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Abstract— We introduce cycle-linear hybrid automat4dCLHA)
and show how they can be used to efficiently model dynamical
systems that exhibit nonlinear, pseudo-periodic behavior. CLHA
are based on the observation that such systems cycle through
a fixed set of operating modes, although the dynamics and
duration of each cycle may depend on certain computational
aspects of past cycles. CLHA are constructed around these 2
modes such that the per-cycle, per-mode dynamics are given by o
a time-invariant linear system of equations; the parameters of
the system are dependent on deformation coefficientomputed
at the beginning of each cycle as a function of memory
units. Viewed over time, CLHA generate a very intuitive, Fig. 1. Relation of HA modes with AP phases
linear approximation of the entire phase space of the original,

nonlinear system. We show how CLHA can be used to efficiently excitation event is known as aaction potential(AP). The
model the action potential of various types of excitable cells and aAp of cells from different regions or from different species
their adaptation to pacing frequency. may vary in shape but when plotted over time they present
. INTRODUCTION periodio_signals with vari_aole frequency and morphology.
_ . In addition, all APs exhibit the following major phases
We present a novetycle-linear approach to modeling (rig ~1yresting upstroke early repolarization plateau or
dynamical systems that exhibit nonlinear |oseudo—per|od|<‘,;‘ter repolarization andfinal repolarization

behavllor. LhetS tl)e such a shystom. The main idea S 0 For non-pacemaking excitable cells, APs are externally
model each cycle of as a hybrid automaton over time- triggered events: a cell fires an action potential as an all-

invariant linear equations whose parameters are updated0 [ othing response to a supra-threshold stimulus current,

the beginning of each cycle to refleSs nonlinear cycle- 54 each AP follows the same sequence of phases and has

dependent dynamics. more or less the same magnitude regardless of the applied

. The rest of the_ papor is organized as fOHOWS' Sectioo gtimulus. After an initial step-like increase in the membrane
introduces the biological background of action potenti otential, an AP lasts for a couple of hundred milliseconds

(AP), which serves as a quintessential case study of the CyC|g-,st mammals. During the AP, no re-excitation can occur,

linear approach. Section Il gives the formal definition ofhich s a safety mechanism to ensure the reliable working
cycle-linear systems in terms of Hybrid automata [1]. Sectiog¢ the heart. The early portion of an AP is known as the

IV-shows how cycle-linear Hybrid automata can be used,pqq) e refractory period” due to its non-responsiveness
to efficiently model the AP and corresponding restitution, g, ther stimulation. The later portion of an AP is known
properties of various types of excitable cells. as the “relative refractory period”, during which an altered
secondary excitation event is possible if the stimulation
threshold is raised.

Excitable cells include neurons, cardiac cells and skeletal \when a cardiac cell is subjected to repeated stimuli, two
muscle cells. In cardiac cells for example, on each heajhportant time periods can be identified: thetion potential
beat, an electrical control signal is generated by the sinogyration (APD), the time the cell is in an excited state, and
trial node, the heart’s internal pacemaking region. Electricahe diastolic interval (D), the time between the end of the
waves then travel along a prescribed path, exciting cells #ction potential and the next stimulus. Fig. 2 illustrates the
the main chambers of the heart (atria and ventricles) angio intervals. The function relating APD to DI is called
assuring synchronous contractions. At the cellular level, thgpp restitution function The relationship is nonlinear and
electrical signal is a change in the potential across the C@éptures the phenomenon that a longer recovery time is
membrane which is caused by different ion currents flowingg|jowed by a longer APD. A physiological explanation of

through the cell membrane. This electrical signal for eace||'s restitution is rooted in the ion channel kinetics as a
. limiting factor in the cells’ frequency response.
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previous cycles and can be used to adjust the behavior of
the current cycle according to system’s memaﬁ@, A(f,...,

AQ are the parameters in the linear equations, for which flow
conditions remain constant for each cycle, but are functions

, . - of the memory vecto®; PO, PP,..., PO are the predicates in
« APs in the different cycles share similar morphologythe jump con?j/itions and arelalso fanctions(i)?@’ —f(0)

hich makes it possible to model them using equation . . .
xitlh the sanfel sriruscilure using equationz yne jump action which updates the memory u@t®nce

« According to the restitution property, APD’s shape igh each cycle.. _Thus, fro.”.‘ modg to gn, the equations in
mainly determined by the length of the previous DIthe flow condition remaidinear, even though the concrete

rah® AO e - .
so that a relatively simple (single-step memory) Contros?r:]uigsrl O];OT?P:ZC;’%S%A,SAa consAen uV:r:)éemtr?elﬁc?\r/Z?;IIcgglr?;\,/ior
can be implemented. y i q ;

. . . _,of a CLHA is nonlinear while being linear in each single
We now formalize cycle-linear model in terms of Hybrid

. ! 7 Feycle.
automata. Ahybrid automaton (HAJs an extended finite  ~ o . Jqal of Fig. 3 should be understood asigimal

automaton where each state has an associated Cont'nupéﬁresentation of a cycle-linear model. It can be extended

dynamics [2]. An HA _therefore conS|sts_of: () A finite with other switches to describe more complicated system
set X of real-valuedvariablesxy, ..., Xn; their dotted form behaviors

X eX represents first derivatives and their primed fogrmX’
represents values at the conclusion of discrete steps. (ii)V. AP DESCRIPTION USINGCYCLE-LINEAR MODELS

A finite control graph (V,E), where vertices inV are  |n this section, we present CLHA for the AP of three

called modesand edges inE are called switches (iii)  different types of excitable cells. The models are of in-
Vertex-labeling functionsnit, inv andflow assigned to each creasing complexity, as is their ability to describe complex
modeveV. Initial condition init(v) and invariantinv(v) are  piological phenomena. The first CLHA aims to describe
prEdicateS with free variables from.- Flow ﬂOW(V) is a AP morpho]ogy of an axon as per the classical Hodgkin_
predicate with free variables frolUX representing a set Huxley model[3]; the second CLHA captures both the
of ordinary differential (in)equations. (iv) An edge-labelingAp morphology and restitution properties of a guinea pig
function jump assigned to each switabkeE. Jumpjump(e)  ventricular myocyte according to the dynamic Luo-Rudy
is a predicate with free variables frokUX’ and is usually model (LRd) [4], [5]; the last model describes neonatal rat
divided into aguardand anassignment actiar(v) A finite set  ventricular cell behavior, the reference mathematical model
2 of eventsand an edge-labeling functi@ventthat assigns is under development in the BME department of Stony Brook
to each switch an event. University. For the last cell model, a 2-D cell array version

An HA has a natural graphical representation as a stajfas implemented, and spiral wave behavior was successfully
transition diagram, with control modes as the states angmuylated.

control switches as the transitions. Flows and invariants .

(predicates within curly braces) appear within control mode4- Modeling AP

while jump conditions (in square brackets) and actions We first associate a control mode with each major AP
appear near the control switches. Continuous variables gwhase: resting and final repolarization (FR)stimulated
written in lower case\\Vx, etc); constant parameters in theupstroke andplateau and early repolarization (ERnitially,

Fig. 2. APD and DI time periods.

flows are in upper-case or lower-case Greek (Ag8, etc);
constants in invariants and jump conditioNs,(etc), as well
as events\{s), are in upper case.

the cell is in moderesting and FR When (externally)
stimulated with the evenVs, it enters modestimulated
and updates its voltage according to the stimulus current.

A cycle-linear hybrid automatofCLHA) is an HA having Upon termination of the stimulation, via evelts, with
the following properties: (i) The control graph is a cyclea sub-threshold voltage, the cell returnsrésting without
(ii) For each execution of the cycle, the flows are defined bfiring an AP. If the stimulus is supra-threshold, i.e> Vr
linear time-invariant (LTI) systems of ordinary differential holds, the excited cell will generate an AP by progressing
equations. (iii) The constants within the flows and jumpgo modeupstroke The recovery course of the cell follows
guards are computed once per cycle. transitions to mod@lateau and ERand then taresting and
The CLHA model is illustrated in Fig. 3, whe®, ¢1,..., FR. The jump conditions on the control switches monitor
gn are the control modesx is a vector of variables®@ the transmembrane potentigl rather than imposing a rigid
is a vector ofmemory unitsthat record information about timing scheme.
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Fig. 4. Cycle-linear model for Hodgkin-Huxley model. Fig. 6. The cycle-linear model for both AP and restitution
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system. Alternatively, expert knowledge about the different
phases in the behavior of the biological system can be used
in order to define the separation of modes for linearization
purposes. The switch between modes can be accomplished
by voltage-dependent step functions (Heaviside functions).
Within a mode, slowly changing variables can be substituted
by constants. Such piecewise linear models result in more
efficient formulations with less modes. Previously formulated
models of this kind have had two deficiencies: they are either
not precise enough (fail to match AP morphology) or remain
highly nonlinear thus not suitable for formal analysis.

The transition relation of a CLHA model also reflects In this section, we show how adaptation to pacing fre-
the refractory period of excitable cells. Only during mode&luency (i.e. APD restitution) can be modeled within the
resting and FRthe cell can respond to external stimuli, thusCLHA framework. The CLHA model of Section IV-A has
this period is defined aselative refractory period In the Nno memory. It therefore produces exactly the same AP every
modes before, the cell will not be responsive, thus it is withigycle. To introduce adaptability to pacing frequency into
absolute refractory period the model we define a memory unit,, that remembers

Within each mode, we use abstracted Systems of |inegj’e current VOltage every time a new stimulus arrives. The
equations to describe the dynamics of the transmembraM@lue of v will control the AP morphology of the current
voltage. CLHA models of this nature are attractive becaug@/cle, thus making the APD adaptive to the previous DI. The
they offer rich descriptive power, while still remaining definition of v, is also illustrated in Flg 2. As, remains
amenable to formal analysis. CLHA models can be obconstant for the current AP cycle, the model is still cycle-
tained from more detailed systems of nonlinear differentidinear.
equations by standard methods for linearization and orderLet 8 = v,/Vr be a deformation coefficient, where the
reduction. We used curve-fitting techniques to match thealue of v, is the one in the current mode aMmg serves
behavior of the corresponding models and optimize thas a threshold between cell's absolute refractory period and
model parameters. Due to the space limitation, their valugslative refractory period. Only when the cell is in resting
are omitted here. mode where the membrane potentiais such thatv < Vg,

The CLHA for the Hodgkin-Huxley model of an axon is can the value of;, be reset. Thus we haw@< 6 < 1. We
shown in Fig. 4 and a comparison of the AP morphology igcorporate functionf(8) = 1+13v/8 (our choice of a 6th
given in Fig. 5 root function is inspired by the fact that the APD is not

proportional to DI but a convex function of it) into mode
B. Modeling AP Restitution Plateau and ERwhich determines the length of the APD.

Classic models of AP restitution are highly nonlinearThe resulting CLHA appears in Fig. 6 and the comparison
models, making them difficult to analyze. Such models caff the restitution curve with that of the LRd model is given
be simplified via piecewise linearization, i.e. by introducingn Fig. 7.
linear or affine-linear differential equations for different Fig. 8 illustrates the impact of, on the shape of the
portions of the cycle. Linearization can be done aroundP morphology. Recall that the value of,, and hence
equilibrium points of the full nonlinear systems using seriedeformation coefficientd, is updated at the beginning of
expansion or by geometric approximations (e.g. simplegach new AP cycle on the switch from modg to Q.
techniques) over the whole state space. In both cases, usudlympare this relatively simple control strategy with what
a relatively large number of pieces or modes are needeuld be required with the finite-element method. In this
for faithful representation of the dynamics of the originalcase, to achieve AP adaptability, a dense enough grid has to
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Fig. 5. Comparison of single AP morphology
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Fig. 7. Comparison of restitution curve with Luo-Rudy model

The CLHA model can be applied to a network of cells.
. - mininum Vo To implement that, we need a diffusion model describing
the interaction of a cell with its neighbors. Here, we use a
mimum v classical diffusion model based on the Laplacian. When a
crossfield stimulation is applied, both the original model and
its CLHA rendition reproduce the induction of a spiral wave
(Fig. 10). Spiral waves are common phenomena in reaction-
diffusion systems, including cardiac tissue.
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D V. CONCLUSIONS ANDFUTURE WORK

time (ms) . . .
A cycle-linear model of a dynamical system enjoys both
Fig. 8. AP morphology dependence v the computational efficiency of a linear model and the
descriptive power of a nonlinear model. Moreover, a cycle-
linear model is much more amenable to formal analysis
.. (e.g. stability analysis) than its nonlinear counterpart. We
be placed on the state space so that system traces at d'ﬁeriﬂ[]gtrated the cycle-linear approach by modeling the behav-

regions are covered. ior of excitable cells. In doing so, we succeed in capturing
C. Further Extensions and Spatial Simulations the action-potential morphology and its adaptation to pacing
frequency. The method is, however, generally applicable to

Further developments of an excitable cell model can insystems where some level of periodicity plus adaptation is
clude adaptive threshold for stimulation alongside a realistighserved.

AP morphology and APD restitution. These extensions are Fyture work includes applying formal analysis to our

implemented in the cycle-linear model for the neonatal radycle-linear models of excitable cells in order to study their
(NNR), whereg(6) = 1+ 26 and thresholds/Y and V§  fundamental properties, including stability, observability and

are functions of the deformation coefficie@t The result- safety (absence of arrhythmia). We also plan to investi-
ing CLHA is shown in Fig. 9. Note that by making the gate techniques for further improving the efficiency of our

parameters of the automaton dependent on the deformaugﬁproach For example, in some modes of a cycle-linear
coefficient 6, we are able to cover the phase space of th@odel, it is possible to analytically solve the mode’s linear

nonlm_ear system in a very simple ar_1d generic way as #fferential equations, thereby eliminating the integration

HA with only four modes. Compare this with the huge (an(gtepS that would otherwise be required.

barely readable) “automaton” that is obtained, for example,

by a finite element method, when each element (simplex) is REFERENCES
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Fig. 9. Cycle-linear model for neonatal rat



