Challenges
Pathology images such as whole-slide images made by scanning

microscope slides at diagnostic resolution are very large: a typical
WSI may contain 100,000x100,000 pixels. One image may contain
millions of objects such as cells or nuclei and a hundred millions of
features. A study may involve hundreds of images obtained from
a large cohort of subjects, and and a moderate-size healthcare op-
eration can routinely generate thousands of whole slide images per
day. For large scale interrelated analysis, there may be dozens of
algorithms – with varying parameters – to generate many different
result sets to be compared and consolidated. Thus, derived data
from images of a single study is often in the scale of tens of ter-
abytes, and petabytes of data is common when analytical pathology
imaging is adopted in the clinical environment in the future. Such
big data combined with complexity of spatial queries poses major
challenges for developing effective solutions.

1.2.3 High Complexity of Geometric Computation
A typical spatial join such as spatial cross-matching first finds

matching intersected polygon pairs and then does spatial measure-
ment. A naive brute force approach by comparing all possible poly-
gon pairs is extremely expensive and may take hours or days to fin-
ish even for a single image. This is mainly due to the complexity of
common computational geometry algorithms [7] used for verifying
intersections of polygon pairs, which often come with hundreds of
points to represent each shape. While spatial access methods pro-
vide efficient matching of polygons based on their minimal bound-
ary rectangles (MBR), computations on verification of intersections
and the spatial measurements often dominate the cost of queries.

1.3 The Database Solution for Scenario 1

To support Scenario 1, an open source system called PAIS (Pathol-
ogy Analytical Imaging Standards) was developed. [8, 21]. PAIS
provides a comprehensive logical model for representing spatial
objects and annotations associated with them. Geometric shapes
such as polygons or multipolygons are used to represent the bound-
aries of segmented objects, such as tumor regions, blood vessels,
and nuclei. PAIS employs a spatial DBMS based implementa-
tion for managing data. Spatial tables are used for representa-
tion of markup objects with spatially extended data types such as
ST POLYGON. Feature and observation tables are used to cap-
ture features and classifications. The SDBMS provides functions to
support comparison of relationships across spatial objects, such as
ST intersects, ST overlaps, ST within, ST contains, and ST touches.
It also provides numerous spatial measurement functions, includ-
ing those to compute the area and centroid of a spatial object, to
calculate the distance of two spatial objects, and to generate an in-
tersected region. PAIS database provides powerful support of most
queries required, and is extended with user-defined functions for
additional queries or operations.
Parallel Spatial Database Architecture. To scale out to multiple
nodes, parallel database implementation could be used through data
partitioning with a shared-nothing parallel database architecture.
For example, in work [37], load balancing and co-location aware
partitioning algorithms are developed to generate partition keys,
which are then used to distribute data evenly across partitions. We
use a commercial DBMS with spatial extension for the implemen-
tation.

1.4 Research Questions for Scenario 2
PAIS provides a comprehensive data model and supports expres-

sive powerful queries with spatial extended SQL. It can also be
scaled out to multiple partitions for managing large volume of data.
PAIS database, however, is not suitable for Scenario 2, where on the
fly data processing is required and massive computation is needed.
Although the database supports complex queries such as spatial
joins, such queries are highly computationally intensive and could
take hours for comparing two result sets from a single image on a
database with a single partition. Scaling out such queries through
a large scale parallel database infrastructure is possible, as demon-
strated in work [37]. In the work, a five partition parallel spatial
database delivers significant performance improvement. One bot-
tleneck of database approach is data loading [31], and it takes min-
utes to load the result from a single image into the database. The
parallel database approach is also highly expensive on software and
hardware [31, 20, 32], and requires sophisticated maintenance and
tuning. A recent quote from a commercial vendor for a small scale
parallel database server costs nearly a million US dollars.

Our question is, could we develop a cost effective solution to
support Scenario 2, without expensive software license, hardware
cost and administration complexity, but could be easily scaled out
to support spatial queries? If so, could the solution provide efficient
queries as those provided by DBMS with indexing technologies,
and expressive query languages such as SQL? This motivates us to
develop Hadoop-GIS, a system that marries MapReduce (scalabil-
ity, fault tolerance and low cost) and DBMS (indexing and declar-
ative query language), as discussed next.

1.5 Our Approach: Hadoop-GIS
Hadoop-GIS is a high performance spatial query system to sup-

port complex queries for analytical pathology imaging. The ap-
proach is general and can be applied to similar “GIS” applications
in other scientific domains. Our contributions include:

• Efficient query processing and parallelization – build standalone
query application to facilitate query optimization, and partition
data to support parallelization of queries. We develop a real-
time spatial query engine (RESQUE) to dynamically build up
indexes to support efficient spatial queries;

• Scalable and cost effective solution – take advantage of cost
effective commodity clusters, and rely on MapReduce comput-
ing architecture to ease application development. We develop
highly scalable MapReduce (Hadoop) based spatial query pro-
cessing with data staging on HDFS, and support feature based
queries through Hive running on MapReduce;

• Declarative query language – ease the complexity of query
writing for biomedical researchers or developers. We develop
generalized interfaces for spatial operations, and extend Hive’s
SQL like declarative query language HiveQL to express also
spatial queries;

• Integrated system. We integrate spatial querying capabilities
into Hive engine to provide a single unified system to support
queries for analytical pathology imaging.

The paper is organized as follows. We first present the architec-
ture overview of Hadoop-GIS in Section 2. The real-time spatial
query engine is discussed in Section 3. MapReduce based spatial
query processing is presented in Section 4, and Hive based feature
query processing is discussed in Section 5. Section 6 discusses
integrated queries and query processing through integration of spa-
tial queries into Hive. Performance study is discussed in Section 7,
followed by Related Work and Conclusion.

2. ARCHITECTURE OVERVIEW

2.1 Related Approach
A database approach PAIS has been developed to support Sce-

nario 1 [8, 21, 36]. PAIS provides a comprehensive data model
to manage algorithm results, human annotations and provenance.
In PAIS model, spatial shapes are used to represent tissue regions,
cellular or subcellular objects. The PAIS database takes a spatial
DBMS to manage the spatial objects as geometric objects sup-
ported by SDBMS, and features are managed as structured tables.
The database implementation provides dozens of spatial predicates
such as INTERSECTS, and a comprehensive set of spatial measure-
ment functions. Comprehensive queries including spatial queries
can be supported directly in spatial extended SQL, and internal spa-
tial indexing can facilitate efficient query support. To scale out to
multiple nodes, a shared-nothing parallel database architecture is
provided for data partitioning and parallel data access. Load bal-
ancing and co-location aware partitioning algorithm is used to gen-
erate partition keys, which are then used to distributed data during
the loading process [37].

PAIS is developed for managing, querying and sharing results, to
support Scenario 1 summarized in the introduction. PAIS provides
a comprehensive data model to represent data and provenance, and
supports expressive powerful queries with spatial extended SQL. It
can also be scaled out to multiple partitions for managing large vol-
ume of data. PAIS database, however, is not suitable for Scenario 2,
where on the fly data processing and heavy computation is required.
For example, data loading takes about 10 minutes for an image with
about half million spatial objects. Although the database supports
complex queries such as spatial joins, such highly computationally
intensive queries could take hours for comparing two result sets for
a single image on a database with a single partition. Scaling out
such queries through a large scale parallel database infrastructure
is possible [37] but very expensive on software and hardware [31,

20, 32] cost and requires sophisticated tuning and maintenance.
The objective of the work presented in this paper is to provide a
scalable and cost effective approach to support expressive and high
performance spatial queries.

2.2 Goals
The main goal of Hadoop-GIS is to develop a highly scalable,

cost-effective, efficient and expressive integrated query process-
ing system for data intensive GIS applications, such as analytical
pathology imaging. With the rapid advancement of network tech-
nologies, and increasingly wide availability of low-cost and high-
performance commodity computers and storage systems, large-scale
distributed cluster systems can be conveniently and quickly built to
support biomedical applications. MapReduce is a distributed com-
puting programming framework with unique merits of automatic
job parallelism and fault-tolerance, which provides an effective so-
lution to the big data analysis challenge. As an open-source imple-
mentation of MapReduce, Hadoop has been widely used in prac-
tice. This motivates us to develop a MapReduce based solution to
support complex queries, especially spatial queries on large volume
of data. Meanwhile, biomedical researchers or users often prefer to
use a convenient system with declarative query interfaces. It could
be difficult or impossible for them to code MapReduce programs
(implementing map and reduce functions) for queries. High-level
declarative languages can greatly simplify the effort on developing
applications in MapReduce without hand-coding programs. These
systems include Pig Latin/Pig [29], SCOPE [18], and HiveQL/Hive
[34]. Recently we developed a system YSmart [27], a correlation
aware SQL to MapReduce translator for optimized queries, and
have it integrated into Hive 1. This inspires us to integrate spa-
tial query capabilities into such declarative query language on top
of MapReduce, as discussed next.
Query Cases. There are three major categories of queries: i) feature
aggregation queries, for example, queries on finding mean feature
vector for each image and correlations between all feature pairs.
Such queries are commonly used for integrative biomedical studies.
ii) Spatial queries, especially spatial join queries. Algorithm result
comparison and consolidation will eventually involve spatial join
queries to cross-match spatial boundaries between different result
sets. iii) Integrated spatial and feature queries, for example, feature
aggregation queries in certain regions. Queries of this type can
normally be decomposed as two steps: first step for spatial object
filtering with containment relationship queries, and second step on
aggregation on filtered spatial objects. More complex queries are
discussed in future work (Section 9).

2.3 Methods
A fundamental component we aim to provide is a standalone spa-

tial query engine with such requirements: i) is generic enough to
support a variety of spatial queries and can be extended; ii) can
be easily parallelized on clusters with decoupled spatial query pro-
cessing and (implicit) parallelization; and iii) leverage existing in-
dexing and querying methods. Porting a spatial database engine
for such purpose is not feasible, due to a different system archi-
tecture and tight integration with RDBMS engine, and complexity
on maintenance and optimization. We develop a Real-time Spatial
Query Engine (RESQUE) to support spatial query processing, as
shown in the architecture in Figure 3. RESQUE builds indexes on
the fly and uses an index based spatial join to support efficient spa-
tial queries. Besides, RESQUE is fully optimized, supports data
compression, and comes with very low overhead on data loading.

1https://issues.apache.org/jira/browse/HIVE-2206

Figure 3: Architecture Overview of Hadoop-GIS

This makes RESQUE a highly efficient spatial query engine com-
pared to traditional SDBMS engine. RESQUE is compiled as a
shared library, without the need of installation on every cluster
node, which is required for SDBMS engines.

Instead of using explicit spatial query parallelization as summa-
rized in [15], we take an implicit parallelization approach by lever-
aging MapReduce. This will much simplify the development and
management of query jobs on clusters. A whole slide image is par-
titioned into many small tiles for analysis (shown as grid cells in
Figure 3), and the dimension of tiles is optimized for image analy-
sis algorithms and determined ahead. Analytical results are derived
from each tile as one boundary file and one feature file, often in
the sizes of a few MBs each. Such tiles form the natural unit for
parallelization on MapReduce. To run spatial queries on MapRe-
duce, data is first staged onto HDFS. However, the small sizes of
these files will generate huge redundancy as HDFS has large block
size, thus lead to inefficient queries. The metadata used for HDFS
is stored in the name node memory, thus a large number of small
files will eat-up memory of namenode and degrades server perfor-
mance as well. Instead, we merge all small files of a single whole
slide image into a large file and then copied it to HDFS. We then
develop MapReduce programs to support different types of spatial
queries including spatial join queries by invoking RESQUE, with
tasks managed by MapReduce.

To support feature queries with a declarative query language, we
take advantage of Hive, which provides a SQL like language and
supports major aggregation queries on top of MapReduce. Similar
to the practice of DBMS to reduce I/O cost, data compression meth-
ods are also provided by Hive. For example, the RCFile method
[24] takes a column partition based compression approach, and is
integrated into Hive to provide efficient query support.

To provide an integrated query language and unified system on
MapReduce, we extend Hive with spatial query language by pro-
viding spatial query rewriting and integrated queries with Hive query
engine and spatial query engine (Figure 3). The spatial indexing
aware query optimization will take advantage of RESQUE for effi-
cient spatial query support in Hive.

3. REAL-TIME SPATIAL QUERY ENGINE
To support high performance spatial queries, the first require-

ment is a standalone spatial database engine with following ca-
pabilities: i) spatial relationship comparison, such as intersects,
touches, overlaps, contains, within, disjoint, ii) spatial measure-
ments, such as intersection, union, convexHull, difference, distance,
centroid, area, etc; iii) spatial access methods for efficient query
support; and iv) optimization for real-time processing environment.
The engine should also be easily executed across multiple cluster
nodes for parallelization. RESQUE is developed with such capa-
bilities.

Figure 4: RESQUE Workflow for Spatial Join

3.1 Overview of RESQUE
One essential requirement for spatial queries here is on-the-fly

queries, as new data and queries could be sent in and immediate
query results need to be returned. For example, for algorithm sen-
sitivity studies, parameters of an algorithm could be dynamically
adjusted in a large parameter space to generate analysis results, and
queries on these results would send immediate feedback for fur-
ther parameter adjustments and image analysis. Previous parallel
spatial query processing techniques [30, 40, 39] take partitioning
based approach without creating indexes. We take an approach on
combining partitioning with spatial indexing – RESQUE provides
real-time spatial query processing that builds up spatial indices on
the fly, and can run on partitions (discussed in Section 4.2). The ap-
proach is highly effective, and the index building overhead is only
a small fraction of the total query time, thanks to the rapid devel-
opment of CPU speed.

Here we take the example of a spatial join query to compare
two result sets (more details discussed in Section 4.1) and demon-
strate the workflow of queries (Figure 4). Boundary file 1 and file 2
contain the markup polygons from a tile generated from two algo-
rithms, and are to be spatially joined for comparison. Bulk spatial
index building is performed on each boundary file to generate in-
dex files – here we use R*-Trees [11]. The R*-Tree files contain
minimal boundary rectangles (MBRs) in their interior nodes and
polygons in their leaf nodes, and will be used for further query pro-
cessing. The spatial join component performs MBR based spatial
join filtering with the two R*-Trees, and refinement on the spatial
join condition is further performed on the polygon pairs through ge-
ometric computations. The spatial measurement step is performed
on intersected polygon pairs to calculate results required, such as
centroid distance for each pair of intersecting markups. Other spa-
tial join operators such as overlaps and touches can be run in a
similar way. Spatial containment queries or point based queries are
simpler as only one index file is needed.

Next we discuss the components in RESQUE.

3.2 Spatial Indexing and Optimization
In R*-tree, each non-leaf node of the tree stores pointers to its

child nodes and corresponding MBRs, while each leaf node stores
pointers to the actual spatial objects and corresponding MBRs. In
our work, we modified and extended the SpatialIndex library [6]
for building R∗-Tree indexes. As data and indexes are read-only
and no further update is needed, bulk-loading techniques [12] are
used. To minimize the number of pages, the page utilization ratio
is also set to 100%.
Index Compression. The polygons in the leaf nodes are encoded
with additional information for retrieval. Each polygon record is
represented as (ID, N, Point1, Point2, ... , PointN), where id is
the markup id, and N is the number of points. The markup poly-
gons usually consist of hundreds or thousands of vertices, and two
adjacent vertices usually have a distance of one pixel, either hori-
zontally or vertically. For example, a polygon can be represented as

(10, 1000, 40961 8280, 40962 8280, 40962 8281, ... , 40961 8279),
where markup id is 10, the number of points is 1000, and the other
number pairs delimited by space represent (x y) coordinates. With
a chain code representation, only the offset value between two ad-
jacent points is represented, for example: (ID, 1000, 40961 8280, 1
0, 0 1, ... , 1 0). The simple chain code compression approach saves
space and reduces I/O significantly, as shown in our performance
study in section 7.

3.3 Spatial Join and Filtering
Once the two R*-trees for two sets of markup polygons are built,

spatial join is performed through an algorithm with a depth-first
synchronized traversal of the two R*-trees. Starting from the two
root nodes, the algorithm checks each pair of their child nodes. If
the MBRs of a pair of nodes intersect, it then continues to join
these two nodes and check each pair of their child nodes. The pro-
cess is repeated until the leaf nodes are reached. The algorithm
then checks each pair of the markup polygons indexed in these two
leaf nodes to find all the pairs of markup polygons whose MBRs
intersect. We build the join algorithm on top of the SpatialIndex
library [6] and the code is in the process of being incorporated into
SpatialIndex.

3.4 Spatial Refinement and Measurement
For each pair of markup polygons whose MBRs intersect, they

are decoded from the representation, and geometry computation
algorithm is used to check whether the two markup polygons ac-
tually intersect. If so, the spatial measurements are computed and
returned. We rely on an open source library Computational Geom-
etry Algorithms Library (CGAL) [7] for computing the refinement
and measurements. Based on our experiments, spatial refinement
based on geometric computation is computationally intensive, and
dominates the query execution cost of RESQUE (88% of querying
time).

3.5 Discussion
Generalized interfaces. To generalize the queries, we develop a set
of spatial join operators and a set of spatial measurement functions,
thus RESQUE is parameterized and could be easily called for exe-
cuting different types of queries.
Granularity of indexing. The granularity of indexing could be at
image level or tile level. Tile level indexing approach (many small
R*-Tree indexes) not only preserves query performance compared
to image level indexing approach (a big R*-Tree index) as shown
in our performance study, but also enables parallelization and inte-
gration of spatial queries into MapReduce.

The indexing based spatial join and fully optimized operations,
and the generalized interfaces make RESQUE a full-fledged highly
efficient spatial query engine, which is much more efficient than
spatial DBMS engines. Our performance shows that RESQUE is
twice faster than PostGIS with GiST based indexing [4], and four
times faster than SDBMS-X (a commercial spatial DBMS with a
grid based indexing), not to mention the lightweight data loading
time in RESQUE compared to other systems.

4. MAPREDUCE BASED SPATIAL QUERY
PROCESSING

RESQUE provides a core query engine to support on the fly spa-
tial queries. This enables us to develop high performance large
scale spatial query processing based on MapReduce framework.
In this section, we first present a typical spatial query example,
and then discuss the workflow of our MapReduce programs for the
query.

Figure 5: Data Staging of Spatial Data in MapReduce

Figure 6: MapReduce Based Spatial Query Processing

4.1 Example Spatial Query: Spatial Join
RESQUE supports different types of queries, such as Point, Win-

dow, Containment and Spatial Join. Among them, spatial join is the
mostly used and expensive queries for result validation and consol-
idation. We first show the semantics of this query in SQL, and
then discuss how it can be mapped into a MapReduce applica-
tion based on RESQUE. Figure 7 shows an example spatial join
query in SQL to find all intersected markup pairs between two re-
sult sets generated from an image, and compute the intersection-to-
union ratios and centroid distances of the pairs. The SQL syntax
comes with spatial extensions such as spatial relationship opera-
tor ST INTERSECTS, spatial object operators ST INTERSECTION,
ST UNION, and spatial measurement functions ST CENTROID,
ST DISTANCE, and ST AREA.
1: SELECT
2: ST_AREA(ST_INTERSECTION(ta.polygon,tb.polygon))/
3: ST_AREA(ST_UNION(ta.polygon,tb.polygon)) AS ratio,
4: ST_DISTANCE(ST_CENTROID(tb.polygon),
5: ST_CENTROID(ta.polygon)) AS distance,
6: FROM markup_polygon ta, markup_polygon tb
7: WHERE
8 ta.algrithm_uid=’A1’ AND tb.algrithm_uid=’A2’ AND
9: ta.pais_uid = ’IMG1’ AND tb.pais_uid = ’IMG1’ AND
10: ta.tile_uid = tb.tile_uid AND
11:ST_INTERSECTS(ta.polygon, tb.polygon) = 1;

Figure 7: An Example Spatial Join Query in SQL with Spatial
Extensions

In this example, table (markup polygon) is a spatial table that
represents markups. This table has three major columns, namely
pais uid, tile uid, and polygon, respectively. In each record, al-
gorithm uid represents algorithm UID, pais uid represents image
UID, and tile uid is the UID of a tile the polygon is contained.
This is a self join of the same table markup polygon by selecting

polygons generated from the same image ‘IMG1’ and produced by
different algorithms ‘A1’ or ‘A2’. The join condition in line 10 im-
plies that two polygons would not be compared unless they are in
the same tile. The spatial join predicate in line 11 means that two
qualified polygons must intersect with each other. In the SELECT
clause of this query, we calculate intersection-to-union ratios and
centroid distances of the polygon pairs with a few computational
geometry functions. The query can be summarized as two parts:
the regular part and the spatial part. The regular part contains no
spatial operations but has only regular predicates and join. The spa-
tial part contains the predicate of polygon intersection and spatial
measurement functions.

Next we discuss how this example query can be implemented in
the MapReduce framework.

4.2 Data Partitioning
One essential requirement for MapReduce applications is that

data records can be partitioned based on certain keys. This matches
the way how pathology images are processed, where original large
images are partitioned into many small regions – tiles (Figure 3).
Each tile is a rectangle, and often of the same size. For exam-
ple, in our studies, we have tile size of 4096x4096 pixels. Those
tiles contain no objects, for example, tiles on non-tissue regions,
are discarded. A single whole slide image could be partitioned into
around one hundred tiles, and the number of tiles varies based on
the size and shape of specimens and image resolution. Such tile
based partitioning not only enables parallel image analysis on clus-
ters, but also provides the same partitioning unit for querying the
analytical results. In our MapReduce programs, tiles are the unit
for partitioning, and used as keys.

Image analysis algorithms generate two types of data files, spa-
tial data files (or boundary files) and feature data files, and bound-
ary files will be used for spatial queries. By default, each algorithm
on one tile of a partitioned image will create one feature result file
and one boundary result file. These files are small in sizes, for ex-
ample, the average boundary file size is 3.2 MB in our example
dataset. We use the following folder structure to organize origi-
nal data files: algorithm uid/image uid/filetype(feature or markup)/
tile result filename.

4.3 Data Staging
The first step for MapReduce is to stage data onto HDFS. Such

small sized input files, however, are not suitable to be stored di-
rectly onto HDFS due to the nature of HDFS, which is optimized
for large data blocks (default block size 64MB) for batch process-
ing. Large number of small files leads to deteriorated performance
for MapReduce due to following reasons. First, each file block con-
sumes certain amount of main memory on the namenode and this
directly compromises cluster scalability and disaster recoverability.
Secondly, in the Map phase, the large number of blocks for small
files leads to large number of small map tasks which has significant
overhead, as shown in our experiment study.

Instead, we propose to merge all small tile based result files for
each image as a single large file, and then stage the merged large
files onto HDFS, as shown in Figure 5. Such file merging will
lose the file name and folder structure information, which repre-
sents essential information for identifiers and grouping of data. To
amend that, We add metadata from filenames and folder structures
into the records. The records in boundary files have the follow-
ing structure: (algorithm uid, pais uid, tile uid, markup id, bound-
ary). markup id represents a sequential number of the boundary
in the tile. Each boundary contains a set of (x,y) coordinates that
form the polygon. This merging approach dramatically improves

Algorithm 1: Map Function
input: ki, vi
do projection on vi and get the value of
algorithm uid, pais uid, tile uid, and polygon
if algorithm uid == ‘A1’ and pais uid == ‘IMG1’ then

km = tile uid;
vm = (‘ta’, polygon);
emit(km, vm);

if algorithm uid == ‘A2’ and pais uid == ‘IMG1’ then
km = tile uid;
vm = (‘tb’, polygon);
emit(km, vm);

the map performance, as shown in our performance studies (Sec-
tion 7).

Another approach for handling large number of small files on
HDFS is HAR [2]. However, there is an overhead on preparing
data in HAR format before data can be staged. Our testing shows
that while HAR achieves similar querying performance, HAR takes
more than double time to get data loaded compared to file merging
approach. Thus the file merging based approach outperforms HAR
on overall performance.

4.4 MapReduce Program Structure
A MapReduce program to execute the spatial join query (Figure

7) will have similar structure to execute a regular relational join op-
eration, but with all the spatial part executed by invoking RESQUE
engine from the program.

According to the equal-join condition, the program uses the Stan-
dard Repartition Algorithm [13] to execute the query. Based on the
MapReduce structure, the program has three main steps:

1. In the map phase, the input table is scanned, and the WHERE
condition is evaluated on each record. Only those records
that can satisfy the WHERE condition will proceed to the
next step.

2. In the shuffle phase, all records with the same tile uid would
be shuffled to be the input of the same reduce function, since
the join condition is based on tile uid.

3. In the reduce phase, the join operation is finished by the exe-
cution of the reduce function. The spatial part is executed by
invoking the RESQUE engine in the reduce function.

Algorithm 1 shows the workflow of the map function. Each
record in the table is converted into the map function input key/value
pair (ki, vi), where ki is not used by the program and vi is the
record itself. Inside the map function, if the record can satisfy the
select condition, then an intermediate (km,vm) is generated. The
key km is the value of tile uid of this record, and the value vm is
the values of required columns of this record. There are two re-
markable points. First, since (km,vm) will participate a two-table
join, a tag must be attached to vm in order to indicate which ta-
ble the record belongs to. Second, since the query is a self-join of
the same table, we use a shared scan in the map function to exe-
cute the data filter operations on both instances of the same table.
Therefore, a single map input key/value could generate 0, 1 or 2
intermediate key/value pairs, according to the SELECT condition
and the values of the record.

The shuffle phase is controlled by Hadoop itself. Algorithm 2
demonstrates the workflow of the reduce function. According to
the main structure of the program, the input key of the reduce
function is the join key (tile uid), and the input values of the re-
duce function are all records with the same tile uid. In the reduce

Algorithm 2: Reduce Function
input: km, a list of values
initialize file fl for left side;
initialize file fr for right side;
dispatch each value to fl or fr;
//build R*-Tree indexes
tl = RESQUE.build index(fl);
tr = RESQUE.build index(fr);
//execute queries using indexes
result = RESQUE.execute query(tl, tr);
//final output
parse result and output to HDFS;

function, we first initialize two temporary files, then we dispatch
records into corresponding files. After that, we invoke RESQUE
engine to build R*-tree indexes and execute the query. The exe-
cution result data sets are stored in a temporary file. Finally we
parse that file, and output the result to HDFS. Note that the func-
tion RESQUE.execute query here performs multiple spatial func-
tions together, including evaluation of WHERE condition, projec-
tion, and computation (e.g., ST intersection and ST area), which
could be customized (Section 3).

We highlight two major advantages of this MapReduce program.
First, it uses one shared scan to execute the operations on both in-
stances of the same table for the self join, thus avoids redundant
network or disk I/O cost from an additional table scan. Second,
the program has a general interface with RESQUE, and all the spa-
tial parts are pushed into RESQUE. Thus our program is not tied
to a specific spatial operation, and general for a variety of spatial
queries. For join algorithms, other join algorithms such as Im-
proved Repartition Join [13] will not help on improving the query
performance, as the query is mainly a spatial join, and not a reg-
ular join. In spatial joins, computational geometry functions are
computational intensive. According to our performance testing re-
sults, the RESQUE part dominates the execution time in the reduce
function.

5. FEATURE QUERIES WITH HIVE
Queries on spatially derived image features such as summary

statistics and correlation analysis are commonly used for integra-
tive biomedical studies. Instead of writing our own MapReduce
programs to perform such queries, we rely on MapReduce based
system Hive, which fits well for the queries.

5.1 Hive Overview
Hive [35] is an open source MapReduce based query system

that provides a declarative query language for users. By providing
a virtual table like view of data, SQL like query language HiveQL,
and automatic query translation, Hive achieves scalability while it
greatly simplifies the effort on developing applications in MapRe-
duce without hand-coding programs. HiveQL supports a subset of
standard ANSI SQL statements which most data analysts and sci-
entists are familiar with. In addition to common SQL functions
including aggregation functions, Hive provides high extensibility
through User Defined Functions (UDF) and User Defined Aggre-
gation Functions (UDAF) implemented in Java, or custom map-
reduce scripts written in any language using a simple streaming in-
terface. By using Hive, we are able to create “tables”, load data and
specify feature queries in HiveQL. For example, Figure 8 shows an
example aggregation query in HiveQL.

5.2 Hive Storage
Hive provides alternative data storage formats to be used for dif-

ferent applications to optimize query performance. The way of how

SELECT AVG(AREA), AVG(PERIMETER), ...
STDDEV(AREA), STDDEV(INTENSITY), ...
CORR(AREA, INTENSITY), CORR(AREA, ENERGY),...

FROM IMG_x GROUP BY Algorithm_Id;

Figure 8: An Example Query in HiveQL

the data is being stored affects not only query performance, but also
data loading performance. Example formats supported by Hive in-
clude: Text, in which each line in the text file is a record; bzip2,
which compresses data into blocks of a few hundred KBs; and
RCFile: Record Columnar File (RCFile), a Hive specific column
oriented storage structure [24]. RCFile gives considerable perfor-
mance improvement especially for queries that do not access all the
columns of the table. To exploit the best approach for our use case,
we benchmark different formats for query performance (Section 7).
As shown in the performance study in Section 7, RCFile performs
best for feature aggregation queries, and seems an ideal solution.

6. INTEGRATED MAPREDUCE BASED GIS
QUERYING SYSTEM

Our MapReduce programs for spatial queries were initially de-
veloped as a set of MapReduce programs written in Java, which call
RESQUE for executing spatial query operations. Such approaches
require adjustment of codes or addition of new codes whenever
there are new data or queries. This poses a high barrier for end users
– biomedical researchers. They normally have limited knowledge
on programming MapReduce based queries, and prefer declarative
query languages such as SQL.

Providing a declarative query language and building an integrated
system are among the major goals of Hadoop-GIS. As Hive pro-
vides declarative query language for feature queries and standard
interfaces, it is natural to extend Hive with spatial queries to pro-
vide an integrated platform. Our previous work on patching Hive
with query optimization [27] motivates us to extend Hive to support
spatial queries.

We design two solutions for spatial extension to Hive. The first
solution, called Pure UDF Solution (PUS), aims to implement spa-
tial functions using Hive’s UDF mechanism without modifying Hive
itself. The second solution, called Spatial Indexing Aware Solution
(SIAS), implements special R*-Tree aware operators in Hive and
makes corresponding extensions on Hive’s query optimizer.

6.1 Pure UDF Solution (PUS)
In this approach, all spatial functions used in our queries are

implemented as Hive UDFs. The implementation is based on the
CGAL library for spatial predicates and spatial measurements. Es-
sentially, those UDFs are wrappers of corresponding CGAL func-
tions. Here we take an example on the UDF HU intersects that
maps to the function ST intersects. To determine whether two poly-
gons intersect with each other, HU intersects invokes the CGAL
function intersects to calculate the intersected regions and their
area.

Fig. 9(a) shows an example of the query plan tree for the query
in Fig. 7. Here we focus on the operators in the reduce phase.
The first operator JoinOperator is used to execute the regular join
predicate in the query. Then the joined results are sent to the sec-
ond operator FilterOperator to execute the spatial join predicate
ST Intersects(ta.polygon, tb.polygon). FilterOperator will invoke
the UDF for the intersects function. The third operator SelectOp-
erator will further invoke corresponding UDFs to execute spatial
measurement functions (e.g., ST area()). The last operator File-
OutputOperator will output the final results.

One major advantage of this approach is its simplicity: there is
no need to modify Hive codes. As shown in the figure, all operators
are existing operators in Hive. However, this naive approach has
inferior performance, as Hive would not consider the spatial join
function as a type of spatial join condition. Rather, it evaluates the
HU intersects UDF on all possible pairs of polygons returned by
the equal-join operation. That means, the spatial join is executed by
applying a predicate after a Cartesian product in the JoinOperator.
This leads to exponential increase of computational complexity, as
demonstrated in the brute force experiment in Section 7. Thus the
approach is not useful in practice.

6.2 Spatial Indexing Aware Solution (SIAS)
The Spatial Indexing Aware Solution will consider spatial index-

ing, and integrate RESQUE spatial query engine into Hive query
processing. This requires modification of Hive, but it carries the
performance advantage of Hadoop-based spatial query processing
with RESQUE. We take this approach for our implementation.

In SIAS, the spatial measurement functions are implemented as
Hive UDFs, same as in PUS. For example, ST area is implemented
as HU area via corresponding CGAL functions. Spatial join func-
tions such as ST intersects, ST touches, etc, are not implemented
as simple UDFs. Rather, a special operator SpatialJoinOperator is
implemented and integrated into Hive’s query optimizer. The oper-
ator works in the reduce phase, and calls corresponding RESQUE
program to execute spatial join on input data sets, as shown in the
example in Algorithm 2. Since Hive uses a rule-based optimizer, a
new special rule is added to Hive query optimizer to insert the Spa-
tialJoinOperator in the query plan trees. Fig. 9(b) shows the query
plan tree using the SIAS approach. Compared to PUS (Fig. 9(a)),
in SIAS, the SpatialJoinOperator executes both the functionalities
of JoinOperator and FilterOperator, and the operator is supported
by RESQUE engine with R*-tree indexing. This provides signifi-
cant performance advantage.
Merging Based Spatial Indexing Aware Solution. A further opti-
mization based on SIAS is that we can push down spatial mea-
surement UDFs in Hive’s SELECT operator into the SpatialJoin-
Operator. For example, in the MapReduce program in Section 4,
RESQUE not only executes ST intersects (spatial relationship op-
erator), but also executes ST area (spatial measurement operator).
The benefit of this optimization is that all spatial operations can
be fully executed by RESQUE in a combined single step, and the
communication overhead between RESQUE and Hive operators is
minimized. Fig. 9(c) shows the query plan tree with this opti-
mization: the SelectOperator in Fig. 9(b) is pushed down to the
RESQUE engine.

7. PERFORMANCE STUDY
Experiment setup. We have two systems on performance study,
a dedicated small cluster, and a real world medium sized cluster
with shared resources. We use the small cluster for benchmark-
ing RESQUE, comparing RESQUE with SDBMS, testing loading
performance, and performing small scale MapReduce studies. We
use the medium cluster as a scalability test for real world environ-
ment. 1) The small scale cluster comes with 10 nodes and 192
cores: 4 nodes with 24 cores (AMD 6172 2.1GHz), 2.7TB hard
drive 7200rpm, and 128GB memory per node; and 6 nodes with 16
cores (AMD 6172 2.0GHz), 7TB hard drive 7200rpm, and 128GB
memory per node. 1 Gb interconnecting network is used. The OS
is CentOS 5.6 (64 bit). The version of Hadoop is 0.20.2-cdh3u2,
and the version of Hive is 0.7.1. 2) The medium scale cluster

(a) PUS (b) SIAS (c) Improved SIAS

Figure 9: Extend Hive with Spatial Queries: (a) Pure UDF Solution (PUS), (b) Spatial Index Aware Solution (SIAS), and (c) Merging
Based SIAS

named “Hotel” on futuregrid 2 comes with following configura-
tions: 40 nodes with 8 cores per node, a total of 320 cores. It is
installed with a distributed file system based on IBM GPFS (file
split size 128MB). The OS is Scientific Linux 5. Hadoop version
is 0.20.203.0, and Hive version is 0.7.1.

The version of CGAL library used is V3.8, and the version of
SpatialIndex library is 1.6.0. The version of PostGIS is 1.5.2. We
use dataset of whole slide images for brain tumor study provided
by Emory University Hospital, with two results computed from
two methods. We have dataset sizes at 1X(18 images, 44GB),
3X(54 images, 132GB), 5X(90 images, 220GB), 10X(180 images,
440GB), and 30X(540 images, 1,320GB) for different testings. The
average number of nuclei per image is 0.5 million, and each nucleus
has 74 features generated.

7.1 RESQUE
Query Performance of RESQUE. To test the performance of RESQUE
itself, we run it on a single node as a single thread application. We
run the spatial join query (Figure 7) with RESQUE, as it is a com-
mon used expensive query type. We first test the effect of spatial
indexing, by taking a single tile with two result sets (5506 markups
vs 5609 markups) (Figure 10). A brute-force approach compares
all possible pairs of boundaries using a computational geometry
function without any index, and takes 673 minutes. Such slow per-
formance is due to polynomial complexity on pair-wise compar-
isons and high complexity on geometric computation function. An
optimized brute-force approach will first compare all possible pairs
of boundaries using MBRs, and then only filter pairs with MBR
intersections using the computational geometry function. This ap-
proach takes 4 minutes 41 seconds, a big saving with minimized
geometric computations. Using RESQUE with indexing based spa-
tial join, the number of computations is significantly reduced, and
it only takes 9.2 seconds. With SDBMS based approach, we load
the data into spatial tables in PostGIS and SDBMS X respectively
and create corresponding spatial indexes, and then run the query as
spatial extended SQL queries. It costs 12.8 seconds and 38.9 sec-
onds for PostGIS and SDBMS X respectively. This demonstrates
high efficiency of RESQUE.
Effect of Data Loading. Besides query performance, RESQUE
enjoys the light loading cost compared to SDBMS approach (Sec-
tion 4.3). We run three steps to get the overall response time (data
loading, indexing and querying) on RESQUE on a single slot MapRe-
duce with HDFS, PostGIS and SDBMS X with a single partition.
The data used for the testing is two results from a single image (106
tiles, 528,058 and 551,920 markups respectively). Figure 11(a)
2http://www.futuregrid.org

Figure 10: Comparison of Query Performance (Single Tile)

Figure 11: Comparison of Performance (Single Image)

shows the loading and index building performance of the three sys-
tems, and Figure 11(b) shows the query performance. RESQUE
not only dominates on the query efficiency, but also has minimal
loading and index building time. This makes RESQUE a powerful
candidate for building a fast response query system.
Scalability on Indexing Size. With RESQUE, there are two ap-
proaches for indexing: image level indexing, and tile level index-
ing. We take a whole slide image with two result sets, same as
previous testing. In the first approach, we build a single big R*-
Tree for all tiles of the image, and the method takes 15 minutes
32 seconds to build indexes and run the query with RESQUE. For
the second approach, we build one R*-Tree for each tile and ag-
gregate query results from all tiles. It takes 16 minutes 5 seconds,
with slight time increase (3.5%) due to more indexing time. This
clearly demonstrates that our partitioned based approach with small

R*-Trees not only preserves performance, but also enables paral-
lelization. The breakdown of RESQUE execution time (multiple
small R*-Tree approach) is 2 minutes 16 seconds for index build-
ing (16%), and 13 minutes 49 seconds for spatial join (84%).
Effect of Data Compression. For data compression in R*-Tree
with chain code based coordinate representation, the storage is re-
duced by 42%, a significant reduction of I/O during query process-
ing. When the utilization ratio is varied from 70% to 100% in R*-
Tree configuration, it saves space by another 2%.

7.2 Performance of Hadoop-GIS
We take the example in Figure 7 to demonstrate the performance

of executing spatial queries in Hadoop-GIS. We first present data
staging performance and then present query execution performance.

7.2.1 Data Staging
Hadoop-GIS is designed for fast response, and the performance

of data staging affects the overall performance. One major factor
that affects spatial query performance is the way to store the in-
put data, which consists of many small files with partitioning based
image analysis results – with average size of 3.2 MB. HDFS is de-
signed for storing large files, and not suitable for handling small
files. Our method on merging small files into large ones and track-
ing file/tile information as metadata inside the merged files boosts
the performance for spatial query processing. The average size of
merged files is 361 MB per image.
Effect of File Sizes. To test the effect between small files and
merged files, we use our spatial join program and run it as Map
only MapReduce job on one set of data (18 images). By storing
small result files of tiles directly onto HDFS, it takes 199 seconds
in the map phase. After merging small files into two large files (one
file per result per image), the map phase execution time is reduced
to only 56 seconds. The slow performance of small file approach
is due to the much overhead from large number of blocks and the
large number of map tasks invoked: 4228 tasks versus 125 tasks in
file merging approach.
File Merging versus HAR. While HAR provides an approach for
handling small files, it takes extra time for loading data. For ex-
ample, with 18 images, HAR takes 440 seconds, and merging and
loading small files only takes 202 seconds, more than 50% reduc-
tion of time.

7.2.2 Spatial Queries
We perform two sets of testing for MapReduce based spatial

queries, on the small cluster with dedicated resource, and on the
medium cluster in a real world environment. Note that the reduce
phase dominates the cost as map phase is performing simple record
grouping based on keys. Figure 12(a) shows the results on the small
cluster with different data sizes: 1X, 3X, 5X, and 10X (18 images)
data sets, with varying number of reducers. We can see a contin-
uous drop of time when the number of reducers increases, and the
time reaches a steady number when all cores on the cluster are fully
utilized. It achieves a nearly linear speed-up, e.g., time is reduced
to about half when the number of reducers is increased from 50 to
100. The average querying time per image is 15 seconds for the 1X
dataset with all cores, comparing with 22 minutes 12 seconds in
a single partition postGIS, and 89 minutes 30 seconds on a single
partition SDBMS X. Figure 12(b) demonstrates the loading time
and querying time versus data sizes on the small cluster with 180
reducers, for dataset 1X, 3X, 5X and 10X. It shows a nearly linear
increase of time versus data sizes.

The medium sized cluster is a shared cluster on futuregrid with
many other jobs running. Thus the time is affected by the system

(a) Small Cluster

(b) Medium Cluster

Figure 13: Query Performance of Feature Aggregation

load. We test with four datasets: 1X, 5X, 10X, and 30X data sets
with varying number of reducers, as shown in Figure 12(c). We
can see that the curves are not as smooth as those in the dedicated
small cluster due to random background job traffic. We still see
a continuous dropping of time, although it is not linear due to the
background job traffic.

7.2.3 Performance of Feature Queries
We test the performance of executing feature aggregation queries

in Hive. Figure 13(a) shows the performance on the small cluster
for 10X dataset with 100 reducers. It takes 58 seconds to run the
query with RCFile method, and 97 seconds to run with raw text
method. Clearly, RCFile method is the query performance winner,
and is ideal when the queries are run multiple times.

Figure 13(b) shows the query performance of Hive on the medium
cluster for text, bzip2 and RCFile with different datasets. Hive pro-
vides efficient aggregation queries – it takes only a few minutes
even for the 30X dataset (with about 20 billion features).

8. RELATED WORK
Scientific databases often come with spatial aspects [10], for ex-

ample, Large Synoptic Survey Telescope (LSST) generates huge
amount of spatially oriented sky image data. Human Atlas projects
include [1] and others. Digital microscopy is an emerging technol-
ogy which has become increasingly important to support biomedi-
cal research and clinical diagnosis. There are several projects that
target creation and management of microscopy image databases
and processing of microscopy images. The Virtual Microscope
system [17] developed by our group provides support for storage,
retrieval, and processing of very large microscopy images on high-
performance systems. The Open Microscopy Environment project
[23] develops a database-driven system for managing analysis of
biological images, which is not optimized for large scale pathology
images.

Pig/MapReduce based approach has been studied in [28] for struc-
tural queries for astronomy simulation analysis tasks and compared
with IDL and DBMS approaches. In [16], an approach is proposed

(a) Querying Performance on the Small Clus-
ter

(b) Loading and Querying Performance on the
Small Cluster

(c) Querying Performance on the Medium
Cluster

Figure 12: Hadoop-GIS Spatial Join Performance

on bulk-construction of R-Trees and aerial image quality compu-
tation through MapReduce. In [39], a spatial join algorithm on
MapReduce is proposed for skewed spatial data, without using spa-
tial indexes. The approach first produces tiles with close to uniform
distributions, then uses a strip based plane sweeping algorithm by
further partitioning a tile into multiple strips. Joins are performed
in memory, with a duplication avoidance technique to remove du-
plicates across tiles. In Hadoop-GIS, tiling is produced at image
analysis step, and it is a common practice for pathology imaging
to discard duplicated objects at tile boundaries, as the final analy-
sis result is a statistical aggregation. We take a hybrid approach on
combining partitioning with indexes, and build spatial indexes on
the fly, as the index building overhead is significantly reduced to a
small faction of the total query time due to the rapid development of
CPU speed. Our approach is not limited to memory size, and pro-
vides high efficiency with R*-Tree based join algorithm [14]. Our
approach relies on implicit parallelization through MapReduce.

The Sloan Digital Sky Survey project (SDSS) [5] created a high
resolution multi-wavelength map of the Northern Sky with 2.5 tril-
lion pixels of imaging, and takes a large scale parallel database ap-
proach. SDSS provides a high precision GIS system for astronomy,
implemented as a set of UDFs. The database runs on GrayWulf ar-
chitecture [33], with waived license fee from Microsoft.

Partitioning based approach for parallelizing spatial joins is also
discussed in [30, 40] where no indexing is used. An R-Tree based
spatial join is proposed in [15] with a combined shared virtual
memory and shared nothing architecture.

Comparisons of MapReduce and parallel databases are discussed
in [31, 20, 32]. Tight integration of DBMS and MapReduce is
discussed in [9, 38]. MapReduce systems with high-level declar-
ative languages include Pig Latin/Pig [29, 22], SCOPE [18], and
HiveQL/Hive [34]. YSmart provides an optimized SQL to MapRe-
duce job translation and is recently patched to Hive. Hadoop-GIS
takes an approach that marries DBMS’s spatial indexing and declar-
ative query language into MapReduce.

9. DISCUSSION & FUTURE WORK
Our experiment results demonstrate that Hadoop-GIS provides

a scalable and effective solution for querying large scale spatial
datasets. Ongoing work includes generalizing existing framework
to support more complex spatial query and spatial analysis use
cases and utilizing GPU to accelerate spatial queries.

9.1 Complex Spatial Queries and Spatial Data
Analysis

Spatial Proximity between Micro-anatomic Objects. Micro-anatomic
objects with spatial proximity often form groups of cells that are
close in both physical space and gene expression space. For exam-
ple, a shortest distance query will provide summary statistics of the
proximity of stem cells to these regions of interest: for each stem
cell, find hypoxic and angiogenesis regions that are closest to the
cell and compute the mean distance and standard deviation for all
stem cells in an image. This query will involve millions of cells
for a single image. Another example query which involves spa-
tial proximity is to identify nearest blood vessels for each cell and
return local density measurement of blood vessels around a cell.
Global Spatial Pattern Discovery in Images. The tumor growth
comes with necrosis and vascular proliferation which often forms
spatial patterns during different stage of tumor growth. For exam-
ple, glioblastoma, the most common brain tumor, often appears as
ring-enhancing lesions where the rings have much higher concen-
tration of cells than adjacent cells. By analyzing the spatial dis-
tribution patterns of cells or nuclei, it is possible to automate the
identification of tumor subtypes and their characteristics.
Spatial Clustering. Spatial Clustering is a process of grouping
spatial objects into clusters so that objects in the same cluster have
higher similarity to one another. Such a grouping can be used to
characterize tissue regions and region based features can be further
applied to correlate with genetic information and disease outcome.

Preliminary work has been done on supporting nearest neighbor
queries and spatial pattern discovery (high density regions) by ex-
tending the RESQUE query engine with additional query process-
ing methods with extended access methods. Partitioning bound-
aries are also considered in some queries such as nearest neighbor
queries.

9.2 GPU Accelerated Spatial Queries
Heavy geometric computation is among the major cost of many

spatial queries. GPU has emerged as a cost-effective and power-
ful computing device for massively data-parallel general purpose
computations. We are exploiting massive data parallelism by devel-
oping GPU aware parallel spatial computation algorithms such as
spatial intersection and execute them on GPUs. Preliminary work
has demonstrated promising results on reducing the bottleneck of
spatial queries, which will be reported separately.

10. CONCLUSION
The big data from medical imaging “GIS” – the vast amount spa-

tially derived information generated from pathology image analy-
sis – shares similar requirements for high performance and scal-

ability with enterprise data, but in a unique way. Experimental
oriented scientific data demands quick query response for discov-
ery and evaluation of preliminary results, and is often computa-
tional intensive. The unique users – biomedical researchers – prefer
declarative query interfaces for high usability. We study the feasi-
bility of applying and extending the software stack (Hadoop/Hive)
from the domain of enterprise big data analysis to the unique prob-
lems of scientific data analysis, and develop a system Hadoop-GIS
to bridge the gap and meet the unique requirements for analytical
pathology imaging. Hadoop-GIS provides an efficient and generic
spatial query engine RESQUE, one core component to support real-
time based spatial queries. With a combined partitioning and spa-
tial indexing based approach, and implicit parallelization, complex
spatial queries are mapped into MapReduce based applications.
The hybrid approach on combining a full-fledged spatial query en-
gine with MapReduce enables cost effective, efficient and scalable
queries on commodity clusters. By integrating spatial querying ca-
pabilities into Hive, we deliver a single unified system to support
both spatial queries and feature queries in a declarative language.
Hadoop-GIS is deployed at Emory University to query results from
14,000 whole slide images for about 100TB of data, and is built
as an open source software for medical imaging community. Our
work is general and could potentially be applied to support similar
“GIS” oriented applications.

11. REFERENCES[1] The allen reference atlas. http://www.brain-map.org;
http://mouse.brain-map.org/api/.

[2] Hadoop archives.
http://hadoop.apache.org/common/docs/current/hadoop
archives.html.

[3] Large synoptic survey telescope. http://lsst.org/lsst/overview.
[4] Postgis. http://postgis.refractions.net.
[5] The sloan digital sky survey project (sdss). http://www.sdss.org.
[6] Spatial index library. http://libspatialindex.github.com.
[7] CGAL, Computational Geometry Algorithms Library.

http://www.cgal.org.
[8] Pathology analytical imaging standards.

https://web.cci.emory.edu/confluence /display/PAIS, 2011.
[9] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB Endow.,
2:922–933, August 2009.

[10] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data.
Commun. ACM, 53, June 2010.

[11] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
SIGMOD, 1990.

[12] J. V. d. Bercken and B. Seeger. An evaluation of generic bulk loading
techniques. In VLDB, pages 461–470, 2001.

[13] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian. A comparison of join algorithms for log processing in
mapreduce. In SIGMOD, 2010.

[14] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient processing of
spatial joins using r-trees. In SIGMOD, pages 237–246, 1993.

[15] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel processing of
spatial joins using r-trees. In ICDE, 1996.

[16] A. Cary, Z. Sun, V. Hristidis, and N. Rishe. Experiences on
processing spatial data with mapreduce. In SSDBM’2009, pages
302–319, 2009.

[17] Ü. V. Ç, M. D. Beynon, C. Chang, T. M. Kurç, A. Sussman, and J. H.
Saltz. The virtual microscope. IEEE Transactions on Information
Technology in Biomedicine, 7(4):230–248, 2003.

[18] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou. SCOPE: easy and efficient parallel processing of
massive data sets. PVLDB, 1(2):1265–1276, 2008.

[19] L. A. D. Cooper, J. Kong, D. A. Gutman, F. Wang, J. Gao, C. Appin,
S. Cholleti, T. Pan, A. Sharma, L. Scarpace, T. Mikkelsen, T. Kurc,

C. S. Moreno, D. J. Brat, and J. H. Saltz. Integrated morphologic
analysis for the identification and characterization of disease
subtypes. J Am Med Inform Assoc., Jan. 2012.

[20] J. Dean and S. Ghemawat. Mapreduce: a flexible data processing
tool. Commun. ACM, 53(1):72–77, 2010.

[21] D. J. Foran, L. Yang, W. Chen, J. Hu, L. A. Goodell, M. Reiss,
F. Wang, T. M. Kurç, T. Pan, A. Sharma, and J. H. Saltz.
Imageminer: a software system for comparative analysis of tissue
microarrays using content-based image retrieval, high-performance
computing, and grid technology. JAMIA, 18(4):403–415, 2011.

[22] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a
highlevel dataflow system on top of MapReduce: The Pig
experience. PVLDB, 2(2):1414–1425, 2009.

[23] I. Goldberg and C. A. et. al. The open microscopy environment (ome)
data model and xml file: Open tools for informatics and quantitative
analysis in biological imaging. Genome Biol., 6(R47), 2005.

[24] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. Rcfile:
A fast and space-efficient data placement structure in
mapreduce-based warehouse systems. In ICDE, pages 1199–1208,
2011.

[25] L. C. J. Kong, C. Moreno, F. Wang, T. Kurc, J. Saltz, and D. Brat. In
silico analysis of nuclei in glioblastoma using large-scale microscopy
images improves prediction of treatment response. In EMBC, 2011.

[26] J. Kong, L. Cooper, F. Wang, C. Chisolm, C. Moreno, T. Kurc,
P. Widener, D. Brat, and J. Saltz. A comprehensive framework for
classification of nuclei in digital microscopy imaging: An application
to diffuse gliomas. In ISBI, 2011.

[27] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang. Ysmart: Yet
another sql-to-mapreduce translator. In ICDCS, 2011.

[28] S. Loebman, D. Nunley, Y.-C. Kwon, B. Howe, M. Balazinska, and
J. Gardner. Analyzing massive astrophysical datasets: Can
pig/hadoop or a relational dbms help? 2009.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
2008.

[30] J. M. Patel and D. J. DeWitt. Partition based spatial-merge join. In
SIGMOD, pages 259–270, 1996.

[31] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, pages 165–178, 2009.

[32] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. Mapreduce and parallel dbmss: friends or
foes? Commun. ACM, 53(1):64–71, 2010.

[33] A. S. Szalay, G. Bell, J. vandenBerg, A. Wonders, R. C. Burns,
D. Fay, J. Heasley, T. Hey, M. A. Nieto-Santisteban, A. Thakar,
C. v. Ingen, and R. Wilton. Graywulf: Scalable clustered architecture
for data intensive computing. In HICSS, pages 1–10, 2009.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive - a warehousing solution
over a Map-Reduce framework. PVLDB, 2(2):1626–1629, 2009.

[35] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. volume 2, pages 1626–1629, August
2009.

[36] F. Wang, J. Kong, L. Cooper, T. Pan, K. Tahsin, W. Chen, A. Sharma,
C. Niedermayr, T. W. Oh, D. Brat, A. B. Farris, D. Foran, and J. Saltz.
A data model and database for high-resolution pathology analytical
image informatics. Journal of Pathology Informatics, 2(1):32, 2011.

[37] F. Wang, J. Kong, J. Gao, C. Vergara-Niedermayr, D. Alder,
L. Cooper, W. Chen, T. Kurc, and J. Saltz. High performance
analytical pathology imaging database for algorithm evaluation. In
MICCAI/MICCAI-DCI, 2011.

[38] Y. Xu, P. Kostamaa, and L. Gao. Integrating hadoop and parallel
dbms. In SIGMOD, pages 969–974, 2010.

[39] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr: Parallelizing
spatial join with mapreduce on clusters. In CLUSTER, 2009.

[40] X. Zhou, D. J. Abel, and D. Truffet. Data partitioning for parallel
spatial join processing. Geoinformatica, 2:175–204, June 1998.

