
Max Actual Comments
50 0

6 Maxvers check and succesful mount and umount
8 For N backups getting created
8 On ls, the files should not shown in stdout. (4 pts)

Should not allow to be opened by vim. (2 pts)
Should not allow rm to delete the version file. (2 pts)

8 For Oldest backup to be removed on exceeding Nth Backup
20 All Functionalities 5 pts Each

1) List option for the versions available
2) Delete a particular version from the versions available
3) View a particular version and able to see its contents
4) Restore a previous content to be latest and then able to view it
through opening by vim.

25 0
4 No warnings (-1 per warning)
5 No Comments - 0

Enough Comments - 22 mount and umount option (1 each)
4 4 validation for bkpctl

10 10 different test scripts - each 1 mark
10 0

5 For Every other Error -2
5 For Every Slab Error -2

15 0
15 Design Decisions - (When , Where , How Backups are created)

User Programs - bkpctl (Explaining their usage) -10 points35 0
10
10
10

5
0 0
0
0
0

100 0
35 0

Test scripts that exercise each feature of your bkpfs. Scripts should have ample
comments.Reliability and Effectiveness
No (possible) deadlocks/races noticed, or other issues affecting system stability.

Followed GIT submission guidelines improperly.
Submission on time: deduct 1 point for every late hour (time rounded up in units of
one hour).Kernel does not crash. Each (different) kernel crash costs 3 point

Total Grade (out of 100)
Total Extra Credit (NOT counted as part of the total above)

Version management functions (5pts max for list, del, view, and restore)

Code, Compilation, Mounting, Module

1) Move a file into the mounted path
2) We edit it for N consecutive backups.
3) We test it for user program ioctls.
4) Create 2 more backups to see if oldest version is removed
5) Umount and Mount again with maxvers commandline param.
6) Check again for backups created

Note :
write_data.sh which helps to write number of instances and bytes to write for each data
Check if the files are created by having a watch over the /test/higherpath and /test/lowerpath

Grader's discretion for clever solutions, enhancements, test scripts, or other extras.
General Demerits (use negative numbers)

No memory/reference leaks noticed
Documentation and Submission
README (design doc) is clean and readable. Describes the design and reason it. No
important problems are missed. (All design decisions pertaining to functionality are Extra Credit
Space-based retention policy
Capture meta-data file changes
wrapfs bug fixes (optional)

Code compiles without any warnings
Your code is written in good kernel style with comments.
File system mounts/unmounts smoothly with required options and checks for incorrect
options. Module un/loads cleanly.User code supports all arguments, checks for invalid argument combinations, and
returns appropriate errors where applicable

Functionality (points earned/lost based on running your program)
Where/What/When backup policies are appropriate, justified, and properly
Backup files' creation is as efficient as possible.
Visibility policy: backup versions of files are not accessible by default. Can not be
easily viewed, manipulated, or deleted

Retention policy is reasonable and properly enforced

