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Abstract 

The systematic analysis of imaged pathology specimens often results in a vast amount of 

morphological information at both the cellular and sub-cellular scales. The information 
generated by this process has tremendous potential for providing insight regarding the 

underlying mechanisms of disease onset and progression. While microscopy scanners 
and computerized analysis are capable of capturing and analyzing data rapidly, 
microscopy image data remains underutilized in research and clinical settings. One major 

obstacle which tends to reduce wider adoption of these new technologies throughout the 
clinical and scientific communities is the challenge of managing, querying, and integrating 
the vast amounts of data resulting from the analysis of large digital pathology datasets. 

This paper presents a data model, which addresses these challenges, and demonstrates 
its implementation in a relational database system. 

Context: 

This paper describes a data model, referred to as Pathology Analytic Imaging Standards 

(PAIS), and a database implementation, which are designed to support the data 
management and query requirements of detailed characterization of micro-anatomic 

morphology through many interrelated analysis pipelines on whole slide images and 
tissue microarrays.   



Aims: 

Aim 1: Development of a data model capable of efficiently representing and storing virtual 

slide related image, annotation, markup, and feature information. 

Aim 2: Development of a database, based on the data model, capable of supporting 

queries for data retrieval based on analysis and image metadata, queries for comparison 

of results from different analyses, and spatial queries to assess relative prevalence of 
features and classified objects and to retrieve collections of segmented regions and 
features.   

Settings and Design: 

The work described in this paper originated from the challenges associated with 

characterization of micro-scale features for comparative and correlative analyses 

involving whole slides tissue images and tissue microarrays. Technologies for digitizing 
tissues have advanced significantly in the past decade. Slide scanners are capable of 
producing high-magnification, high-resolution images from whole slides and tissue 

microarrays within several minutes. Hence, it is becoming increasingly feasible for basic, 
clinical, and translational research studies to produce thousands of whole slide images. 
Systematic analysis of these large datasets require efficient data management support 

for representing and indexing results from hundreds of interrelated analyses generating 
very large volumes of quantifications such as shape and texture and of classifications of 
the quantified features.   

Methods and Material: 

We have designed a data model and a database to address the data management 

requirements of detailed characterization of micro-anatomic morphology through many 

interrelated analysis pipelines. The data model represents virtual slide related image, 
annotation, markup and feature information. This set of information includes a) context 
relating to specimen preparation, special stains etc, b) human observations involving 

pathology classification and characteristics, c) algorithm and human-described 
segmentations, features and classifications, and d) a description of the computation 
being carried out and identification of input and output datasets. The database supports a 



wide range of queries. Typical queries include: a) queries needed to obtain combinations 
of image and metadata required for certain analytic procedures, b) queries needed to 

compare results obtained from different algorithms and to compare algorithm results with 
human annotations and markups, c) spatial queries, such as those used to assess 
relative prevalence of features or classified objects in various portions of slides or to 

assess spatial coincidence of combinations of features or objects, d) queries needed to 
support selection of collections of segmented regions, features, objects within and across 
virtual slides used to carry out machine learning or content based information retrieval 

algorithms. 

Results: 

We currently have three databases running on a Dell PowerEdge T410 server with 

CentOS 5.5 Linux operating system. The database server is IBM DB2 Enterprise Edition 
9.7.2.  The set of databases consists of 1) a tissue microarray (TMA) database containing 
image analysis results from 4740 cases of breast cancer, with 641MB storage size; 2) an 

algorithm validation database, which stores markups and annotations from two 
segmentation algorithms and two parameter sets on 18 selected slides, with 66GB 
storage size; and 3) an in silico brain tumor study database comprising results from 307 

TCGA slides, with 365GB storage size. The latter two databases also contain human 
generated annotations and markups for regions and nuclei.  

The data model and the database infrastructure are being employed in applications that 

1) implement a systematic approach for validating image segmentation algorithms; 2) 
employ the database to investigate whether glioma morphology correlates with gene 

expression data; and 3) investigate relationships between microscopic and macroscopic 
features.  

Conclusions: 

Our experience with the in silico study of brain tumors has shown that data sets resulting 

from analyses of digitized slides can be extremely large. Modeling and managing 
pathology image analysis results in databases provides immediate benefits on the value 

and usability of data through standardized data representation, data normalization, and 



semantic annotation.  The database provides powerful query capabilities, which are 
otherwise difficult or cumbersome to support by other approaches such as programming 

languages. Standardized, semantic annotated data representation and interfaces also 
make it possible to more efficiently share image data and analysis results.  

Key-words: 

 Digitized slides, data models, databases, image analysis.    

Key Messages: 

Effective use of large microscopy image datasets in research requires the application of 

many interrelated analyses for the detailed characterization of morphological 
characteristics. Modeling and managing image analysis results in databases provides 
powerful capabilities to store and index analysis results efficiently and to perform complex 

queries for data exploration, analysis comparison, and analysis validation.  

 



Introduction: 
 
High-resolution digitized pathology images contain a wealth of spectral and morphologic 

features related to the microanatomy of the tissues under study. Examination of the subtle 

differences exhibited by diseased tissue at the cellular and sub-cellular levels has potential to 

improve characterization of the histologic type, stage, prognosis, and likely treatment response. 

For example, the morphologies of cell nuclei, their infiltrative patterns, the development and 

extent of new blood vessels, and degree of necrosis, are all measurable features of significant 

interest in the study of diffuse gliomas. The classifications of brain tumor nuclei based on 

morphology can be studied to look for genetic correlations, create image-based computational 

biomarkers, and assess patient survival.  

Technologies for digitizing microscopy have advanced significantly in the past decade. Slide 

scanners are capable of producing high-magnification, high-resolution images from whole slides 

and tissue microarrays within several minutes. It is rapidly becoming feasible for even medium-

scale studies to routinely generate thousands of whole slide images. At this scale, the subjective 

process of manually capturing and classifying histopathological features is both time consuming 

and likely to increase observer variability and errors [1].  

Computerized image analysis offers a means of rapidly carrying out quantitative, 

reproducible measurements of micro-anatomical features in high-resolution pathology images 

and large image datasets. Nevertheless, image data is often an underutilized resource in 

biomedical research, since reliably analyzing even moderate numbers of virtual slides leads to a 

formidable information synthesis and management problem. As we shall describe in the next 

section, systematic analysis of large-scale image data can involve many interrelated analyses 

on hundreds or thousands of images, generating billions of quantifications such as shape and 

texture, as well as classifications of the quantified features.    

In this paper, we describe a data model, referred to as Pathology Analytic Imaging 

Standards (PAIS), and a database implementation, which are designed to support the data 

management and query requirements of detailed characterization of micro-anatomic 

morphology through many interrelated analysis pipelines on whole slide images and tissue 

microarrays.   



The data model represents virtual slide related image, annotation, markup and feature 

information. This set of information includes a) context relating to patient data, specimen 

preparation, special stains, etc.; b) human observations involving pathology characteristics; and 

c) algorithm and human-described segmentations, features, and classifications. Moreover, it 

supports the provenance of the markups and annotations through a description of the 

computation being carried out and an identification of input and output datasets.  

The database supports a wide range of queries. Typical queries include: a) those needed to 

obtain combinations of image and metadata required for certain analytic procedures, b) those 

needed to compare results obtained from different algorithms and to compare algorithm results 

with human annotations and markups, c) spatial queries, such as those used to assess relative 

prevalence of features or classified objects in various portions of slides or to assess spatial 

coincidence of combinations of features or objects, d) queries needed to support selection of 

collections of segmented regions, features, objects within and across virtual slides used to carry 

out machine learning or content based information retrieval algorithms. 

The data model and the database have been successfully used for algorithm validation and 

integrative in silico study of brain tumors as shall be presented later in the paper. The PAIS data 

model is capable of capturing detailed markups and annotations, while allowing for an efficient 

implementation using the relational database technology. We have shown that the PAIS 

database enables more expressivity and efficiency in retrieving, comparing, and mining vast 

amounts of results than those achieved using a programmatic approach (i.e., MATLAB scripts) 

only.  

Background: 
 
We will use a research project underway at the In Silico Brain Tumor Research Center 

(ISBTRC) as an example to illustrate data management challenges that arise from analyzing 

large numbers of high-resolution microscopy images. The ISBTRC is a cancer Biomedical 

Informatics Grid (caBIG®) In Silico Research Center of Excellence established as a 

collaboration of four institutions: Emory University, Thomas Jefferson University, Henry Ford 

Hospital, and Stanford University. It conducts integrative in silico study of diffuse glioma brain 



tumors using Pathology image data, omics data, Radiology image data, and clinical outcome 

data obtained from The Cancer Genome Atlas (TCGA)[2] and REMBRANDT [3] and from the 

partner institutions. The center develops techniques that extract and correlate information from 

these complementary data types in order to improve disease classification and better 

understand biology of disease progression.  

The example project is the characterization of micro-anatomic elements, such as cells and 

nuclei, in whole slide tissue images. The morphology of these elements varies in shape and 

texture across different classes and grades of gliomas. For example, nuclei appear to be round 

shaped with smooth regular texture in oligodendrogliomas, whereas they are generally more 

elongated with rough and irregular texture in astrocytomas. However, there are also many nuclei 

that appear to be transitions and are difficult to classify. The goal of the project is to use image 

analysis algorithms in whole-slide scans linked to patient outcome and genomic data to better 

define such structures in order to improve the classification and grading of these diseases. 

The project has already gathered over 700 whole slide images of diffuse gliomas (219 

images at 20X objective magnification and 517 at 40X), derived from the TCGA repository, 

Henry Ford Hospital, and Emory University, with a long term goal of expanding the studies to 

approximately 3500 slides from about 700 patients in the course of the project. With this many 

slides, it is not feasible to manually examine each slide image, mark microscopic objects, and 

annotate them. Computerized analysis of the images is necessary to extract, quantify, and 

classify micro-anatomic features.  The effectiveness of a computer analysis pipeline, however, 

depends on many factors including the nature of the histological structures being segmented, 

the classifications being performed, and sample preparation and staining. Thus, detailed 

computer-aided characterization of brain tumor morphology requires coordinated use of many 

interrelated analysis pipelines on a large number of images. Results produced from multiple 

runs by varying the algorithms and input parameters of the analysis pipelines can help 

determine priority pipelines for a particular set of images and study objectives. The priority 

pipelines are executed on the image dataset and are further refined by comparing and 

correlating the results in order to increase the accuracy of output. This strategy leads to a very 

challenging data management problem.  



Whole slide brain images are roughly 5x104 by 5x104 pixels at 20X objective magnification. 

Brain tumor image analysis algorithms segment and classify 105 to 107 cells in each virtual slide. 

Classification categories include a variety of classes of brain tumor cells, several categories of 

normal brain cells (astrocytes, oligodendrocytes, microglia and neurons), endothelial cells, red 

blood cells, and macrophages. Brain tumor tissue analyses can encompass discrimination from 

normal tissue, analysis of tumor cell density, classification of nuclei, quantification of mitotic 

figures, identification and classification of angiogenesis, and identification of differing types of 

necrosis, including the pseudopalisades that are often seen around necrosis in glioblastoma. 

Reliable identification of subcellular structures, such as mitotic figures in brain tumor cells, is 

done through additional processing in cells or regions identified as being brain tumor. 

Identification and classification of angiogenesis and pseudopalisades requires a synthesis of 

regional texture analysis, cell segmentation, and classification along with ability to recognize and 

characterize larger scale histological structures. A systematic analysis of datasets consisting of 

thousands of images, therefore, can result in classification of roughly tens of billions to trillions 

micro-anatomic structures. The process of classifying a given cell involves roughly 10-100 

features describing morphometry, texture, and stain quantification. An in-depth analysis even if 

limited to classifying the constituent cells of the specimens can easily encompass a very large 

amount of features. These data sets need to be stored and indexed so that investigators can 

query and interrogate the results to search for patterns and correlations as well as validate and 

refine computer analysis algorithms. 

Software systems and data models have been developed for managing and accessing 

digitized microscopy images and large image datasets. The virtual microscope system[4, 5] is 

designed to support the storage, retrieval, and processing of very large microscopy images on 

high-performance systems. The Open Microscopy Environment (OME) project [6] has 

developed a data model and a database system that can be used to represent, exchange, and 

manage image data and metadata. The OME provides a data model of common specification 

for storing details of microscope setup and image acquisition. Cell-Centered Database (CCDB) 

[7, 8] is a system and data model developed to capture image analysis output, image data, and 

information on the specimen preparation and imaging conditions that generated the image data. 



The CCDB implements an ontology link to support semantic queries and data sources 

federation. The ImageMiner system[9] implements capabilities for content-based image retrieval 

for tissue microarray datasets. The Bio-Imaging Semantic Query User Environment (BISQUE) 

[10] and associated tools like the Digital Notebook allow a biologist to capture image datasets 

and associated experiment metadata and manage them in a BISQUE database, which is built 

on a relational database system. Content-based image retrieval approaches and systems have 

also been implemented to support rich queries on image data[11-16]. One of the early systems 

with application in biomedicine employed methods to express the global characteristics of 

images as a measure of the Gleason grade of prostate tumors[17, 18]. Another system, 

developed by Wang et al.[19], indexes image block segments at different scales by dividing the 

original image into smaller overlapping regions. It employs integrated region matching distances 

to characterize images and allows users to browse the regions of a matched image at different 

scales. The use of parallel and distributed computing for analysis has increased over the years, 

enabling researchers to process image datasets quickly and generate large volumes of analysis 

results. Yang et al. has demonstrated a distributed system for computer-aided analysis of 

digitized breast tissue specimens[20]. Gurcan et al. employed parallel and distributed computing 

to efficiently support automated characterization of Neuroblastoma using a multi-resolution grid 

based framework[21].   

Most of the previous work in microscopy image data management is targeted at remote 

access to and sharing of microscopy images and annotations, and is not primarily designed to 

handle large volumes of analysis results and large images for correlative studies and algorithm 

validation. Our work, on the other hand, targets the following closely interrelated tasks: 1) to 

systematically manage, query and analyze results produced by data analyses composed from 

large numbers of interrelated algorithms, 2) to compare results produced by workflows 

consisting of cascades of multiple algorithms, 3) to efficiently manage resulting datasets that in 

aggregate can contain billions of imaging derived features, and 4) to support histological feature 

query and analysis patterns. 



DICOM Working Group 261 is developing a DICOM based standard for storing microscopy 

images. The metadata in this model captures information such as patient, study and equipment 

information. Image tiles are managed as series and the mapping relationship is represented in 

an XML format. However, the metadata is limited and not easy to extend to efficiently represent 

and manage image analysis results. Similarly, DICOM Structured Report standard[22] has been 

used to model and store image annotations and markups in DICOM. The standard does not 

provide an approach for managing and querying data. Annotation and Image Markup (AIM) [23] 

is a data model developed in the caBIG® program. It is designed to facilitate standardization for 

image annotation and markup for radiology images. AIM is motivated by the characteristics and 

requirements of Radiology imaging applications. Pathology images have characteristics that are 

not taken into account by the current AIM model. For example, pathology image annotations are 

done at microscopic levels in multiple granularities. AIM, on the other hand, takes a “flat” 

structure on annotations and markups, where fine-grained annotations and markups and their 

relationships are difficult to represent. 

Subjects and Methods: 
 
Data Model  
 
The Pathology Analytical and Imaging Standards (PAIS) model is designed to provide a flexible, 

efficient, and semantically enabled data model for pathology image analysis and 

characterization. The logical model of PAIS is defined in Unified Modeling Language (UML), and 

consists of 62 classes and associations between them. The major components of the model 

(main classes and relationships, not including attributes) are shown in Figure 1.  

The ImageReference class provides metadata that describes an image or a group of images, 

which have been used as the base for markups and annotations. This class can be used to 

identify and retrieve the relevant images from an image archive. The metadata includes the 

resolution of the image in microns/pixel, the z-axis resolution and coordinate, if available. The 

subclasses derived from the ImageReference class reference specific types of images such as 
                                                

1 http://medical.nema.org/DICOM/minutes/WG-26/ 



whole slide images (WholeSlideImageReference) and tissue microarray (TMA) images 

(TMAImageReference). The DICOMImageReference class is used to maintain image metadata 

in the case images are stored as DICOM images.  Note that there can be multiple 

ImageReference instances for multi-sliced images or multi-modality registrations. The 

ImageReference class is associated with Subject, Specimen, AnatomicEntity, and Equipment 

classes, which collectively capture metadata about how the corresponding image has been 

acquired.  

 
 

 

The Region class is used to identify the area of interest from an image (e.g., a specific tile from 

a whole slide image, or an area that contains a disc image in TMA image) for the purpose of 

Figure 1. PAIS object model. 



markup and annotation. It also captures the relative zoom resolution of the region over the 

original image. The coordinate reference of the markups on the image can be either local – 

relative to the region, or global – relative to the original image. The units used for markups or 

measurements are mostly based on pixels: The values of coordinate, width, and length are 

represented in pixels; square pixels are the units of measurement for area, while resolution uses 

microns/pixel.  

The set of Project, Group, User, and Collection classes stores information related to the 

study and analysis experiments. The Project class represents the study being conducted. A 

Group is the collection of scientist and/or clinician users conducting the study. A User is the 

person who has marked and annotated the images in the study – a user may be associated with 

multiple annotated images and objects, and multiple users may annotate an image or image 

region. A Collection is a group of items of the same type. For example, when an experiment is 

done to validate algorithms against human assessment, all the PAIS instances to be compared 

are in the same collection. Similarly, results from the same algorithm but obtained using different 

input parameters applied on the same image can be grouped into the same collection. One 

PAIS instance can have multiple collections. 

The Markup class is used to delineate a spatial region in images and represents a set of 

values derived from pixels. Markup symbols are associated with one or more images and can 

be in the form of geometric shapes, surfaces, and fields. Geometric shapes can be points, lines, 

polylines, polygons, rectangles, circles, and ellipses. We employ the representation format of 

Scalable Vector Graphics (SVG)2 for markups. For example, we use closed points to represent 

polygons. They result in compact representations and save disk space. Since major Web 

browsers natively support SVG, SVG based markups can easily be displayed as overlays on top 

of images. Surfaces include finite element meshes as well as implicit surfaces. While both 

geometric shapes and surfaces represent boundaries in space, a field can be used to contain 

the actual data values within a spatial region. Examples of fields are pixel values, binary masks, 

gradient fields, and higher order derivatives. 

                                                
2 http://www.w3.org/Graphics/SVG/ 



The Annotation class associates semantic meaning to markup entities through coded or free 

text terms that provide explanatory or descriptive information. There are three types of 

annotations: Observation, Calculation, and Inference. Observation holds information about 

interpretation of a markup or another annotation entity. Observations can be quantified based on 

different measure scales such as ordinal and nominal scales. Calculation stores information 

about the quantitative results from mathematical or computational calculations, such as Scalar, 

Array, Histogram, and Matrix. Inference is used to maintain information about disease diagnosis 

derived by observing imaging studies and/or medical history. PAIS only captures image based 

annotations. It uses the AnnotationReference class to link to external annotations such as 

molecular or genetic annotations. This provides endpoints for queries integrating data from 

different data types. 

The Provenance class captures the derivation history of a markup or annotation, including 

algorithm information, parameters, and inputs. Such information is critical for validating analysis 

approaches and comparing algorithms. 

To identify objects and relationships within a PAIS instance, an id attribute (unique in the 

PAIS instance scope) is associated with each PAIS object. Globally unique ids (UIDs) are also 

associated with objects that could potentially be shared across multiple PAIS object instances, 

such as Specimen, Project, Group, Collection, Annotation and Markup. The UIDs are based on 

the UUID standard [8]. 

 

Database Implementation  
 

We have implemented a database infrastructure (Figure 2) to manage microscopy analysis 

results expressed in the PAIS model. The PAIS Data Repository component encapsulates the 

database and the data loading and query subcomponents. The database is designed to support 

queries on both metadata and spatial features for data retrieval, comparative data analysis, and 

algorithm validation. The types of queries include:   

 



• Queries involving combinations of image and algorithm metadata to retrieve analysis results. 

An example of this type of queries is: Find all markups with area between 200 and 500 

square pixels, and eccentricity between 0 and 0.5 on image ”astroII”.  

 

• Queries to compare results obtained from different algorithms and to compare computer-

generated results with human annotations and markups. Examples are: Find the average 

glioma grades of nuclei segmented and calculated by algorithm ”NSMORPH” for each 

human segmented region on image ”OligoIII” grouped by human classification. Compare the 

average “Sum Canny Pixels” feature calculated from algorithms between the “Proneural” and 

“Mesenchymal” tumor subtypes.  

 

• Spatial queries, such as those used to assess relative prevalence of features or classified 

objects in various portions of slides or to assess spatial coincidence of combinations of 

features or objects. Examples of spatial queries are: Find all segmented nuclei from 

algorithm “NSMORPH” with parameter set 1 in the region segmented by human as ”Astro 

grade II” on image “gbm0”. Find nuclei in region [100,100:1000,1000] that are detected by 

Algorithm “NSMORPH-1” and that intersect with those detected by Algorithm “NSMORPH-2” 

on image ”OligoIII”. 

 



 

We have used a relational database backend in our implementation, although results expressed 

in the PAIS model are exchanged using XML documents.  Our performance evaluation has 

showed that the relational database approach is more efficient than a native XML based 

approach in our case for a wide range of queries. The PAIS database is comprised of a set of 

tables mapped from the PAIS logical model. The database schema has 1) a data staging table 

for storing compressed PAIS documents submitted from clients and tracking jobs of data 

mapping; 2) metadata tables for storing metadata on images, subjects, projects, and 

experiments; 3) spatial tables for storing markup shape objects; 4) calculation tables for 

computed image features – multiple calculation tables provided for different feature sets; 5) 

observation tables (nominal or ordinal) for annotations; 6) vocabulary tables to define the 

common data elements used for calculations, observations and anatomic entities; 7) 

provenance tables for storing algorithm information and analysis parameters; and 8) application 

tables such as validation tables for storing pre-computed markup intersection information 

Figure 2. PAIS database implementation. The architecture includes analytical 

workflow, PAIS data repository, application server, image database, and data analysis 

applications. 



between different methods. The database also provides a set of extended functions and stored 

procedures for manipulating data.  

The database implementation uses the IBM DB2 Universal Database server with the DB2 

Spatial Extender as the underlying database system. We have chosen IBM DB2 since it is 

available free of charge for research and education, and provides integrated support for spatial 

data types and queries through the spatial extender component. To support efficient 

management and query of spatial information, we model and manage markup objects as spatial 

objects as supported by the spatial extension of DB2. We also employ in queries dozens of 

spatial functions implemented in DB2 such as spatial relationship functions and functions that 

return information about properties and dimensions of geometries. Many of our spatial queries 

are different from traditional GIS queries. We have implemented additional optimizations to 

reduce query execution times. Data are clustered by image and tiles. With such clustering, 

queries at the level of tiles can be efficiently supported with minimal I/O request.  

To enable convenient data exchanging between analysis programs and the PAIS database, 

we use XML based representation for the PAIS model, based on an XML schema derived from 

the logical model. PAIS XML documents are generated via the PAIS document generator by 

each client application (image analysis applications and human markup and annotation 

applications). To reduce the size for processing, PAIS documents are often generated on 

partitioned regions such as tiles, and different PAIS document instances from different regions 

of the same image will share the same document unique identifier. For efficient data 

transportation, PAIS XML documents are further compressed into zip files. 

When a PAIS XML document zip file is received by the system, an entry is created in the 

staging table for storing the zip file. The data loading manager on the database server parses 

each document in the staging table with an efficient event based XML parser, and maps the 

contents of the document to the database tables by generating SQL batch insertion requests.  

The data uploads are optimized in a batch and resource-efficient manner, and populate 

relational and spatial tables. To provide smooth workflow, we also track the loading status of 

each document, and log any exceptions in the workflow. This could guarantee continuous 

workflow under error conditions.  



 

Results: 
 
We currently have three PAIS databases running on a Dell PowerEdge T410 server with 

CentOS 5.5 Linux operating system. The database server is IBM DB2 Enterprise Edition 9.7.2.  

The set of databases consists of 1) a tissue microarray (TMA) database containing image 

analysis results from 4740 cases of breast cancer, with 641MB storage size; 2) an algorithm 

validation database, which stores markups and annotations from two segmentation algorithms 

and two parameter sets on 18 selected slides, with 66GB storage size; and 3) an in silico brain 

tumor study database comprising results from 307 TCGA slides, with 365GB storage size. The 

latter two databases also contain human generated annotations and markups for regions and 

nuclei.  

 

Applications  
 

We present three applications that demonstrate the use of PAIS for algorithm validation, in silico 

research, and correlative analysis. The first application implements a systematic approach for 

validating image segmentation algorithms. Sampling and result comparison queries in this 

application are supported by the PAIS database. The second application employs the PAIS 

database to investigate whether glioma morphology correlates with gene expression data. The 

third application is a new project investigating relationships between microscopic and 

macroscopic features.  

 

Application 1: Algorithm Validation 

 

The evaluation and validation of image analysis algorithms is an important component in 

imaging studies, because the efficacy of an analysis pipeline will generally be dependent on the 

characteristics of specimens and images used in the study, the types of algorithms employed, 

and the study’s objectives. We have developed a systematic framework and workflow (Figure 3) 



for evaluating results generated by computer algorithms employed in studies carried out in 

ISBTRC.  

 
In 

this framework, nuclear boundaries marked and annotated by pathologists and pathology 

residents are considered ground truth against which algorithm-generated results are compared. 

Image datasets used in validation are organized by three hierarchical spatial concepts in 

increasing order of granularity: slide, tile, and subregion. To make computer analysis tractable 

on large whole slide images, each slide is partitioned into a series of tiles with 4096x4096-pixels 

in size under 20X objective magnification. Even at this resolution, a tile can contain tens of 

thousands of nuclei, making it infeasible for human experts to mark boundaries for all nuclei in 

the tile. Hence, the tiles are further divided into 8x8 sub-regions for human processing – our 

experiments with different subregion sizes showed that human reviewers could analyze one 8x8 

sub-region within 10 minutes on average.  

The overall validation workflow includes five major steps as shown in Figure 3:  1) image 

partitioning of whole slide images into small regions for processing and annotation, 2) stratified 

sampling to generate a sound set of regions, 3) nuclei analysis with algorithms and human 

annotations, 4) result representation and loading into the database, 5) and statistical validation 

Figure 3. Algorithm validation workflow. 



analysis. The PAIS database is employed in multiple steps. In the stratified sampling step, the 

database is first used to create a set of subregions for each tile with a stored procedure. An 

initial algorithm result set is loaded into the database.  When a tile is partitioned into sub-

regions, the subregion and markup containment relationship is computed through a spatial 

containment query and persisted in a table. The number of nuclei in each subregion can then be 

obtained by searching the table with a count and group-by query. All of the subregions for each 

tile are grouped into sets of “low”, “average”, “high”, and “very high” counts and stored in 

another table. A set of sub-regions are then randomly selected from each group for 

comparisons. Sub-regions from stratified sampling are reviewed by human experts with a 

graphical user interface. The markups from each review are captured into an XML document, 

which is then validated and parsed into the PAIS database.  

The PAIS database is also used to compute statistics for differences and similarities 

between human generated results and computer generated ones. For example, the database is 

queried to retrieve only nuclei that have one-to-one match between algorithm- and human-

generated results. If a human marked nucleus contains multiple machine-segmented nuclei, it is 

not included in the final evaluation study. For each of one-to-one nuclear pairs, three measures - 

overlapping to union ratio, centroid distance, and Hausdorff distance - are computed with either 

database built-in functions or user-defined functions. 

 

Application 2: In Silico Correlative Morphometric Study  

 

A previous study of glioblastoma has defined four clinically-relevant tumor subtypes by 

differences in gene expression and characteristic genomic alterations[24]. We have utilized the 

PAIS database in an effort to examine the morphological correlates of these tumor subtypes 

[25]. Computer algorithms were used to analyze diffuse glioma brain tumor images in a large-

scale dataset consisting of 307 slides corresponding to 77 distinct patients. Each analysis 

computed 74 features for each segmented nucleus. The segmentation results and features were 

stored in the PAIS database. In order to correlate micro-anatomic morphometry with molecular 

profiles and clinical outcome, summary statistics on image features were computed for each 



image. This process involved calculating the mean feature vectors and the feature covariance 

values of all possible feature pairs over all nuclei in the image. The PAIS database was queried 

to search for feature pairs and retrieve corresponding feature values. The summary statistics for 

each image were then combined in a separate program to create a single-feature vector for the 

image. This allowed us to represent each image as a point in the summary statistics feature 

space – in our case, it was a 2849-dimensional space, since a nucleus had 74 features.    

Queries for mean, standard deviation, and covariance of feature calculations are supported 

through IBM DB2 SQL queries with DB2’s built-in aggregation functions: the AVG, STDDEV, 

and COVARIANCE functions, respectively. With the PAIS database query support on 

morphological signature computation for whole slide images, we were able to correlate nuclear 

morphometry with clinically relevant molecular characterizations and to produce preliminary 

result suggesting a possible relationship between nuclear morphometry and the established 

clinically relevant molecular glioblastoma (GBM) tumor subtypes. 

 

Application 3: Correlative Study on Liver Biopsy   

 

We are currently carrying out a study to quantify the relationship between the area of liver 

steatosis regions, clinical parameters such as liver functional studies, and radiology quantization 

measurements. This study involves a large set of liver biopsies with both microscopy and 

radiology images. The properties of the liver organs reflected in the radiology images, such as 

measurements of steatosis (i.e., fat content) and fibrosis (i.e., scarring), will be measured by 

experienced radiologists. The microscopy images will be analyzed by machine algorithms. Due 

to vast number of steatosis regions in each image, manual segmentation and annotation of 

images becomes very difficult.  We are developing machine algorithms to identify all steatosis 

regions with certain constraints (e.g., constraints on size and shape). This information derived 

from microscopy imaging will then be integrated with the radiology readouts from the associated 

magnetic resonance imaging (MRI) images. 

All numerical features derived from steatosis as well as the locations of the steatosis regions 

will be captured in the PAIS database. The radiology readouts will be stored in a database built 



on the AIM data model[23]. These two databases will be used to investigate how the measure of 

correlation between structures at different scales (e.g., microvesicular versus macrovesicular 

steatosis) is varied as the cut-off values of properties used in machine algorithms are changed. 

This is particularly important because certain features such as the type of steatosis can be very 

crucial in predicting the functional status of the liver[26]. This will be done by generating queries 

on the PAIS database to search for and retrieve only the steatosis regions that satisfy a set of 

user-defined criteria on the properties and spatial locations of the regions, and by comparing the 

query results with the radiology readouts from the same images.  

 

Database Performance  
 

The PAIS database is designed to be fast for metadata and spatial queries and queries 

involving comparisons of results from different analyses. To undertake a performance evaluation 

of the database, we selected 18 slides, and loaded image analysis results from two different 

algorithm parameter sets and human annotated results. The total volume of data amounts to 

about 18 million markups and 400 million features. We selected different types of queries that 

are typical in our use cases and ran them against the PAIS database and as MATLAB 

programs. We chose MATLAB for comparison instead of a C/C++ implementation, because 

MATLAB is a platform more commonly used for algorithm development and analysis by imaging 

researchers, although an implementation of the same operations in C/C++ could achieve lower 

execution times. There are additional performance improvements that can be implemented on 

these implementations[27-31]. In an earlier work we performed a detailed comparison of 

different database configurations for spatial joins[29]. Our results showed we could take 

advantage of combined processing power and memory capacity of multiple machines by 

carefully distributing database contents and modifying queries. We plan to carry out a similar 

performance study for the PAIS database in a future work.  

The queries selected for performance evaluation are: (Query 1) Count nuclei on each slide 

processed by a specific algorithm; (Query 2) Compute intersection ratio and distance between 

nuclei segmented by two different algorithms on the same slide. This query is important for 



algorithm validation studies, in which results obtained from different algorithms are compared to 

look for similarities and differences in the analysis outcome; and (Query 3) Retrieve the mean 

nuclear feature vector and covariance of features on nuclei segmented by an algorithm on a 

slide. This query is used to examine the relationship between nuclear morphology and tumor 

subtypes defined by molecular analyses.  

 

 

 

 
 

 

 

 

The execution times for these queries are shown in Figure 4.  The first query takes 18.4 

seconds to execute for a single slide using MATLAB, and only 0.068 second with the PAIS 

database. The execution times for the second and third queries are 545 and 24 seconds using 

MATLAB, where the same queries take 19.5 and 4 seconds with the PAIS database, 

respectively. Our results show that the PAIS implementation achieves significant speedup over 

the MATLAB based implementation.  

Figure 4. Comparison of Performance of PAIS vs MATLAB. PAIS database has 
significant performance advantage over programmatic approach (270, 28 and 5 
times faster). Highly expressive query language: 5 lines vs 60 lines. 



Queries on multiple slides are generally linearly scalable in the PAIS database. For example, 

computing the covariance of features on one slide takes on average about 219 times less than it 

does on 213 slides. Such scalability is ensured through data clustering on images and tiles at 

the data loading stage. Since most query operations are tile or slide based, such clustering will 

minimize the number of disk reads during query execution.  

The PAIS database loading tool is also optimized for efficiency. We use an efficient event 

based XML document parsing approach to process XML documents. The approach only needs 

a single scan of a document and requires minimal resource. We also optimize insertions through 

batch transactions. We are able to load results from a singe whole slide image (~0.5 million 

objects) into the PAIS database within 10 minutes.  

Another significant advantage of the PAIS database, compared to accessing and retrieving 

data through MATLAB, is the highly expressive power of queries. SQL query language, with the 

spatial capabilities through the use of spatial data types and spatial functions, makes it very 

easy to express such queries. For example, Query 2 is expressed as a single SQL statement 

with five lines of SQL code. With MATLAB, the same query is written as 30 lines of computation 

code plus another 30 lines of code for handling disk read/write operations.  

Spatial queries are common in our use cases. They are used for retrieving contained markup 

objects, the density of markup objects, comparisons between different algorithm results, or 

between human generated and algorithmic results. Spatial queries are also used for 

constraining analysis on certain regions, such as human annotated regions (e.g., tumor regions) 

or regions classified by an analysis algorithm.  The spatial database engine in DB2 Spatial 

Extender provides automatic query optimization on spatial predicate-based queries through its 

grid based spatial index. We take advantage of this index to speed up queries. Each spatial 

region is divided into multi-level grids and indexed. These grids can be used to efficiently identify 

markups (segmented regions) that are in two different datasets and that intersect each other. 

Instead of comparing a markup with all markups across the whole image from the other dataset, 

the grid-based index can be invoked to retrieve markups that intersect the same grid as the 

query markup. In this way, the set of comparisons is reduced significantly, and linear scalability 

can be achieved.  



 

Conclusions and Discussion: 
Effective use of large microscopy image datasets in basic, clinical, and translational research 

requires the application of many interrelated analyses for the detection and detailed 

classification of morphological characteristics. Our experience with the in silico study of brain 

tumors has shown that data sets resulting from these analyses can be extremely large. 

Modeling and managing pathology image analysis results in databases provides immediate 

benefits on the value and usability of data through standardized data representation, data 

normalization, and semantic annotation.  The database provides powerful query capabilities, 

which are otherwise difficult or cumbersome to support by other approaches such as 

programming languages. Advanced database access methods can be employed to make 

queries efficient. Besides, all query interfaces are through standardized SQL query language, 

which is highly expressive and natural for data retrieval and comparison operations. 

Standardized, semantic annotated data representation and expressive interfaces also make it 

possible to more efficiently share image data and analysis results.  

However, moving data from unstructured representation to a structured one is challenging. 

The first major challenge is the big gap between researchers who work on imaging algorithms 

and database researchers and developers. Image algorithms researchers focus on algorithms 

and programming languages, whereas database developers tend to look at the problem from 

the point of view of data models, query languages, and query optimization methods. This project 

has been made possible through extensive collaboration as a team of multi-disciplinary people 

to map imaging questions into database questions. The second major challenge is to generate 

valid structural data.  Databases have rigid requirements on data validity, such as integrity 

constraints and data types, especially complex spatial data types. Human generated 

annotations such as freehand drawing boundaries are often invalid polygons (e.g., unclosed or 

self-crossing polygons). We have detected in our studies more than a dozen scenarios of invalid 

polygons. We have developed a set of computational geometry algorithms and validation tools 

to fix such scenarios and transform them into valid spatial data types acceptable by the spatial 

database engine. The third challenge is to provide a generic and user-friendly document 



generator that can be used in diverse applications. Applications oftentimes have their own 

proprietary data representations and naming conventions, e.g., format on encoding patient id in 

file names. To let application users  develop their own document generation tool is difficult. 

Instead, we have developed a customizable PAIS document generator framework, which takes 

a simple plain file based representation of results and annotate the data with additional 

metadata conventions defined in an XML based customization file. This approach significantly 

simplifies users’ effort for document generation. They only need to convert their algorithms’ 

results into this simple plain file format, and documents are then automatically generated.  

In our current implementation we have chosen a relation database implementation of the 

PAIS model. XML native databases are becoming mature technologies and have many 

advantages on managing XML documents. In this approach, XML documents are managed as 

they are, and no mapping between data models and query languages is needed. Besides, XML 

databases provide XML query languages such as XQuery and SQL/XML to express powerful 

queries.  One immediate benefit of XML-based approach is that data exchanging is made easy. 

XML databases are also much tolerant to schema evolutions. Another significant benefit is that 

application development is simplified because no mapping from the XML schema to the 

relational schema is needed. However, native XML based approach is more suitable for 

managing small sized XML documents such as those generated from tissue microarray image 

analyses. The relational database based implementation, on the other hand, is highly efficient 

on both storage and query performance for managing and querying large-scale result data. The 

side effect is major effort needed on developing efficient tools for mapping XML documents into 

relational and spatial tables.  

We plan to extend our current work in several ways: The current PAIS database server runs 

on a single node machine where no parallel I/O is provided. We have observed that the 

database performance is mainly bounded by the I/O bottleneck. We are working on scaling up 

database with parallel I/O capabilities and data partitioning through parallel database 

infrastructure. We are putting together multiple physical RAID-5 disk arrays on a single node, 

and testing data partitioning on multiple physical nodes as well. We expect this will boost the 

performance by an order of magnitude.  



Another ongoing work is the investigation of MapReduce[32] based query processing 

capability. In one ongoing project on algorithm sensitivity, we perform on demand algorithm 

result comparison and identify patterns of quality of results versus change of parameters. In this 

case, intermediate testing results are not persisted in the database, but the process requires 

rapid generation and processing of the intermediate results. We are investigating the use of the 

MapReduce approach for scalable query execution and data processing on commodity clusters.  

Image analysis results often need to be queried together with images to, for example, 

visualize images with markups and annotations, retrieve image regions based on 

characteristics, etc. This needs a database of managing images used in the studies, thus 

integrated querying capabilities are possible through the image database and the PAIS 

database. We are designing the database and implementing a set of tools to support such 

combined queries leveraging the work done in virtual microscope software systems. 
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