
1

Netfilter

By

V.R.Sundar

&

Karthik Dantu

What is Netfilter

• netfilter is a framework for packet
mangling, outside the normal Berkeley
socket interface.

• Using this framework various modules have
been written including an extensible NAT
system and an extensible packet filtering
system

Topics

• netfilter overview

• iptables overview

• netfilter & iptable implementation details
with ipv4 & packet filtering as examples

netfilter has three parts :

I. Each protocol defines “hooks”
�

Hooks are well defined points in a packet’s
traversal of that protocol’s stack.

�
The protocol code jumps into netfilter when
it hits the hook-point during a packet’s
traversal through the protocol

II. Kernel modules can register to listen at
any of the different hooks for each
protocol.

�
When registering, module must set the
priority of the function within the hook

�
netfilter hook is called from the core
networking code

• The corresponding packet is passed to it

• Each module registered for that hook is
called in the order of priorites, and is free
to manipulate the packet.

�
The module can tell netfilter to do one of

five things:

1. NF_ACCEPT: continue traversal as normal

2. NF_DROP: drop the packet; don't continue
traversal.

3. NF_STOLEN: I've taken over the packet;
don't continue traversal.

4. NF_QUEUE: queue the packet (usually for
userspacehandling).

5. NF_REPEAT: call this hook again.

2

III. Packets that have been queued are
collected (by the ip_queue driver) for
sending to userspace; these packets are
handled asynchronously.

Example
IPV4 defines 5 hooks. A packet traverses
the netfilter system as shown

→[0]→[route]→[2]→[4]→
 ↑
↓ [route]
 ↑

[1] [3]
 ↑
↓

NF_IP_POST_ROUTING4

NF_IP_LOCAL_OUT3

NF_IP_FORWARD2

NF_IP_LOCAL_IN1

NF_IP_PRE_ROUTING0

NameHook No

To summarize:

netfilter is the “glue” code between the

protocol hooks and the kernel modules that

want to process packets at these hooks.

Control jumps from the protocol code to the

netfilter code to the various modules

registered and then flows back

IPTables overview
• IPTables is a packet selection system that

has been built over the netfilter framework
• Provides a named array of rules in memory

along with information as to where packets
for a particular hook should begin traversal
and various helper routines to traverse them

• What is a rule?
A rule is the set of conditions to be

matched and the corresponding actions to
be taken

• Each hook has a list of rules called chains

• Kernel modules can register a new
table, and ask for a packet to traverse a
given table

• Example tables:
– “filter” for packet filtering

– ”mangle” for packet mangling

– “nat” for network address translation.

These are defined by default and cannot be
removed. (see net/ipv4/netfilter/ip_tables.c)

3

iptable– netfilter interaction
– iptables does not register with any netfilter

hooks. It relies on the modules that use it to
do that and feed it the packets as appropriate.
A module must register thenetfilter hooks
and iptables separately, and provide the
mechanism to call iptables when the hook is
reached.

There is a iptables tool which can be used to control
the packet filtering.

Example:
$iptables –A INPUT –s 127.0.0.1 –p icmp –j drop

netfilter implementation

• Main data structures

– struct list_head
nf_hooks[NPROTO][NF_MAX_HOOKS];

A 2-dim array where each element is the head
of a circular list. Uses the list implementation
of linux to manage circular lists.

struct list_head {

struct list_head *next, *prev;

} ;

• Objects of typenf_hook_ops are hooked
into the chain using the list_head element at
the head of it through the list.h helper
functions

struct nf_hook_ops {
struct list_head list;
/* User fills in from here down. * /
nf_hookfn *hook;
int pf;
int hooknum;
/* Hooks are ordered in ascending priority. * /
int priority;

} ;

• This creates a 2-dimensional array of
circular linked lists indexed by
– (protocol number , hook number)

• Example
– nf_hooks[PF_INET][NF_IP_LOCAL_IN] is

the head of the circualar list for hook 1 (local
input hook).

– Traverse this list using element list of
nf_hook_ops structure

– Access registered hook functions through
element hook

• nf_register_hook registers a module
• nf_unregister_hook unregisters a module

– These two are called by the modules that want
to use netfilter

• nf_hook_slow is the interface between networking
code and netfilter. (Through macro NF_HOOK)
– Example: In file net/ipv4/ip_input.c

int ip_local_deliver(struct sk_buff *skb) {
……
return

NF_HOOK(PF_INET,NF_IP_LOCAL_IN,
skb, skb->dev, NULL,ip_local_deliver_finish);

}
• nf_iterate iterates through the modules registered .

Called from nf_hook_slow

iptables
• iptables is a collection of tables along with the

utility functions to manipulate those
• Each table is a collection of rules for the various

hooks that table is used for and is represented by

struct ipt_table {
struct list_head list;
char name[IPT_TABLE_MAXNAMELEN];
struct ipt_replace *table;
unsigned int valid_hooks;
rwlock_t lock;
struct ipt_table_info *private;

} ;

4

• ipt_table does not store rules directly

• Uses the “private” element

struct ipt_table_info {

unsigned int size;

unsigned int number;

unsigned int hook_entry[NF_IP_NUMHOOKS];

unsigned int underflow[NF_IP_NUMHOOKS];

char entries[0]
__attribute__((aligned(SMP_CACHE_BYTES)));

} ;

• ipt_table_info too does not have any space
for entried

• Some interesting members are
– hook_entry: offsets to the start of the rules for

the various hooks

– entries: a zero size element at the end
essentially pointing to the end of the structure

• These two together are used to created and
traverse the rules.

• translate_table copies the list of rules
immediately after the ipt_table_info
structure

• The top of the list is now available through
the “ entries” element

• hook_entry array elements are set up with
the offset to the beginning of the
corresponding hook’s rules

ipt_table

ipt_table_info

rules

entries

• A rule is combination of 3 data structures

– struct ipt_entry

– struct ipt_entry_match

– struct ipt_entry_target

• The ipt_entry structure contains the criteria
that is to be matched

• The ipt_entry_match and ipt_entry_target
structures are similar and contain match/target
functions to be called

struct ipt_entry
{

struct ipt_ip ip;
unsigned int nfcache;
u_int16_t target_offset;
u_int16_t next_offset;
unsigned int comefrom;
struct ipt_counters counters;
unsigned char elems[0];

} ;

5

• struct ipt_entry_match {
union {

struct {
u_int16_t match_size;

char name[IPT_FUNCTION_MAXNAMELEN];
} user;
struct {

u_int16_t match_size;
struct ipt_match *match;

} kernel;
u_int16_t match_size;

} u;
unsigned char data[0];

} ;

• struct ipt_entry_target {
union {

struct {
u_int16_t target_size;

char name[IPT_FUNCTION_MAXNAMELEN];
} user;
struct {

u_int16_t target_size;
struct ipt_target * target;

} kernel;
u_int16_t target_size;

} u;
unsigned char data[0];

} ;

• A rule looks like

0 or more ipt_entry_targets for that entry

0 or more ipt_entry_matches for that
entry

1 ipt_entry

next_offset

target_offset

• A table is registered through a call to
ipt_register_table.

• This in turn calls translate_table which
– sets up the ipt_table_info structure after error

checking

– Makes one copy of the rules per cpu.

• To iterate through a table helper macros are
defined
– IPT_ENTRY_ITERATE

– IPT_MATCH_ITERATE

– IPT_TARGET_ITERATE

http://netfilter.samba.org

