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Abstract—We present a novel approach to investigating key
behavioral properties of complex biological systems by first
using automated techniques to learn a simplifiedLinear Hybrid
Automaton model of the system under investigation, and then
carrying out automatic reachability analysis on the resulting
model. The specific biological system we consider is theneuronal
Action Potentialand the specific question of interest isbifurcation:
the graded response of the neuron to stimulation of varying
amplitude and duration. Reachability analysis in this case is
performed using the d/dt analysis tool for hybrid systems. The
results we so obtain reveal the precise conditions under which
bifurcation manifests, when taking into consideration an infinite
class of input stimuli of arbitrary shape, amplitude, and duration
within given respective intervals.

To the best of our knowledge, this represents the first time that
formal (reachability) analysis has been applied to a computational
model of excitable cells. The obvious advantage of symbolic
reachability analysis over simulation—perhaps the only available
analysis method when complex systems of coupled ODEs are
used to model excitable-cell behavior, as has traditionally been
the case—is that through the so-calledreachable set computation,
the system’s reaction to an infinite set of possible inputs can be
observed. Our results further demonstrate that Linear Hybrid
Automata, as a formal language, is both expressive enough to
capture interesting excitable-cell behavior, and abstract enough
to render formal analysis possible.

I. I NTRODUCTION

Hybrid automata[1], [2] are an increasingly popular mod-
eling formalism for systems that exhibit both continuous
and discrete behavior. Intuitively, hybrid automata (HA) are
extended finite-state automata whose discrete states correspond
to the various modes of continuous dynamics a system may
exhibit, and whose transitions express the switching logic
between these modes.

Excitable cells(ECs), which include neuronal, cardiac and
skeletal-muscle cells, are a typical example of biological
systems exhibiting hybrid behavior: transmembrane ion fluxes
and voltages may vary continuously but the transition from
the resting state to the excited state is generally considered
an all-or-nothing discrete response. Traditionally, however, the
preferred modeling approach for ECs uses large sets of cou-
pled nonlinear differential equations. Although an invaluable
asset for integrating genomics and proteomics data to reveal
local interactions, such models are not typically amenable to

control-theoretic techniques developed for linear systems, and
render large-scale simulation impractical.

At the cellular level, the electrical signal ECs amplify and
propagate is a change in the potential across a cell’s mem-
brane, caused by different ion currents flowing through the
membrane’s channels. For each excitation event, the electrical
signal in question is called anaction potential (AP). For
non-pacemaking ECs, an AP is an externally triggered all-
or-nothing response to an external stimulus: if the stimulus
is sufficiently strong, the cell fires an excitation AP; see the
continuous curve in Figure 1(a). Otherwise, it returns to its
resting potential; see the dashed curve in Figure 1(a). This
so-calledbifurcation propertyof ECs, which is typical for
nonlinear systems, will be the main focus of our symbolic
analysis.

Specifically, the bifurcation problem in this paper is the
graded response of the neuron to stimulation of varying
amplitude and duration. If the neuron under consideration
can be stimulated directly, we can choose a simple input
stimulus, such as a rectangular pulse of fixed height and width.
The result for several such stimuli is shown in Figure 1(b)
(data from running simulation of Hodgkin-Huxley model [3]).
Unfortunately, the number of such rectangular pulses is poten-
tially infinite. Moreover, if the cell interacts with neighboring
cells, we can no longer assume this simple form of input.
The lack of linearity also tells us that the output cannot be
computed as the superposition of the outputs of the system
for a given set of generators for the input. Hence, we are
left with having to simulate the system for all possible input
stimuli; even when we discretize the input with a sample-and-
hold technique, the number of such stimuli is intractably large.

In this paper, we show that it is possible to apply automatic
formal analysis techniques to this bifurcation analysis problem
for ECs. Specifically, based on our learning technique of [4],
we develop a simplified Linear Hybrid Automaton (LHA)
model of the neuronal AP, which we submit for automatic
symbolic reachability analysis, as implemented in the d/dt
analysis tool for linear hybrid systems [5]. The results we so
obtain reveal the precise conditions under which bifurcation
manifests, when taking into consideration an infinite class of
input stimuli of arbitrary shape, amplitude, and duration within
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Ist = 10, duration = 0.5/1.4
Ist = 11, duration = 0.5/1.4
Ist = 10, duration = 0.5
Ist = 11, duration = 0.5

Fig. 1. (a) APs for the squid giant axon. (b) APs for four different input
pulses.

given respective intervals.
To the best of our knowledge, this represents the first time

that formal analysis has been applied to a computational model
of excitable cells. The obvious advantage of the symbolic
reachability analysis we conducted over simulation is that,
through the so-called reachable set computation, the system’s
reaction to an infinite set of possible inputs can be observed.
This form of analysis is simply not possible by simulation
alone. Our results further demonstrate that LHA, as a formal
language, is both expressive enough to capture interesting
excitable-cell behavior, and simple enough to render formal
analysis possible.

In related work, Dumas and Rondepierre [6], starting from a
simplified Hodgkin-Huxley model [3], developed a piecewise
linear Hybrid automaton for the neuron action potential, and
studied bifurcation of the system through phase-space plotting.
The major difference between this effort and the results
presented herewith is that our analysis of the neuron action
potential is based on the use ofautomatic formal-analysis
techniques. In particular, we have shown how automatic sym-
bolic reachability analysis, as implemented in the d/dt analysis
tool, reveals the precise conditions under which bifurcation
manifests in a simplified LHA model of the neuron action
potential, when taking into consideration an infinite class of
input stimuli of arbitrary shape and duration within given
respective intervals.

II. H YBRID AUTOMATA

Definition [Hybrid automaton (HA)] An HA A =
(X, G, init , inv ,flow , jump, event) over Σ is a 7-tuple con-
sisting of [7]:

• A finite set X of real-valued variablesx1, . . ., xn; their
dotted formẋi ∈ Ẋ represents first derivatives and their
primed formx′i ∈X ′ represents values at the conclusion
of discrete steps (jumps);n is called thedimensionof A.

• A finite control graphG = (V, E), whose vertices inV
are calledmodesand edges inE are calledswitches.

OFF ON

[x ≤ 18]

x = 20 ẋ = −0.1x

{x ≥ 18}

ẋ = 5 − 0.1x

{x ≤ 22}
TurnOn

[x ≥ 22]

Fig. 2. A thermostat system modeled as an HA.

• For each modev ∈V , vertex-labeling functionsinit, inv
and flow with domainV and rangeP , whereP is the
set of all logical predicates. Initial conditioninit(v) and
invariant inv(v) are predicates with free variables from
X. Flow flow(v) is a predicate with free variables from
X ∪ Ẋ representing a set of ordinary (partial) differential
(in)equalities.

• A finite set Σ of events which are essentially boolean
variables controlled from outside the system, and an edge-
labeling functionevent: E → Σ that assigns to each
switch an event.

• Edge-labeling functionsjump:E → (Guard, Action)
whereGuard is a set of predicates with free variables
from X ∪ Σ and Action is a set of assignments that
update the variable inX ′.

An HA A spends time in its modesv ∈V , where it updates
its variables according to the flow predicateflow(v). Jumps
jump(e) on switchese = (v, w) are in contrast instantaneous,
where v is the beginning mode andw is the end mode of
the switch. A jump one is taken whenever the jump’s guard
jump(e).Guard is enabled for the current value of variables
X, or the invariantinv(v) of the current mode is violated.
For illustration purposes, consider HAA of Figure 2,
which models a simple thermostat system. This is a
one-dimensional system over input alphabetΣ = {TurnOn },
with X ={x} and x representing the current temperature;
control graph G = ({ON,OFF}, {(ON,OFF), (OFF,ON) }) , with
invariants inv(OFF) = {x ≥18} and inv(ON) = {x ≤22},
flows flow(OFF) = {ẋ= -0.1x } and flow(ON) = {ẋ=5-0.1x }
and guards jump((OFF,ON)).Guard = {x ≤18} and
jump((ON,OFF)).Guard = {x ≥22}; and a single event given
by event((OFF,ON)) = TurnOn . Initially, A is in mode OFF

with x initialized to 20°C. When in this mode, the heater
is off and the temperature drops until it falls to 18°C and
the eventTurnOn occurs. At this time,A jumps to modeON,
in which the heater is on and the temperature rises until it
reaches 22°C. At this point,A jumps back to modeOFF.

Definition [Linear HA (LHA)] An HA is a LHA if it has
the following properties:

• Linear flows. Everyflow(v) is a linear time-invariant
differential equation of the formẊ = AX + BU , where
A is a constantn×n matrix, B is a constant scalar, and
U is an input vector of dimensionn×1 that ranges inside
a convex polyhedron.

• Linear invariants and guards. The variable spaces that
makeinv(v) andjump(e).Guard true also form convex
polyhedra.



The reachability problemfor HA is stated as follows:Will
the system, subject to certain initial conditions, ever enter
an “unsafe” state?The problem is in general undecidable;
however, under certain restrictions on the HA flows or jumps,
like the ones we put on LHA, it becomes decidable [8]. A
popular reachability analysis tool for LHA is d/dt [9].

The d/dt tool performs forward reachability analysis on
LHA, presenting the final result in a graphical form. It uses
convex polyhedral packages for this purpose, representing
reachable sets of states as unions of convex polyhedra. In
order for d/dt to perform reachable-set computations, one has
to provide it with the following data:
• Dimension: The number of the variables in the input

LHA.
• Initloc: The initial mode of the LHA.
• Initset: The initial-range polyhedron of the state variables.
• Badset: The unwanted polyhedron area, in the case of

safety analysis.
• Locations: The modes of the LHA.
• Matrix A andscale B: Matrix and scale as in Definition II.
• Inputset: A polyhedron bounding the range ofU for each

mode.
• Transitions: The guard polyhedron and target mode for

each switch.
• Stayset: The invariant polyhedron for each mode.
• Limits: The range polyhedron on which reachability anal-

ysis is performed.

III. B IFURCATION ANALYSIS METHOD

For the purpose of bifurcation analysis, we will restrict our
attention to the derivation of a simple neuronal LHA. We will
then input this LHA to d/dt in order to symbolically analyze its
response to any possible input over an arbitrary time domain
within a given time interval.

As in [10], [4], the automatic learning method we use for
neuronal LHA proceeds in two stages:

• Identify the topology of the LHA, i.e. the design of its
control graph.

• Identify for each control-graph mode, the dynamics of
the LHA model.

The choice of modes is based on the observation that the
AP for different cell types (neuron, cardiac myocyte, etc.) or
different species (guinea pig, neonatal rat, etc.) may exhibit
different waveforms, but they all possess the following two
phases within a cycle: aRising phase and aFalling phase;
see Figure 1. For the purpose of mode identification, we also
need to identify the time period during which the cell is
subject to external stimulation. We shall refer to this mode as
Stimulated , and allow the LHA model to accept input within
this mode. This leads to the splitting of the rising phase into
modesStimulated and Rising .

We use a begin-stimulus eventes and an end-stimulus
event es to effect this separation. When external stimulation
begins, i.e., upon the occurrence ofes, the LHA switches to
modeStimulated , in which the cell accumulates its membrane
voltage by accepting an input current. If upon termination of

Falling RisingStimulated

{v ≤ VO}[v < VT ∧ ēs]

[v ≥ VT ∧ ēs]

[v ≥ VO]

v̇ = a2v
v̇ = a1vv̇ = a0v + bIst

[es]

Fig. 3. Graphical representation of neuronal LHA.

the stimulation, i.e., upon the occurrence of the eventes, the
magnitude of the received stimulation is sufficiently strong,
the cell fires an AP by switching to modeRising ; otherwise
it returns to modeFalling . In the former case, the LHA
will switch from modeRising to Falling when it passes the
maximum voltage point.

Since the voltage is the only observable in which we are
interested and since bifurcation, the phenomenon of interest,
only occurs at the end of stimulation, we tolerate a larger error
margin within modeFalling . As a consequence, our learning
algorithm is able to derive an acceptable LHA with only one
continuous state variable representing the AP. Certainly, this
might be not the case for other observables. The LHA so
derived is depicted in Figure 3.

The flow function is of the formv̇ = a0v + bIst for
mode Stimulated and v̇ = aiv (i = 1, 2) for the other two
modes (these modes are therefore called refractory modes).
The threshold valuesVO andVT are constants determined by
analyzing the data produced by the HH model. The coefficients
ai for i = 0, 1, 2, and b are also automatically learned by
analyzing the data produced by the HH model via numerical
integration. Their precise values can be provided upon request.

IV. A NALYSIS RESULTS

Let us henceforth refer to the neuronal LHA of Figure 3
(where time is implicit) as LHA1. In this section, we first
compare the simulation results for a single AP, resulting from
a rectangular-pulse stimulus, using the LHA1 and Hodgkin-
Huxley model (HH). We then present the results of our
symbolic reachability analysis for LHA1 (with certain adap-
tion to fit the tool d/dt), where all input stimuli (of any
form and duration within given intervals) are automatically
(symbolically) taken into account by d/dt. Our results, given
in terms of LHA1’s reachable state sets, clearly demonstrate
the bifurcation property over this infinite input set.

a) Validation of the LHA model.: Figure 4(a) com-
pares the simulation of a single AP using the LHA1 and
HH models. The initial condition for the voltage was the
same in both models. The parameter values considered for
the HH model were as follows:gNa = 120mOhms−1/cm2,
gK = 36mOhms−1/cm2, gL = 0.3mOhms−1/cm2, ENa =
55.0mv, EK = −72.0mv, EL = −50.0mv, C = 1. The
stimulation current for both models was a rectangular pulse
with an amplitude of50uA/cm2 and a duration of0.5ms. As
can be observed, the AP is better matched during the rising
phase than in the falling phase, as our focus with the neuronal
LHA model is on whether or not an AP will be fired under
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Ist = 11, duration = 0.5
Ist = 11, duration =0.5/1.4
Ist = 10, duration = 0.5
Ist = 10. duration = 0.5/1.4

Fig. 4. (a) AP comparison: LHA1 vs. HH. (b) Bifurcation in LHA1

different input currents. The undershoot during the falling
phase is missed in the LHA1 model, a compromise made in
favor of the model’s simplicity.

b) Reachable set computation for infinitely many
inputs.: The bifurcation seen in Figure 1(b) and in Figure 4(b)
occurs when the stimulation current increases from10uA/cm2

to 11uA/cm2. When the current reaches11uA/cm2, an AP
is fired, while for a current of10uA/cm2, only a small bump
is observed.

We conducted two sets of reachability analysis on the LHA
model: one with the input current ranging within interval
[0, 10]uA/cm2 and the other with the input current ranging
within interval [0, 11]uA/cm2. The output of d/dt’s reachabil-
ity algorithm is a rendering of the shape of the reachable set
in each mode. For a one-dimensional system such as LHA1,
the reachable set is planar (taking consideration of time axis).

Fig. 5. (a) Reachable set forIst∈[0, 10]. (b) Reachable set forIst∈[0, 11]

Figure 5(a) shows the reachable set for a stimulus current
between0uA/cm2 and10uA/cm2. Only modesFalling and
Stimulated are reached during the computation. Figure 5(b)

shows the reachable set for a stimulation current between
0uA/cm2 and 11uA/cm2. In this case, we see that all three
modes are reached. In particular, bifurcation is observed in
modeFalling : the reachable set for this mode is composed
of an upper part, reached by switching from modeRising ,
when an AP occurs, and a lower part, reached by returning
from modeStimulated , when an AP fails to occur.

V. CONCLUSIONS

We have presented a novel approach to investigating key
behavioral properties of complex biological systems by first
using automated techniques to learn a simplifiedLinear Hybrid
Automatonmodel of the system under investigation, and then
carrying out automatic reachability analysis on the resulting
model. The merit in our approach resides in the fact that by
performing symbolic reachability analysis on a Linear Hybrid
Automaton, one can explore the system’s reaction to a large,
potentially infinite set of inputs. Any interesting behaviors re-
vealed by such an analysis can then be validated via simulation
of the original nonlinear system on the inputs to the LHA that
gave rise to these behaviors. Ideally, we would like to have a
soundness result that states that if no undesirable behaviors
are observed in the abstracted LHA model, then none are
present in the original nonlinear system. The derivation of
such a result is work in progress and will likely follow lines
of reason similar to those in [4], where we showed how to
automatically learning an HA that approximates EC behavior
up to a required error margin.
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